Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Publication year range
1.
Mol Psychiatry ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961232

ABSTRACT

Epidemiological studies link exposure to viral infection during pregnancy, including influenza A virus (IAV) infection, with increased incidence of neurodevelopmental disorders (NDDs) in offspring. Models of maternal immune activation (MIA) using viral mimetics demonstrate that activation of maternal intestinal T helper 17 (TH17) cells, which produce effector cytokine interleukin (IL)-17, leads to aberrant fetal brain development, such as neocortical malformations. Fetal microglia and border-associated macrophages (BAMs) also serve as potential cellular mediators of MIA-induced cortical abnormalities. However, neither the inflammation-induced TH17 cell pathway nor fetal brain-resident macrophages have been thoroughly examined in models of live viral infection during pregnancy. Here, we inoculated pregnant mice with two infectious doses of IAV and evaluated peak innate and adaptive immune responses in the dam and fetus. While respiratory IAV infection led to dose-dependent maternal colonic shortening and microbial dysregulation, there was no elevation in intestinal TH17 cells nor IL-17. Systemically, IAV resulted in consistent dose- and time-dependent increases in IL-6 and IFN-γ. Fetal cortical abnormalities and global changes in fetal brain transcripts were observable in the high-but not the moderate-dose IAV group. Profiling of fetal microglia and BAMs revealed dose- and time-dependent differences in the numbers of meningeal but not choroid plexus BAMs, while microglial numbers and proliferative capacity of Iba1+ cells remained constant. Fetal brain-resident macrophages increased phagocytic CD68 expression, also in a dose- and time-dependent fashion. Taken together, our findings indicate that certain features of MIA are conserved between mimetic and live virus models, while others are not. Overall, we provide consistent evidence of an infection severity threshold for downstream maternal inflammation and fetal cortical abnormalities, which recapitulates a key feature of the epidemiological data and further underscores the importance of using live pathogens in NDD modeling to better evaluate the complete immune response and to improve translation to the clinic.

2.
Brain Behav Immun ; 118: 423-436, 2024 May.
Article in English | MEDLINE | ID: mdl-38467381

ABSTRACT

Gut inflammation can trigger neuroinflammation and is linked to mood disorders. Microbiota-derived short-chain fatty acids (SCFAs) can modulate microglia, yet the mechanism remains elusive. Since microglia do not express free-fatty acid receptor (FFAR)2, but intestinal epithelial cells (IEC) and peripheral myeloid cells do, we hypothesized that SCFA-mediated FFAR2 activation within the gut or peripheral myeloid cells may impact microglia inflammation. To test this hypothesis, we developed a tamoxifen-inducible conditional knockout mouse model targeting FFAR2 exclusively on IEC and induced intestinal inflammation with dextran sodium sulfate (DSS), a well-established colitis model. Given FFAR2's high expression in myeloid cells, we also investigated its role by selectively deleting it in these populations of cells. In an initial study, male and female wild-type mice received 0 or 2% DSS for 5d and microglia were isolated 3d later to assess inflammatory status. DSS induced intestinal inflammation and upregulated inflammatory gene expression in microglia, indicating inflammatory signaling via the gut-brain axis. Despite the lack of significant effects of sex in the intestinal phenotype, male mice showed higher microglial inflammatory response than females. Subsequent studies using FFAR2 knockout models revealed that FFAR2 expression in IECs or immune myeloid cells did not affect DSS-induced colonic pathology (i.e. clinical and histological scores and colon length), or colonic expression of inflammatory genes. However, FFAR2 knockout led to an upregulation of several microglial inflammatory genes in control mice and downregulation in DSS-treated mice, suggesting that FFAR2 may constrain neuroinflammatory gene expression under healthy homeostatic conditions but may permit it during intestinal inflammation. No interactions with sex were observed, suggesting sex does not play a role on FFAR2 potential function in gut-brain communication in the context of colitis. To evaluate the role of FFAR2 activated by microbiota-derived SCFAs, we employed the same knockout and DSS models adding fermentable dietary fiber (0 or 2.5% inulin for 8 wks). Despite no genotype or fiber main effects, contrary to our hypothesis, inulin feeding augmented DSS-induced inflammation and signs of colitis, suggesting context-dependent effects of fiber. These findings highlight microglial involvement in colitis-associated neuroinflammation and advance our understanding of FFAR2's role in the gut-brain axis. Although not integral, we observed that the role of FFAR2 differs between homeostatic and inflammatory conditions, underscoring the need to consider different inflammatory conditions and disease contexts when investigating the role of FFAR2 and SCFAs in the gut-brain axis.


