Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Lasers Med Sci ; 35(6): 1357-1365, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31984457

ABSTRACT

Different devices have been used to enhance topical drug delivery. Aim of this study was to compare the efficacy of different skin pretreatment regimens in topical drug delivery. In six ex vivo human abdominal skin samples, test regions were pretreated with fractional CO2 and Er:YAG laser (both 70 and 300 µm ablation depth, density of 5%), microneedling (500 µm needle length), fractional radiofrequency (ablation depth of ± 80-90 µm), and no pretreatment. The fluorescent agent indocyanine green (ICG) was applied. After 3 h, fluorescence intensity was measured at several depths using fluorescence photography. Significantly higher surface fluorescence intensities were found for pretreatment with fractional Er:YAG and CO2 laser and for microneedling vs. no pretreatment (p < 0.05), but not for radiofrequency vs. no pretreatment (p = 0.173). Fluorescence intensity was highest for the Er:YAG laser with 300 µm ablation depth (mean 38.89 arbitrary units; AU), followed by microneedling (33.02 AU) and CO2 laser with 300 µm ablation depth (26.25 AU). Pretreatment with both lasers with 300 µm ablation depth gave higher fluorescence intensity than with 70 µm ablation depth (Er:YAG laser, 21.65; CO2 laser, 18.50 AU). Mean fluorescence intensity for radiofrequency was 15.27 AU. Results were comparable at 200 and 400 µm depth in the skin. Pretreatment of the skin with fractional CO2 laser, fractional Er:YAG laser, and microneedling is effective for topical ICG delivery, while fractional radiofrequency is not. Deeper laser ablation results in improved ICG delivery. These findings may be relevant for the delivery of other drugs with comparable molecular properties.


Subject(s)
Drug Delivery Systems , Indocyanine Green/administration & dosage , Lasers, Gas/therapeutic use , Lasers, Solid-State/therapeutic use , Needles , Radiofrequency Ablation , Administration, Cutaneous , Fluorescence , Humans , Indocyanine Green/pharmacology , Skin/drug effects , Skin/radiation effects , Tomography, Optical Coherence
2.
Lasers Surg Med ; 51(8): 709-719, 2019 10.
Article in English | MEDLINE | ID: mdl-30908718

ABSTRACT

BACKGROUND AND OBJECTIVES: Topical drug delivery can be increased by pretreatment of the skin with ablative fractional laser (AFXL). Several physical penetration enhancement techniques have been investigated to further improve AFXL-assisted drug delivery. This study investigated the influence of three of these techniques, namely massage, acoustic pressure wave treatment, and pressure vacuum alterations (PVP) on the distribution of the fluorescent drug indocyanine green (ICG) at different depths in the skin after topical application on AFXL pretreated skin. MATERIALS AND METHODS: In ex vivo human skin, test regions were pretreated with AFXL (10,600 nm, channel depth 300 µm, channel width 120 µm, density 15%). Subsequently, ICG was applied, followed by massage, acoustic pressure wave treatment or PVP. ICG fluorescence intensity (FI) was assessed after 1, 3, and 24 hours at several depths using fluorescence photography. RESULTS: FI was higher when using enhancement techniques compared to control (AFXL-only) up to 3 hours application time (P < 0.05). After 3 hours, mean surface FI was highest after acoustic pressure wave treatment (61.5 arbitrary units; AU), followed by massage (57.5AU) and PVP (46.9AU), respectively (for comparison: AFXL-only 31.6AU, no pretreatment 14.9AU). Comparable or higher FI was achieved already after 1 hour with enhancement techniques compared to 3-24 hours application time without. After 24 hours, no significant differences between enhancement techniques and AFXL-only were observed (P = 0.31). CONCLUSION: Penetration enhancement techniques, especially acoustic pressure wave treatment and massage, result in improved drug accumulation in AFXL-pretreated skin and reduce the application time needed. Lasers Surg. Med. © 2019 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.