Subject(s)
Colitis , Microglia , Animals , Female , Male , Mice , Colon/metabolism , Dextran Sulfate/pharmacology , Disease Models, Animal , Epithelial Cells/pathology , Inflammation/metabolism , Inulin/adverse effects , Inulin/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells , Neuroinflammatory Diseases , Receptors, G-Protein-Coupled/metabolism
3.
Exp Physiol ; 108(12): 1466-1480, 2023 12.
Article in English | MEDLINE | ID: mdl-37702557

ABSTRACT

The human gastrointestinal microbiota and its unique metabolites regulate a diverse array of physiological processes with substantial implications for human health and performance. Chronic exercise training positively modulates the gut microbiota and its metabolic output. The benefits of chronic exercise for the gut microbiota may be influenced by acute changes in microbial community structure and function that follow a single exercise bout (i.e., acute exercise). Thus, an improved understanding of changes in the gut microbiota that occur with acute exercise could aid in the development of evidence-based exercise training strategies to target the gut microbiota more effectively. In this review, we provide a comprehensive summary of the existing literature on the acute and very short-term (<3 weeks) exercise responses of the gut microbiota and faecal metabolites in humans. We conclude by highlighting gaps in the literature and providing recommendations for future research in this area. NEW FINDINGS: What is the topic of this review? The chronic benefits of exercise for the gut microbiota are likely influenced by acute changes in microbial community structure and function that follow a single exercise bout. This review provides a summary of the existing literature on acute exercise responses of the gut microbiota and its metabolic output in humans. What advances does it highlight? Acute aerobic exercise appears to have limited effects on diversity of the gut microbiota, variable effects on specific microbial taxa, and numerous effects on the metabolic activity of gut microbes with possible implications for host health and performance.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Exercise , Feces
4.
Eur J Appl Physiol ; 121(8): 2295-2304, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33974126

ABSTRACT

PURPOSE: Interval exercise allows very high-power outputs to be maintained, a key for stimulating training adaptations. The main purpose of this study was to develop a sprint interval protocol that stimulated both anaerobic and aerobic systems while maximizing power output and minimizing fatigue. The secondary goal was to investigate the influence of inter-sprint recovery duration. METHODS: Sixteen (8 females) participants (age: 23.5 ± 3.4 years, peak oxygen consumption (VO2peak): 45.6 ± 9.2 ml kg-1 min-1) took part in this study. The exercise protocol involved 30 bouts of 4 s maximal cycling sprints using an 'Inertial Load Ergometer'. Recovery durations between sprints of 15, 30 and 45 s were studied in three trials. RESULTS: Peak power output (PPO) was maintained while taking 45 and 30 s of recovery, although it was 9% higher (p < 0.05) during 45 vs. 30 s. PPO with 15 s recovery declined 18% (p < 0.05) and then stabilized as did oxygen consumption (72±2% VO2peak) at a level that might reflect the peak rate of ATP-PC resynthesis from oxidative metabolism. The 15-, 30-, and 45 s trials elicited 72, 56, and 49% VO2peak and 86, 80, and 75% of maximal heart rate (all p<0.001). Perceived exertion increased with shorter recovery periods but remained at 12.6-14.7 and never became 'very hard'. CONCLUSION: The present study describes the use of an inertial-load ergometer to accommodate repeated 4 s maximal cycling sprints that elicit 72% VO2peak when the recovery period is 15 s. However, a recovery duration of 15 s was insufficient for the maintenance of power generation. TRIAL REGISTRATION NUMBER AND DATE: NCT04448925, 26 Jun 2020; retrospectively registered to clinicaltrials.gov.


Subject(s)
Adaptation, Physiological/physiology , Bicycling/physiology , Physical Exertion/physiology , Acceleration , Cross-Over Studies , Female , Heart Rate/physiology , Humans , Lactates/blood , Male , Oxygen Consumption/physiology , Pulmonary Gas Exchange/physiology , Young Adult
5.
J Ren Nutr ; 31(5): 512-522, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34120835