Subject(s)
Drug Delivery Systems/methods , Indocyanine Green/pharmacology , Laser Therapy , Skin Absorption/drug effects , Administration, Cutaneous , Fluorescence , Hospitals, Urban , Humans , In Vitro Techniques , Netherlands , Sampling Studies , Sensitivity and Specificity , Statistics, Nonparametric
3.
Sensors (Basel) ; 18(5)2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29693606

ABSTRACT

In this study; an OCT-based intra-operative imaging method for blood flow detection during esophagectomy with gastric tube reconstruction is investigated. Change in perfusion of the gastric tube tissue can lead to ischemia; with a high morbidity and mortality as a result. Anastomotic leakage (incidence 5⁻20%) is one of the most severe complications after esophagectomy with gastric tube reconstruction. Optical imaging techniques provide for minimal-invasive and real-time visualization tools that can be used in intraoperative settings. By implementing an optical technique for blood flow detection during surgery; perfusion can be imaged and quantified and; if needed; perfusion can be improved by either a surgical intervention or the administration of medication. The feasibility of imaging gastric microcirculation in vivo using optical coherence tomography (OCT) during surgery of patients with esophageal cancer by visualizing blood flow based on the speckle contrast from M-mode OCT images is studied. The percentage of pixels exhibiting a speckle contrast value indicative of flow was quantified to serve as an objective parameter to assess blood flow at 4 locations on the reconstructed gastric tube. Here; it was shown that OCT can be used for direct blood flow imaging during surgery and may therefore aid in improving surgical outcomes for patients.


Subject(s)
Tomography, Optical Coherence , Esophageal Neoplasms , Esophagectomy , Humans , Microcirculation , Stomach
4.
Eur Urol Open Sci ; 54: 72-79, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37545846

ABSTRACT

Background: Transperineal focal laser ablation (TPLA) treatment for prostate cancer (PCa) is an experimental focal ablative therapy modality with low morbidity. However, a dosimetry model for TPLA is lacking. Objective: To determine (1) the three-dimensional (3D) histologically defined ablation zone of single- and multifiber TPLA treatment for PCa correlated with magnetic resonance imaging (MRI) and contrast-enhanced ultrasound (CEUS) and (2) a reliable imaging modality of ablation zone volumetry. Design setting and participants: This was a prospective, multicenter, and interventional phase I/II pilot study with an ablate-and-resect design. TPLA was performed in 12 patients with localized prostate cancer divided over four treatment regimens to evaluate potential variation in outcomes. Intervention: TPLA was performed approximately 4 wk prior to robot-assisted radical prostatectomy (RARP) in a daycare setting using local anesthesia. Outcome measurements and statistical analysis: Four weeks after TPLA, ablation zone volumetry was determined on prostate MRI and CEUS by delineation and segmentation into 3D models and correlated with whole-mount RARP histology using the Pearson correlation index. Results and limitations: Twelve office-based TPLA procedures were performed successfully under continuous transrectal ultrasound guidance using local perineal anesthesia. No serious adverse events occurred. A qualitative analysis showed a clear demarcation of the ablation zone on T2-weighted MRI, dynamic contrast-enhanced MRI, and CEUS. On pathological evaluation, no remnant cancer was observed within the ablation zone. Ablation zone volumetry on CEUS and T2-weighted MRI compared with histology had a Pearson correlation index of r = 0.94 (95% confidence interval [CI] 0.74-0.99, p < 0.001) and r = 0.93 (95% CI 0.73-0.98, p < 0.001), respectively. Conclusions: CEUS and prostate MRI could reliably visualize TPLA ablative effects after minimally invasive PCa treatment with a high concordance with histopathological findings and showed no remnant cancer. Patient summary: The treatment effects of a novel minimally invasive ablation therapy device can reliably be visualized with radiological examinations. These results will improve planning and performance of future procedures.

5.
Sci Rep ; 11(1): 2263, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500435

ABSTRACT

Optical coherence tomography (OCT) is an optical technique which allows for volumetric visualization of the internal structures of translucent materials. Additional information can be gained by measuring the rate of signal attenuation in depth. Techniques have been developed to estimate the rate of attenuation on a voxel by voxel basis. This depth resolved attenuation analysis gives insight into tissue structure and organization in a spatially resolved way. However, the presence of speckle in the OCT measurement causes the attenuation coefficient image to contain unrealistic fluctuations and makes the reliability of these images at the voxel level poor. While the distribution of speckle in OCT images has appeared in literature, the resulting voxelwise corruption of the attenuation analysis has not. In this work, the estimated depth resolved attenuation coefficient from OCT data with speckle is shown to be approximately exponentially distributed. After this, a prior distribution for the depth resolved attenuation coefficient is derived for a simple system using statistical mechanics. Finally, given a set of depth resolved estimates which were made from OCT data in the presence of speckle, a posterior probability distribution for the true voxelwise attenuation coefficient is derived and a Bayesian voxelwise estimator for the coefficient is given. These results are demonstrated in simulation and validated experimentally.

6.
J Biomed Opt ; 25(4): 1-34, 2020 04.
Article in English | MEDLINE | ID: mdl-32246615

ABSTRACT

SIGNIFICANCE: Optical coherence tomography (OCT) provides cross-sectional and volumetric images of backscattering from biological tissue that reveal the tissue morphology. The strength of the scattering, characterized by an attenuation coefficient, represents an alternative and complementary tissue optical property, which can be characterized by parametric imaging of the OCT attenuation coefficient. Over the last 15 years, a multitude of studies have been reported seeking to advance methods to determine the OCT attenuation coefficient and developing them toward clinical applications. AIM: Our review provides an overview of the main models and methods, their assumptions and applicability, together with a survey of preclinical and clinical demonstrations and their translation potential. RESULTS: The use of the attenuation coefficient, particularly when presented in the form of parametric en face images, is shown to be applicable in various medical fields. Most studies show the promise of the OCT attenuation coefficient in differentiating between tissues of clinical interest but vary widely in approach. CONCLUSIONS: As a future step, a consensus on the model and method used for the determination of the attenuation coefficient is an important precursor to large-scale studies. With our review, we hope to provide a basis for discussion toward establishing this consensus.


Subject(s)
Tomography, Optical Coherence , Cross-Sectional Studies
7.
J Biophotonics ; 13(6): e201960105, 2020 06.
Article in English | MEDLINE | ID: mdl-32049426

ABSTRACT

The increase histopathological evaluation of prostatectomy specimens rises the workload on pathologists. Automated histopathology systems, preferably directly on unstained specimens, would accelerate the pathology workflow. In this study, we investigate the potential of quantitative analysis of optical coherence tomography (OCT) to separate benign from malignant prostate tissue automatically. Twenty fixated prostates were cut, from which 54 slices were scanned by OCT. Quantitative OCT metrics (attenuation coefficient, residue, goodness-of-fit) were compared for different tissue types, annotated on the histology slides. To avoid misclassification, the poor-quality slides, and edges of annotations were excluded. Accurate registration of OCT data with histology was achieved in 31 slices. After removing outliers, 56% of the OCT data was compared with histopathology. The quantitative data could not separate malignant from benign tissue. Logistic regression resulted in malignant detection with a sensitivity of 0.80 and a specificity of 0.34. Quantitative OCT analysis should be improved before clinical use.


Subject(s)
Prostatic Neoplasms , Tomography, Optical Coherence , Face , Humans , Male , Prostatectomy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery
8.
J Biophotonics ; 12(10): e201900037, 2019 10.
Article in English | MEDLINE | ID: mdl-31245913

ABSTRACT

This study investigates the feasibility of in vivo quantitative optical coherence tomography (OCT) of human brain tissue during glioma resection surgery in six patients. High-resolution detection of glioma tissue may allow precise and thorough tumor resection while preserving functional brain areas, and improving overall survival. In this study, in vivo 3D OCT datasets were collected during standard surgical procedure, before and after partial resection of the tumor, both from glioma tissue and normal parenchyma. Subsequently, the attenuation coefficient was extracted from the OCT datasets using an automated and validated algorithm. The cortical measurements yield a mean attenuation coefficient of 3.8 ± 1.2 mm-1 for normal brain tissue and 3.6 ± 1.1 mm-1 for glioma tissue. The subcortical measurements yield a mean attenuation coefficient of 5.7 ± 2.1 and 4.5 ± 1.6 mm-1 for, respectively, normal brain tissue and glioma. Although the results are inconclusive with respect to trends in attenuation coefficient between normal and glioma tissue due to the small sample size, the results are in the range of previously reported values. Therefore, we conclude that the proposed method for quantitative in vivo OCT of human brain tissue is feasible during glioma resection surgery.