ABSTRACT

OBJECTIVE: The prebiotic fiber inulin has been studied in individuals undergoing hemodialysis (HD) due to its ability to reduce gut microbiota-derived uremic toxins. However, studies examining the effects of inulin on the gut microbiota and derived metabolites are limited in these patients. We aimed to assess the impact of a 4-week supplementation of inulin on the gut microbiota composition and microbial metabolites of patients on HD. DESIGN AND METHODS: In a randomized, double-blind, placebo-controlled, crossover study, twelve HD patients (55 ± 10 y, 50% male, 58% Black American, BMI 31.6 ± 8.9 kg/m2, 33% diabetes mellitus) were randomized to consume inulin [10 g/d for females; 15 g/d for males] or maltodextrin [6 g/d for females; 9 g/d for males] for 4 weeks, with a 4-week washout period. We assessed the fecal microbiota composition, fecal metabolites (short-chain fatty acids (SCFA), phenols, and indoles), and plasma indoxyl sulfate and p-cresyl sulfate. RESULTS: At baseline, factors that explained the gut microbiota variability included BMI category and type of phosphate binder prescribed. Inulin increased the relative abundance of the phylum Verrucomicrobia and its genus Akkermansia (P interaction = 0.045). Inulin and maltodextrin resulted in an increased relative abundance of the phylum Bacteroidetes and its genus Bacteroides (P time = 0.04 and 0.03, respectively). Both treatments increased the fecal acetate and propionate (P time = 0.032 and 0.027, respectively), and there was a trend toward increased fecal butyrate (P time = 0.06). Inulin did not reduce fecal p-cresol or indoles, or plasma concentrations of p-cresyl sulfate or indoxyl sulfate. CONCLUSIONS: A 4-week supplementation of inulin did not lead to major shifts in the fecal microbiota and gut microbiota-derived metabolites. This may be due to high variability among participants and an unexpected increase in fecal excretion of SCFA with maltodextrin. Larger studies are needed to determine the effects of prebiotic fibers on the gut microbiota and clinical outcomes to justify their use in patients on HD.


Subject(s)
Gastrointestinal Microbiome , Inulin , Cross-Over Studies , Female , Humans , Male , Pilot Projects , Prebiotics , Renal Dialysis , Uremic Toxins
6.
Exerc Sport Sci Rev ; 47(2): 75-85, 2019 04.
Article in English | MEDLINE | ID: mdl-30883471

ABSTRACT

The gastrointestinal tract contains trillions of microbes (collectively known as the gut microbiota) that play essential roles in host physiology and health. Studies from our group and others have demonstrated that exercise independently alters the composition and functional capacity of the gut microbiota. Here, we review what is known about the gut microbiota, how it is studied, and how it is influenced by exercise training and discuss the potential mechanisms and implications for human health and disease.


Subject(s)
Exercise , Gastrointestinal Microbiome , Gastrointestinal Tract/physiology , Animals , Humans
7.
Am J Primatol ; 81(10-11): e22969, 2019 10.
Article in English | MEDLINE | ID: mdl-30941799

ABSTRACT

The gastrointestinal microbiome is recognized as a critical component in host immune function, physiology, and behavior. Early life experiences that alter diet and social contact also influence these outcomes. Despite the growing number of studies in this area, no studies to date have examined the contribution of early life experiences on the gut microbiome in infants across development. Such studies are important for understanding the biological and environmental factors that contribute to optimal gut microbial colonization and subsequent health. We studied infant rhesus monkeys (Macaca mulatta) across the first 6 months of life that were pseudo-randomly assigned to one of two different rearing conditions at birth: mother-peer-reared (MPR), in which infants were reared in social groups with many other adults and peers and nursed on their mothers, or nursery-reared (NR), in which infants were reared by human caregivers, fed formula, and given daily social contact with peers. We analyzed the microbiome from rectal swabs (total N = 97; MPR = 43, NR = 54) taken on the day of birth and at postnatal Days 14, 30, 90, and 180 using 16S rRNA gene sequencing. Bacterial composition differences were evident as early as 14 days, with MPR infants exhibiting a lower abundance of Bifidobacterium and a higher abundance of Bacteroides than NR infants. The most marked differences were observed at 90 days, when Bifidobacterium, Lactobacillus, Streptococcus, Bacteroides, Clostridium, and Prevotella differed across rearing groups. By Day 180, no differences in the relative abundances of the bacteria of interest were observed. These novel findings in developing primate neonates indicate that the early social environment as well as diet influence gut microbiota composition very early in life. These results also lay the groundwork for mechanistic studies examining the effects of early experiences on gut microbiota across development with the ultimate goal of understanding the clinical significance of developmental changes.


Subject(s)
Gastrointestinal Microbiome , Macaca mulatta/microbiology , Social Environment , Animal Husbandry , Animals , Animals, Newborn/microbiology , Bacteria/classification , Bacteria/genetics , Diet , Female , Male , Mothers , Sequence Analysis, DNA
8.
J Physiol ; 596(14): 2811-2822, 2018 07.
Article in English | MEDLINE | ID: mdl-29923191