Subject(s)
Brain Neoplasms/surgery , Brain/diagnostic imaging , Brain/surgery , Glioma/surgery , Intraoperative Period , Tomography, Optical Coherence , Brain Neoplasms/diagnostic imaging , Feasibility Studies , Glioma/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Pilot Projects , Software
9.
J Biophotonics ; 12(4): e201800274, 2019 04.
Article in English | MEDLINE | ID: mdl-30565879

ABSTRACT

Optical coherence tomography (OCT), enables high-resolution 3D imaging of the morphology of light scattering tissues. From the OCT signal, parameters can be extracted and related to tissue structures. One of the quantitative parameters is the attenuation coefficient; the rate at which the intensity of detected light decays in depth. To couple the quantitative parameters with the histology one-to-one registration is needed. The primary aim of this study is to validate a registration method of quantitative OCT parameters to histological tissue outcome through one-to-one registration of OCT with histology. We matched OCT images of unstained fixated prostate tissue slices with corresponding histology slides, wherein different histologic types were demarcated. Attenuation coefficients were determined by a supervised automated exponential fit (corrected for point spread function and sensitivity roll-off related signal losses) over a depth of 0.32 mm starting from 0.10 mm below the automatically detected tissue edge. Finally, the attenuation coefficients corresponding to the different tissue types of the prostate were compared. From the attenuation coefficients, we produced the squared relative residue and goodness-of-fit metric R2 . This article explains the method to perform supervised automated quantitative analysis of OCT data, and the one-to-one registration of OCT extracted quantitative data with histopathological outcomes.


Subject(s)
Prostate/diagnostic imaging , Prostate/pathology , Prostatectomy , Tomography, Optical Coherence , Aged , Humans , Image Processing, Computer-Assisted , Male , Prostate/surgery , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery
10.
J Cereb Blood Flow Metab ; 38(4): 719-726, 2018 04.
Article in English | MEDLINE | ID: mdl-29039724

ABSTRACT

Clearance of waste products from the brain is of vital importance. Recent publications suggest a potential clearance mechanism via paravascular channels around blood vessels. Arterial pulsations might provide the driving force for paravascular flow, but its flow pattern remains poorly characterized. In addition, the relationship between paravascular flow around leptomeningeal vessels and penetrating vessels is unclear. In this study, we determined blood flow and diameter pulsations through a thinned-skull cranial window. We observed that microspheres moved preferentially in the paravascular space of arteries rather than in the adjacent subarachnoid space or around veins. Paravascular flow was pulsatile, generated by the cardiac cycle, with net antegrade flow. Confocal imaging showed microspheres distributed along leptomeningeal arteries, while their presence along penetrating arteries was limited to few vessels. These data suggest that paravascular spaces around leptomeningeal arteries form low resistance pathways on the surface of the brain that facilitate cerebrospinal fluid flow.


Subject(s)
Brain/physiology , Cerebrospinal Fluid/physiology , Animals , Blood Flow Velocity/physiology , Blood Volume , Brain/anatomy & histology , Cerebral Arteries/physiology , Cerebrovascular Circulation/physiology , Intracranial Pressure/physiology , Male , Meninges/blood supply , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microspheres , Subarachnoid Space/blood supply , Subarachnoid Space/physiology
11.
J Biomed Opt ; 23(8): 1-11, 2018 08.
Article in English | MEDLINE | ID: mdl-30094972

ABSTRACT

Diagnostic accuracy of needle-based optical coherence tomography (OCT) for prostate cancer detection by visual and quantitative analysis is defined. 106 three-dimensional (3-D)-OCT data sets were acquired in 20 prostates after radical prostatectomy and precisely matched with pathology. OCT images were grouped per histological category. Two reviewers performed blind assessments of the OCT images. Sensitivity and specificity for malignancy detection were calculated. Quantitative analyses by automated optical attenuation coefficient calculation were performed. OCT can reliably differentiate between fat, cystic, and regular atrophy and benign glands. The overall sensitivity and specificity for malignancy detection was 79% and 88% for reviewer 1 and 88% and 81% for reviewer 2. Quantitative analysis for differentiation between stroma and malignancy showed a significant difference (4.6 mm - 1 versus 5.0 mm - 1 Mann-Whitney U-test p < 0.0001). A Kruskal-Wallis test showed a significant difference in median attenuation coefficient between stroma, inflammation, Gleason 3, and Gleason 4 (4.6, 4.1, 5.9, and 5.0 mm - 1, respectively). However, attenuation coefficient varied per patient and a related-samples Wilcoxon signed-rank test showed no significant difference per patient (p = 0.17). This study confirmed the one to one correlation of histopathology and OCT. Precise matching showed that most histological tissues categories in the prostate could be distinguished by their unique pattern in OCT images. In addition, the optical attenuation coefficient can play a role in the differentiation between stroma and malignancy; however, a per patient analysis of the optical attenuation coefficient did not show a significant difference.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Tomography, Optical Coherence/methods , Adult , Humans , Male , Needles , Prospective Studies , Prostate/pathology , Prostatic Neoplasms/pathology , Sensitivity and Specificity
12.
Sci Rep ; 7(1): 14873, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29093480

ABSTRACT

Speckle, amplitude fluctuations in optical coherence tomography (OCT) images, contains information on sub-resolution structural properties of the imaged sample. Speckle statistics could therefore be utilized in the characterization of biological tissues. However, a rigorous theoretical framework relating OCT speckle statistics to structural tissue properties has yet to be developed. As a first step, we present a theoretical description of OCT speckle, relating the OCT amplitude variance to size and organization for samples of discrete random media (DRM). Starting the calculations from the size and organization of the scattering particles, we analytically find expressions for the OCT amplitude mean, amplitude variance, the backscattering coefficient and the scattering coefficient. We assume fully developed speckle and verify the validity of this assumption by experiments on controlled samples of silica microspheres suspended in water. We show that the OCT amplitude variance is sensitive to sub-resolution changes in size and organization of the scattering particles. Experimentally determined and theoretically calculated optical properties are compared and in good agreement.

13.
J Biomed Opt ; 20(12): 121314, 2015.
Article in English | MEDLINE | ID: mdl-26720868

ABSTRACT

Optical coherence tomography (OCT) has the potential to quantitatively measure optical properties of tissue such as the attenuation coefficient and backscattering coefficient. However, to obtain reliable values for strong scattering tissues, accurate consideration of the effects of multiple scattering and the nonlinear relation between the scattering coefficient and scatterer concentration (concentration-dependent scattering) is required. We present a comprehensive model for the OCT signal in which we quantitatively account for both effects, as well as our system parameters (confocal point spread function and sensitivity roll-off). We verify our model with experimental data from controlled phantoms of monodisperse silica beads (scattering coefficients between 1 and 30 mm(−1) and scattering anisotropy between 0.4 and 0.9). The optical properties of the phantoms are calculated using Mie theory combined with the Percus­Yevick structure factor to account for concentration-dependent scattering. We demonstrate excellent agreement between the OCT attenuation and backscattering coefficient predicted by our model and experimentally derived values. We conclude that this model enables us to accurately model OCT-derived parameters (i.e., attenuation and backscattering coefficients) in the concentration-dependent and multiple scattering regime for spherical monodisperse samples.


Subject(s)
Tomography, Optical Coherence/methods , Algorithms , Anisotropy , Calibration , Humans , Image Processing, Computer-Assisted , Least-Squares Analysis , Microscopy, Confocal/methods , Monte Carlo Method , Neoplasms/diagnosis , Neoplasms/pathology , Optics and Photonics , Oscillometry , Oxygen/chemistry , Phantoms, Imaging , Refractometry , Reproducibility of Results , Scattering, Radiation , Silicon Dioxide/chemistry , Water
14.
J Phys Chem Lett ; 3(16): 2259-63, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-26295780

ABSTRACT

The conjugate base of para-coumaric acid, which can be conveniently generated in the gas phase by electrospray ionization (ESI), is a commonly used model system for the chromophore of the photoactive yellow protein. Here we report its gas-phase IR spectrum, which shows that the anion easily adopts a carboxylate structure lying 60 kJ/mol higher in energy than the global minimum phenoxide structure. Generation of the biologically more relevant phenoxide isomer by ESI can be achieved using dry acetonitrile as solvent.

SELECTION OF CITATIONS
SEARCH DETAIL