ABSTRACT

KEY POINTS: Chronic inflammation underlies many of the health decrements associated with obesity. Circulating progenitor cells can sense and respond to inflammatory stimuli, increasing the local inflammatory response within tissues. Here we show that 6 weeks of endurance exercise training significantly decreases inflammatory circulating progenitor cells in obese adults. These findings provide novel cellular mechanisms for the beneficial effects of exercise in obese adults. ABSTRACT: Circulating progenitor cells (CPCs) and subpopulations are normally found in the bone marrow, but can migrate to peripheral tissues to participate in local inflammation and/or remodelling. The purpose of this study was to compare the CPC response, particularly the inflammatory-primed haematopoietic stem and progenitor (HSPC) subpopulation, to a 6 week endurance exercise training (EET) intervention between lean and obese adults. Seventeen healthy weight (age: 23.9 ± 5.4 years, body mass index (BMI): 22.0 ± 2.6 kg m-2 ) and 10 obese (age: 29.0 ± 8.0 years, BMI: 33.1 ± 6.0 kg m-2 ) previously sedentary adults participated in an EET. Blood was collected before and after EET for quantification of CPCs and subpopulations via flow cytometry, colony forming unit assays and plasma concentrations of C-X-C motif chemokine 12 (CXCL12), granulocyte-colony stimulating factor (G-CSF), and chemokine (C-C motif) ligand 2 (CCL2). Exercise training reduced the number of circulating HSPCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs). EET increased the colony forming potential of granulocytes and macrophages irrespective of BMI. EET reduced the number of HSPCs expressing the chemokine receptor CCR2 and the pro-inflammatory marker TLR4. EET-induced changes in adipose tissue-derived MSCs and bone marrow-derived MSCs were negatively related to changes in absolute fitness. Our results indicate that EET, regardless of BMI status, decreases CPCs and subpopulations, particularly those primed for contribution to tissue inflammation.


Subject(s)
Exercise Therapy/methods , Inflammation/blood , Inflammation/therapy , Obesity/complications , Stem Cells/cytology , Thinness/complications , Adult , Cells, Cultured , Female , Humans , Inflammation/etiology , Male , Physical Endurance , Stem Cells/metabolism , Young Adult
9.
Am J Physiol Gastrointest Liver Physiol ; 315(3): G408-G419, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29848024

ABSTRACT

One significant drawback of current probiotic therapy for the prevention of necrotizing enterocolitis (NEC) is the need for at least daily administration because of poor probiotic persistence after enteral administration, increasing the risk of the probiotic bacteria causing bacteremia or sepsis if the intestines are already compromised. We previously showed that the effectiveness of Lactobacillus reuteri ( Lr) in preventing NEC is enhanced when Lr is grown as a biofilm on the surface of dextranomer microspheres (DM). Here we sought to test the efficacy of Lr administration by manipulating the Lr biofilm state with the addition of biofilm-promoting substances (sucrose and maltose) to DM or by mutating the Lr gtfW gene (encoding an enzyme central to biofilm production). Using an animal model of NEC, we determined that Lr adhered to sucrose- or maltose-loaded DM significantly reduced histologic injury, improved host survival, decreased intestinal permeability, reduced intestinal inflammation, and altered the gut microbiome compared with Lr adhered to unloaded DM. These effects were abolished when DM or GtfW were absent from the Lr inoculum. This demonstrates that a single dose of Lr in its biofilm state decreases NEC incidence. Importantly, preloading DM with sucrose or maltose further enhances Lr protection against NEC in a GtfW-dependent fashion, demonstrating the tunability of the approach and the potential to use other cargos to enhance future probiotic formulations. NEW & NOTEWORTHY Previous clinical trials of probiotics to prevent necrotizing enterocolitis have had variable results. In these studies, probiotics were delivered in their planktonic, free-living form. We have developed a novel probiotic delivery system in which Lactobacillus reuteri (Lr) is delivered in its biofilm state. In a model of experimental necrotizing enterocolitis, this formulation significantly reduces intestinal inflammation and permeability, improves survival, and preserves the natural gut microflora compared with the administration of Lr in its free-living form.


Subject(s)
Drug Delivery Systems/methods , Enterocolitis, Necrotizing , Inflammation , Intestines , Limosilactobacillus reuteri/physiology , Probiotics/pharmacology , Animals , Animals, Newborn , Biofilms/growth & development , Dextrans/pharmacology , Enterocolitis, Necrotizing/microbiology , Enterocolitis, Necrotizing/prevention & control , Inflammation/drug therapy , Inflammation/microbiology , Intestines/drug effects , Intestines/microbiology , Intestines/physiopathology , Microspheres , Rats , Rats, Sprague-Dawley
10.
Physiology (Bethesda) ; 31(5): 327-35, 2016 09.
Article in English | MEDLINE | ID: mdl-27511459

ABSTRACT

Many factors are involved in weight gain and metabolic disturbances associated with obesity. The gut microbiota has been of particular interest in recent years, since both human and animal studies have increased our understanding of the delicate symbiosis between the trillions of microbes that reside in the GI tract and the host. It has been suggested that disruption of this mutual tolerance may play a significant role in modulating host physiology during obesity. Environmental influences such as diet, exercise, and early life exposures can significantly impact the composition of the microbiota, and this dysbiosis can in turn lead to increased host adiposity via a number of different mechanisms. The ability of the microbiota to regulate host fat deposition, metabolism, and immune function makes it an attractive target for achieving sustained weight loss.


Subject(s)
Gastrointestinal Microbiome , Obesity/microbiology , Obesity/physiopathology , Animals , Diet , Energy Metabolism , Homeostasis , Humans , Inflammation
11.
Sex Transm Dis ; 44(5): 284-289, 2017 05.
Article in English | MEDLINE | ID: mdl-28407644

ABSTRACT

BACKGROUND: Men who have sex with men (MSM) have a relatively high prevalence of sexually transmitted infections (STIs). This study examines the association of self-reported STIs and use of mobile phones and/or computer-based Internet to meet sexual partners among black and Hispanic/Latino MSM in the United States. METHODS: Black and Hispanic/Latino MSM (N = 853) were recruited from 3 US cities (Chicago, IL; Kansas City, MO; and Fort Lauderdale, FL) via online and community outreach. Men completed a computer-assisted, self-interview assessment on demographics, use of mobile phones and computer-based Internet for sex-seeking, sexual risk behavior, and self-reported bacterial STIs in the past year. Multivariable logistic regression was used to model independent associations of STIs and use of these technologies to meet sexual partners. RESULTS: Twenty-three percent of the sample reported having an STI in the past year; 29% reported using a mobile phone and 28% a computer-based Internet mostly for sex-seeking; and 22% reported using both. Number of male sexual partners (past year) was associated with any STI (adjusted odds ratio, 1.03; 95% confidence interval, 1.01-1.06). Adjusting for human immunodeficiency virus status, number of male sexual partners (past year), and demographic variables, men who reported use of both mobile phones and computer-based Internet for sex-seeking had increased odds of reporting an STI (adjusted odds ratio, 2.59; 95% confidence interval, 1.75-3.83), as well as with separate reports of chlamydia, gonorrhea, and syphilis (P's < 0.05). CONCLUSIONS: Enhanced community education regarding STI prevention, testing, and treatment options are necessary among this subpopulation of MSM who may benefit from messaging via Internet and mobile phone application sites.


Subject(s)
Black or African American/statistics & numerical data , Gonorrhea/epidemiology , Hispanic or Latino/statistics & numerical data , Homosexuality, Male/statistics & numerical data , Sexually Transmitted Diseases/epidemiology , Syphilis/epidemiology , Adolescent , Adult , Cell Phone , Chicago/epidemiology , Florida/epidemiology , Gonorrhea/microbiology , Humans , Internet , Logistic Models , Male , Missouri/epidemiology , Prevalence , Risk-Taking , Sexual Behavior , Sexual Partners , Sexually Transmitted Diseases/microbiology , Syphilis/microbiology , Young Adult
12.
MMWR Morb Mortal Wkly Rep ; 66(49): 1347-1351, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29240727

ABSTRACT

In November 2015, the Brazilian Ministry of Health (MOH) declared the Zika virus outbreak a public health emergency after an increase in microcephaly cases was reported in the northeast region of the country (1). During 2015-2016, 15 states in Brazil with laboratory-confirmed Zika virus transmission reported an increase in birth prevalence of microcephaly (2.8 cases per 10,000 live births), significantly exceeding prevalence in four states without confirmed transmission (0.6 per 10,000) (2). Although children with microcephaly and laboratory evidence of Zika virus infection have been described in early infancy (3), their subsequent health and development have not been well characterized, constraining planning for the care and support of these children and their families. The Brazilian MOH, the State Health Secretariat of Paraíba, and CDC collaborated on a follow-up investigation of the health and development of children in northeastern Brazil who were reported to national surveillance with microcephaly at birth. Nineteen children with microcephaly at birth and laboratory evidence of Zika virus infection were assessed through clinical evaluations, caregiver interviews, and review of medical records. At follow-up (ages 19-24 months), most of these children had severe motor impairment, seizure disorders, hearing and vision abnormalities, and sleep difficulties. Children with microcephaly and laboratory evidence of Zika virus infection have severe functional limitations and will require specialized care from clinicians and caregivers as they age.


Subject(s)
Developmental Disabilities/epidemiology , Disease Outbreaks , Microcephaly/virology , Zika Virus Infection/congenital , Zika Virus/isolation & purification , Brazil/epidemiology , Case-Control Studies , Child, Preschool , Clinical Laboratory Techniques , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Microcephaly/epidemiology , Pregnancy , Pregnancy Complications, Infectious , Zika Virus Infection/epidemiology
13.
Immunol Cell Biol ; 94(2): 158-63, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26626721

ABSTRACT

There is robust evidence that habitual physical activity is anti-inflammatory and protective against developing chronic inflammatory disease. Much less is known about the effects of habitual moderate exercise in the gut, the compartment that has the greatest immunological responsibility and interactions with the intestinal microbiota. The link between the two has become evident, as recent studies have linked intestinal dysbiosis, or the disproportionate balance of beneficial to pathogenic microbes, with increased inflammatory disease susceptibility. Limited animal and human research findings imply that exercise may have a beneficial role in preventing and ameliorating such diseases by having an effect on gut immune function and, recently, microbiome characteristics. Emerging data from our laboratory show that different forms of exercise training differentially impact the severity of intestinal inflammation during an inflammatory insult (for example, ulcerative colitis) and may be jointly related to gut immune cell homeostasis and microbiota-immune interactions. The evidence we review and present will provide data in support of rigorous investigations concerning the effects of habitual exercise on gut health and disease.


Subject(s)
Colitis/immunology , Colon/immunology , Exercise/physiology , Intestines/immunology , Microbiota/immunology , Animals , Colitis/therapy , Colon/microbiology , Exercise Therapy , Homeostasis , Humans , Immunity, Mucosal/immunology , Intestines/microbiology
14.
Behav Sci Law ; 34(6): 767-783, 2016 Nov.
Article in English | MEDLINE | ID: mdl-28127798

ABSTRACT

One reason people falsely confess is to protect the true perpetrator. The current study examined whether relationship closeness influences people's self-reported willingness to falsely take the blame. Utilizing theoretical work from the prosocial area, three potential mediators were investigated. Participants (N = 131) were randomly assigned to think of either a close or a casual friend and then read one of two scenarios that described a minor offense committed by the friend. Participants' willingness to take the blame was assessed, as well as their perceptions of reciprocity, feelings of empathy, and distress concerns related to their relationship with the offending friend. Results showed that, in both scenarios, participants more often took the blame in the close friend condition than in the casual friend condition. Reciprocity and empathy each uniquely and independently mediated relationship closeness, whereas distress concerns did not. Differences in the two scenarios, which describe different offenses, are discussed. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Deception , Emotions , Interpersonal Relations , Adolescent , Adult , Empathy , Female , Humans , Male , Young Adult
15.
J Nutr ; 145(12): 2781-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26491118

ABSTRACT

BACKGROUND: Dietary fiber intake leading to short-chain fatty acid (SCFA) production could be a strategy to combat intermittent bouts of inflammation during ulcerative colitis. OBJECTIVE: Our objective was to evaluate dietary potato fiber (PF) in attenuating inflammation using a dextran sodium sulfate (DSS)-induced colitis mouse model. We hypothesized that PF would show anti-inflammatory effects compared with cellulose due in part to SCFA production. METHODS: Male C57Bl/6J mice were fed diets containing either 8% cellulose or 14.5% PF for a 22-d feeding study. Starting on study day 14, mice were provided either distilled water (control) or 2% (wt:vol) DSS in drinking water for 5 d (cellulose+control, n = 17; PF+control, n = 16; cellulose+DSS, n = 17; and PF+DSS, n = 16). Body weights and food and water intakes were collected daily from day 14 through day 22. Distal colon tissue was analyzed for histologic outcomes and changes in gene expression, and cecal contents were analyzed for SCFA concentrations. Data were analyzed by ANOVA, with repeated measures applied where necessary. RESULTS: At day 5 post-DSS induction, cellulose+DSS mice exhibited a 2% reduction (P < 0.05) in body weight compared with PF+DSS and PF+ and cellulose+control mice. PF+DSS mice had greater (P < 0.05) cecal butyrate concentrations [24.5 µmol/g dry matter (DM)] than did cellulose+DSS mice (4.93 µmol/g DM). Mice fed PF+DSS had lower (P < 0.05) infiltration of leukocytes in the distal colon than did mice fed cellulose+DSS (mean histology scores of 1.22 and 2.30, respectively). Furthermore, mice fed cellulose+DSS exhibited 1.42, 11.5, 8.48, and 35.5 times greater (P < 0.05) colon mRNA expression of tumor necrosis factor α (Tnfa) and interleukin (Il) 1b, Il6, and Il17a, respectively, and 7.10 times greater (P < 0.05) expression of C-X-C motif ligand 1 (Cxc1) compared with mice fed PF+DSS. CONCLUSIONS: These results suggest that PF fed to mice before and during DSS colitis attenuates inflammation, potentially through SCFA production; however, future studies are needed to understand the role of dietary fiber intake and immune activation.


Subject(s)
Colitis/prevention & control , Colitis/physiopathology , Dietary Fiber/administration & dosage , Fermentation , Inflammation/prevention & control , Solanum tuberosum , Animals , Anti-Inflammatory Agents , Cellulose/administration & dosage , Colitis/chemically induced , Colon/chemistry , Dextran Sulfate/administration & dosage , Diet , Disease Models, Animal , Fatty Acids, Volatile/biosynthesis , Interleukin-17/genetics , Interleukin-1beta/genetics , Interleukin-6/genetics , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/analysis , Tumor Necrosis Factor-alpha/genetics
16.
Food Chem ; 454: 139798, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38823201

ABSTRACT

Ingestion of fermented foods impacts human immune function, yet the bioactive food components underlying these effects are not understood. Here, we interrogated whether fermented food bioactivity relates to microbial metabolites derived from aromatic amino acids, termed aryl-lactates. Using targeted metabolomics, we established the presence of aryl-lactates in commercially available fermented foods. After pinpointing fermented food-associated lactic acid bacteria that produce high levels of aryl-lactates, we identified fermentation conditions to increase aryl-lactate production in food matrices up to 5 × 103 fold vs. standard fermentation conditions. Using ex vivo reporter assays, we found that food matrix conditions optimized for aryl-lactate production exhibited enhanced agonist activity for the human aryl-hydrocarbon receptor (AhR) as compared to standard fermentation conditions and commercial products. Reduced microbial-induced AhR activity has emerged as a hallmark of many chronic inflammatory diseases, thus we envision strategies to enhance AhR bioactivity of fermented foods to be leveraged to improve human health.


Subject(s)
Amino Acids, Aromatic , Fermentation , Fermented Foods , Receptors, Aryl Hydrocarbon , Humans , Fermented Foods/analysis , Fermented Foods/microbiology , Amino Acids, Aromatic/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Lactobacillales/metabolism , Lactates/metabolism
17.
Aging Cell ; 23(8): e14190, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38725282

ABSTRACT

Aging is associated with low-grade inflammation that increases the risk of infection and disease, yet the underlying mechanisms remain unclear. Gut microbiota composition shifts with age, harboring microbes with varied immunogenic capacities. We hypothesized the gut microbiota acts as an active driver of low-grade inflammation during aging. Microbiome patterns in aged mice strongly associated with signs of bacterial-induced barrier disruption and immune infiltration, including marked increased levels of circulating lipopolysaccharide (LPS)-binding protein (LBP) and colonic calprotectin. Ex vivo immunogenicity assays revealed that both colonic contents and mucosa of aged mice harbored increased capacity to activate toll-like receptor 4 (TLR4) whereas TLR5 signaling was unchanged. We found patterns of elevated innate inflammatory signaling (colonic Il6, Tnf, and Tlr4) and endotoxemia (circulating LBP) in young germ-free mice after 4 weeks of colonization with intestinal contents from aged mice compared with young counterparts, thus providing a direct link between aging-induced shifts in microbiota immunogenicity and host inflammation. Additionally, we discovered that the gut microbiota of aged mice exhibited unique responses to a broad-spectrum antibiotic challenge (Abx), with sustained elevation in Escherichia (Proteobacteria) and altered TLR5 immunogenicity 7 days post-Abx cessation. Together, these data indicate that old age results in a gut microbiota that differentially acts on TLR signaling pathways of the innate immune system. We found that these age-associated microbiota immunogenic signatures are less resilient to challenge and strongly linked to host inflammatory status. Gut microbiota immunogenic signatures should be thus considered as critical factors in mediating chronic inflammatory diseases disproportionally impacting older populations.


Subject(s)
Aging , Gastrointestinal Microbiome , Inflammation , Animals , Aging/immunology , Gastrointestinal Microbiome/immunology , Mice , Inflammation/immunology , Mice, Inbred C57BL , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/immunology , Male
18.
Med Sci Sports Exerc ; 55(2): 225-234, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36170555

ABSTRACT

PURPOSE: Endurance exercise alters the gut microbiome independently of diet. The extent to which gut microbes are responsible for physiologic adaptations to exercise training is unknown. The purpose of these experiments was to determine the role of gut microbes in performance and muscle adaptation to 6 wk of voluntary wheel running (VWR) in mice. METHODS: We depleted microbes with broad-spectrum antibiotic (ABX) treatment and used germ-free (GF) mice to determine effects on adaptations to VWR. Male and female C57Bl/6 mice ( n = 56) were assigned to daily VWR or sedentary conditions. After the intervention, treadmill endurance and glucose tolerance were assessed, and gastrocnemius and soleus tissues were harvested and analyzed for citrate synthase (CS) enzyme activity and expression of exercise training-sensitive genes. RESULTS: ABX treatment and GF status resulted in VWR volumes ~22% and 26% lower than controls, respectively. Analysis of variance revealed that, although VWR increased treadmill endurance, ABX had no effect. GF status significantly reduced treadmill performance in trained GF mice after training. VWR increased gastrocnemius CS enzyme activity in all groups, and ABX and GF status did not reduce the VWR effect. VWR also increased muscle expression of PGC1a, but this was not affected by ABX treatment. CONCLUSIONS: ABX treatment and GF status reduced VWR behavior but did not affect VWR-induced adaptations in endurance capacity, CS activity, or expression of muscle metabolic genes. However, GF status reduced endurance capacity. These data indicated that reducing microbes in adulthood does not inhibit endurance training adaptations in C57Bl/6 mice, but that GF mice possess a reduced responsiveness to endurance exercise training, perhaps because of a developmental defect associated with lack of microbes from birth.


Subject(s)
Motor Activity , Physical Conditioning, Animal , Mice , Male , Female , Animals , Motor Activity/physiology , Physical Conditioning, Animal/physiology , Muscle, Skeletal/metabolism , Adaptation, Physiological , Acclimatization , Mice, Inbred C57BL
19.
J Appl Physiol (1985) ; 135(3): 549-558, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37391884

ABSTRACT

Understanding changes to gut microbiota composition and metabolic output in response to acute exercise may be necessary for understanding the mechanisms mediating the long-term health and performance benefits of exercise. Our primary objective was to characterize acute changes in the fecal microbiome and metabolome following participation in an ultra-endurance (3.9 km swim, 180.2 km bike, 42.2 km run) triathlon. An exploratory aim was to determine associations between athlete-specific factors [race performance (i.e., completion time) and lifetime years of endurance training] with pre-race gut microbiota and metabolite profiles. Stool samples from 12 triathletes (9 males/3 females; 43 ± 14 yr, 23 ± 2 kg/m2) were collected ≤48 h before and the first bowel movement following race completion. Intra- and inter-individual diversity of bacterial species and individual bacterial taxa were unaltered following race completion (P > 0.05). However, significant reductions (P < 0.05) in free and secondary bile acids [deoxycholic acid (DCA), 12-keto-lithocholic acid (12-ketoLCA)] and short-chain fatty acids (butyric and pivalic acids), and significant increases (P < 0.05) in long-chain fatty acids (oleic and palmitoleic acids) were observed. Exploratory analyses revealed several associations between pre-race bacterial taxa and fecal metabolites with race performance and lifetime history of endurance training (P < 0.05). These findings suggest that 1) acute ultra-endurance exercise shifts microbial metabolism independent of changes to community composition and 2) athlete performance level and training history relate to resting-state gut microbial ecology.NEW & NOTEWORTHY This is the first study to characterize acute changes in gut microbial ecology and metabolism following an ultra-endurance triathlon. We demonstrate changes in gut microbial community function, but not structure, as well as several associations between gut microbiome and fecal metabolome characteristics with race completion time and lifetime history of endurance training. These data add to a small but growing body of literature seeking to characterize the acute and chronic effects of exercise on the gut microbial ecosystem.


Subject(s)
Athletic Performance , Microbiota , Humans , Male , Female , Physical Endurance/physiology , Athletic Performance/physiology , Swimming/physiology , Metabolome
20.
Exp Gerontol ; 176: 112164, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37011713

ABSTRACT

Due to the increasing human life expectancy and limited supply of healthcare resources, strategies to promote healthy aging and reduce associated functional deficits are of public health importance. The gut microbiota, which remodels with age, has been identified as a significant contributor to the aging process that is modifiable by diet. Since prebiotic dietary components such as inulin have been shown to impart positive benefits with regards to aging, this study used C57Bl6 mice to investigate whether 8 weeks on a 2.5 % inulin enhanced AIN-93M 1 % cellulose diet could offset age-associated changes in gut microbiome composition and markers of colon health and systemic inflammation in comparison to a AIN 93M 1 % cellulose diet with 0 % inulin. Our results demonstrated that, in both age groups, dietary inulin significantly increased production of butyrate in the cecum and induced changes in the community structure of the gut microbiome but did not significantly affect systemic inflammation or other markers of gastrointestinal health. Aged mice had different and less diverse microbiomes when compared to adult mice and were less sensitive to inulin-induced microbiome community shifts, evidenced by longitudinal differences in differentially abundant taxa and beta diversity. In aged mice, inulin restored potentially beneficial taxa including Bifidobacterium and key butyrate producing genera (e.g. Faecalibaculum). Despite inducing notable taxonomic changes, however, the 2.5 % inulin diet reduced alpha diversity in both age groups and failed to reduce overall community compositional differences between age groups. In conclusion, a 2.5 % inulin enhanced diet altered gut microbiome α and ß diversity, composition, and butyrate production in both adult and aged mice, with more potent effects on ß diversity and greater number of taxa significantly altered in adult mice. However, significant benefits in age-associated changes in systemic inflammation or intestinal outcomes were not detected.


Subject(s)
Gastrointestinal Microbiome , Humans , Animals , Mice , Inulin/pharmacology , Mice, Inbred C57BL , Diet , Colon , Cellulose/pharmacology , Inflammation , Butyrates/pharmacology , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL