Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters

Publication year range
1.
Mem Inst Oswaldo Cruz ; 110(3): 422-32, 2015 May.
Article in English | MEDLINE | ID: mdl-25946151

ABSTRACT

The definition of a biomarker provided by the World Health Organization is any substance, structure, or process that can be measured in the body, or its products and influence, or predict the incidence or outcome of disease. Currently, the lack of prognosis and progression markers for chronic Chagas disease has posed limitations for testing new drugs to treat this neglected disease. Several molecules and techniques to detect biomarkers in Trypanosoma cruzi-infected patients have been proposed to assess whether specific treatment with benznidazole or nifurtimox is effective. Isolated proteins or protein groups from different T. cruzi stages and parasite-derived glycoproteins and synthetic neoglycoconjugates have been demonstrated to be useful for this purpose, as have nucleic acid amplification techniques. The amplification of T. cruzi DNA using the real-time polymerase chain reaction method is the leading test for assessing responses to treatment in a short period of time. Biochemical biomarkers have been tested early after specific treatment. Cytokines and surface markers represent promising molecules for the characterisation of host cellular responses, but need to be further assessed.


Subject(s)
Chagas Disease/drug therapy , Nitroimidazoles/therapeutic use , Trypanocidal Agents/therapeutic use , Biomarkers/blood , Chronic Disease , Humans
2.
J Extracell Biol ; 2(10): e117, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38939734

ABSTRACT

Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.

3.
Article in English | MEDLINE | ID: mdl-32266161

ABSTRACT

Extracellular vesicles (EVs) shed by trypomastigote forms of Trypanosoma cruzi have the ability to interact with host tissues, increase invasion, and modulate the host innate response. In this study, EVs shed from T. cruzi or T.cruzi-infected macrophages were investigated as immunomodulatory agents during the initial steps of infection. Initially, by scanning electron microscopy and nanoparticle tracking analysis, we determined that T. cruzi-infected macrophages release higher numbers of EVs (50-300 nm) as compared to non-infected cells. Using Toll-like-receptor 2 (TLR2)-transfected CHO cells, we observed that pre-incubation of these host cells with parasite-derived EVs led to an increase in the percentage of infected cells. In addition, EVs from parasite or T.cruzi-infected macrophages or not were able to elicit translocation of NF-κB by interacting with TLR2, and as a consequence, to alter the EVs the gene expression of proinflammatory cytokines (TNF-α, IL-6, and IL-1ß), and STAT-1 and STAT-3 signaling pathways. By proteomic analysis, we observed highly significant changes in the protein composition between non-infected and infected host cell-derived EVs. Thus, we observed the potential of EVs derived from T. cruzi during infection to maintain the inflammatory response in the host.


Subject(s)
Extracellular Vesicles , Trypanosoma cruzi , Animals , Cricetinae , Cricetulus , Humans , Macrophages , Proteomics , Toll-Like Receptor 2
4.
Am J Pathol ; 173(3): 728-40, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18688021

ABSTRACT

Oxidative/nitrosative stress may be important in the pathology of Chagas' disease. Experimental animals infected by Trypanosoma cruzi showed an early rise in myocardial and peripheral protein-3-nitrotyrosine (3NT) and protein-carbonyl formation that persisted during the chronic stage of disease. In comparison, experimental chronic ethanol-induced cardiomyopathy was slow to develop and presented with a moderate increase in oxidative stress and minimal to no nitrosative stress after long-term alcohol feeding of animals. The oxidative stress in both chagasic animals and animals with ethanol-induced cardiomyopathy correlated with the persistence of reactive oxygen species-producing inflammatory intermediates. Protein-3NT formation in T. cruzi-infected animals was associated with enhanced nitric oxide expression (inferred by nitrite/nitrate levels) and myeloperoxidase activity, suggesting that both peroxynitrite- and myeloperoxidase-mediated pathways contribute to increased protein nitration in Chagas' disease. We used one- and two-dimensional gel electrophoresis and Western blot analysis to identify disease-specific plasma proteins that were 3NT-modified in T. cruzi-infected animals. Nitrated protein spots (56 in total) were sequenced by matrix-assisted laser desorption ionization/time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry and identified by a homology search of public databases. Clustering of 3NT-modified proteins according to their functional characteristics revealed that the nitration of immunoglobulins, apolipoprotein isoforms, and other proteins might perturb their functions and be important in the pathology of Chagas' disease. We also showed that nitrated peptides derived from titin and alpha-actin were released into the plasma of patients with Chagas' disease. Such modified proteins may be useful biomarkers of Chagas' disease.


Subject(s)
Blood Proteins/metabolism , Chagas Cardiomyopathy/metabolism , Chagas Cardiomyopathy/pathology , Protein Carbonylation , Tyrosine/analogs & derivatives , Animals , Biomarkers/blood , Blotting, Western , Chagas Cardiomyopathy/immunology , Comet Assay , Electrophoresis, Gel, Two-Dimensional , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Mice , Myocardium/chemistry , Myocardium/metabolism , Myocardium/pathology , Nitrosation , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/blood , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Trypanosoma cruzi/immunology , Tyrosine/blood
5.
J Extracell Vesicles ; 7(1): 1463779, 2018.
Article in English | MEDLINE | ID: mdl-29696081

ABSTRACT

Trypanosoma cruzi, the aetiologic agent of Chagas disease, releases vesicles containing a wide range of surface molecules known to affect the host immunological responses and the cellular infectivity. Here, we compared the secretome of two distinct strains (Y and YuYu) of T. cruzi, which were previously shown to differentially modulate host innate and acquired immune responses. Tissue culture-derived trypomastigotes of both strains secreted extracellular vesicles (EVs), as demonstrated by electron scanning microscopy. EVs were purified by exclusion chromatography or ultracentrifugation and quantitated using nanoparticle tracking analysis. Trypomastigotes from YuYu strain released higher number of EVs than those from Y strain, enriched with virulence factors trans-sialidase (TS) and cruzipain. Proteomic analysis confirmed the increased abundance of proteins coded by the TS gene family, mucin-like glycoproteins, and some typical exosomal proteins in the YuYu strain, which also showed considerable differences between purified EVs and vesicle-free fraction as compared to the Y strain. To evaluate whether such differences were related to parasite infectivity, J774 macrophages and LLC-MK2 kidney cells were preincubated with purified EVs from both strains and then infected with Y strain trypomastigotes. EVs released by YuYu strain caused a lower infection but higher intracellular proliferation in J774 macrophages than EVs from Y strain. In contrast, YuYu strain-derived EVs caused higher infection of LLC-MK2 cells than Y strain-derived EVs. In conclusion, quantitative and qualitative differences in EVs and secreted proteins from different T. cruzi strains may correlate with infectivity/virulence during the host-parasite interaction.

6.
Rev Soc Bras Med Trop ; 40(1): 68-70, 2007.
Article in Portuguese | MEDLINE | ID: mdl-17486258

ABSTRACT

When indirect hemagglutination, indirect immunofluorescence and enzyme-linked immunosorbent assay are used together for serologically diagnosing Chagas disease, results that are considered discordant sometimes occur because there is disagreement between what these tests indicate. The availability of the chemiluminescent ELISA method enabled tests on 200 serum samples that had previously produced discordant results from the three above-mentioned methods. CL-ELISA revealed that 193 of these samples were negative and seven were positive. The use of this new procedure provides further support for understanding this subject, but more concrete advances will depend on documentation with blood analyses from people previously demonstrated to be unquestionably infected or uninfected with Trypanosoma cruzi.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan , Chagas Disease/diagnosis , Luminescent Measurements/methods , Trypanosoma cruzi/immunology , Animals , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Antibody Technique, Indirect , Hemagglutination Tests , Humans
7.
Mol Biochem Parasitol ; 150(2): 268-77, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17010453

ABSTRACT

Histone tails provide sites for a variety of post-translational modifications implicated in the control of gene expression and chromatin assembly. As both histones and control of gene expression in trypanosomes are highly divergent compared to most eukaryotes, post-translational modifications of Trypanosoma cruzi histones were investigated. After in vivo incubation of live parasites with radiolabeled precursors, histone H4 mainly incorporates [(3)H]-acetyl, and to a lesser extent [(3)H]-methyl residues. In contrast, histone H3 preferentially incorporates [(3)H]-methyl residues. The modifications of histone H4 were further characterized by mass spectrometry. MALDI-TOF-TOF-MS analysis revealed that peptides from histone H4 amino-terminus, obtained by either endoproteinase Glu-C or endoproteinase Arg-C digestion, contain isoforms with 14 and 42Da additions, suggesting the presence of simultaneous acetylations and/or methylations. Tandem mass spectrometry analysis demonstrated that the N-terminal alanine is methylated, and lysine residues at positions 4, 10, 14 and 57 are acetylated; lysine at position 18 is mono-methylated, while arginine at position 53 is dimethylated. Immunoblotting analyses using specific antibodies raised against synthetic and acetylated peptides of T. cruzi histone H4 indicate that lysine 4 is acetylated in the majority of histone H4, while other acetylations at the N-terminus portion of histone H4 are less abundant.


Subject(s)
Histones/chemistry , Histones/genetics , Protein Processing, Post-Translational , Trypanosoma cruzi/genetics , Acetylation , Amino Acid Sequence , Animals , Histones/isolation & purification , Methylation , Molecular Sequence Data , Peptides , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Trypanosoma cruzi/chemistry
8.
PLoS Negl Trop Dis ; 10(1): e0004269, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26727000

ABSTRACT

Thromboembolic events were described in patients with Chagas disease without cardiomyopathy. We aim to confirm if there is a hypercoagulable state in these patients and to determine if there is an early normalization of hemostasis factors after antiparasitic treatment. Ninety-nine individuals from Chagas disease-endemic areas were classified in two groups: G1, with T.cruzi infection (n = 56); G2, healthy individuals (n = 43). Twenty-four hemostasis factors were measured at baseline. G1 patients treated with benznidazole were followed for 36 months, recording clinical parameters and performance of conventional serology, chemiluminescent enzyme-linked immunosorbent assay (trypomastigote-derived glycosylphosphatidylinositol-anchored mucins), quantitative polymerase chain reaction, and hemostasis tests every 6-month visits. Prothrombin fragment 1+2 (F1+2) and endogenous thrombin potential (ETP) were abnormally expressed in 77% and 50% of infected patients at baseline but returned to and remained at normal levels shortly after treatment in 76% and 96% of cases, respectively. Plasmin-antiplasmin complexes (PAP) were altered before treatment in 32% of G1 patients but normalized in 94% of cases several months after treatment. None of the patients with normal F1+2 values during follow-up had a positive qRT-PCR result, but 3/24 patients (13%) with normal ETP values did. In a percentage of chronic T. cruzi infected patients treated with benznidazole, altered coagulation markers returned into normal levels. F1+2, ETP and PAP could be useful markers for assessing sustained response to benznidazole.


Subject(s)
Antiprotozoal Agents/therapeutic use , Biomarkers/blood , Chagas Disease/complications , Chagas Disease/drug therapy , Drug Monitoring/methods , Thrombophilia/pathology , Adolescent , Adult , Chronic Disease/drug therapy , Female , Follow-Up Studies , Humans , Male , Middle Aged , Nitroimidazoles/therapeutic use , Treatment Outcome , Young Adult
9.
ACS Infect Dis ; 2(12): 917-922, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27696820

ABSTRACT

The α-Gal antigen [Galα(1,3)Galß(1,4)GlcNAcα] is an immunodominant epitope displayed by infective trypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. A virus-like particle displaying a high density of α-Gal was found to be a superior reagent for the ELISA-based serological diagnosis of Chagas disease and the assessment of treatment effectiveness. A panel of sera from patients chronically infected with T. cruzi, both untreated and benznidazole-treated, was compared with sera from patients with leishmaniasis and from healthy donors. The nanoparticle-α-Gal construct allowed for perfect discrimination between Chagas patients and the others, avoiding false negative and false positive results obtained with current state-of-the-art reagents. As previously reported with purified α-Gal-containing glycosylphosphatidylinositol-anchored mucins, the current study also showed concentrations of anti-α-Gal IgG to decrease substantially in patients receiving treatment with benznidazole, suggesting that the semiquantitative assessment of serum levels of this highly abundant type of antibody can report on disease status in individual patients.


Subject(s)
Chagas Disease/diagnosis , Trisaccharides/analysis , Trypanosoma cruzi/isolation & purification , Antibodies, Protozoan/analysis , Antibodies, Protozoan/immunology , Antigens, Protozoan/analysis , Antigens, Protozoan/immunology , Chagas Disease/parasitology , Enzyme-Linked Immunosorbent Assay , Humans , Trisaccharides/immunology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/immunology , Viruses/genetics , Viruses/metabolism
10.
PLoS Negl Trop Dis ; 9(11): e0004216, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26565791

ABSTRACT

BACKGROUND: The surface coat of Trypanosoma cruzi is predominantly composed of glycosylphosphatidylinositol-anchored proteins, which have been extensively characterized. However, very little is known about less abundant surface proteins and their role in host-parasite interactions. METHODOLOGY/ PRINCIPAL FINDINGS: Here, we described a novel family of T. cruzi surface membrane proteins (TcSMP), which are conserved among different T. cruzi lineages and have orthologs in other Trypanosoma species. TcSMP genes are densely clustered within the genome, suggesting that they could have originated by tandem gene duplication. Several lines of evidence indicate that TcSMP is a membrane-spanning protein located at the cellular surface and is released into the extracellular milieu. TcSMP exhibited the key elements typical of surface proteins (N-terminal signal peptide or signal anchor) and a C-terminal hydrophobic sequence predicted to be a trans-membrane domain. Immunofluorescence of live parasites showed that anti-TcSMP antibodies clearly labeled the surface of all T. cruzi developmental forms. TcSMP peptides previously found in a membrane-enriched fraction were identified by proteomic analysis in membrane vesicles as well as in soluble forms in the T. cruzi secretome. TcSMP proteins were also located intracellularly likely associated with membrane-bound structures. We demonstrated that TcSMP proteins were capable of inhibiting metacyclic trypomastigote entry into host cells. TcSMP bound to mammalian cells and triggered Ca2+ signaling and lysosome exocytosis, events that are required for parasitophorous vacuole biogenesis. The effects of TcSMP were of lower magnitude compared to gp82, the major adhesion protein of metacyclic trypomastigotes, suggesting that TcSMP may play an auxiliary role in host cell invasion. CONCLUSION/SIGNIFICANCE: We hypothesized that the productive interaction of T. cruzi with host cells that effectively results in internalization may depend on diverse adhesion molecules. In the metacyclic forms, the signaling induced by TcSMP may be additive to that triggered by the major surface molecule gp82, further increasing the host cell responses required for infection.


Subject(s)
Cell Adhesion , Endocytosis , Membrane Proteins/genetics , Trypanosoma cruzi/genetics , Animals , Calcium Signaling , Cell Line , Conserved Sequence , Humans , Membrane Proteins/analysis , Microscopy, Fluorescence , Multigene Family , Protein Binding , Protein Structure, Tertiary , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/physiology
11.
PLoS One ; 9(6): e98512, 2014.
Article in English | MEDLINE | ID: mdl-24892697

ABSTRACT

TLR2 plays a critical role in the protection against Paracoccidioides brasiliensis conferred by ArtinM administration. ArtinM, a D-mannose-binding lectin from Artocarpus heterophyllus, induces IL-12 production in macrophages and dendritic cells, which accounts for the T helper1 immunity that results from ArtinM administration. We examined the direct interaction of ArtinM with TLR2using HEK293A cells transfected with TLR2, alone or in combination with TLR1 or TLR6, together with accessory proteins. Stimulation with ArtinM induced NF-κB activation and interleukin (IL)-8 production in cells transfected with TLR2, TLR2/1, or TLR2/6. Murine macrophages that were stimulated with ArtinM had augmented TLR2 mRNA expression. Furthermore, pre-incubation of unstimulated macrophages with an anti-TLR2 antibody reduced the cell labeling with ArtinM. In addition, a microplate assay revealed that ArtinM bound to TLR2 molecules that had been captured by specific antibodies from a macrophages lysate. Notably,ArtinM binding to TLR2 was selectively inhibited when the lectin was pre-incubated with mannotriose. The biological relevance of the direct interaction of ArtinM with TLR2 glycans was assessed using macrophages from TLR2-KOmice, which produced significantly lower levels of IL-12 and IL-10 in response to ArtinM than macrophages from wild-type mice. Pre-treatment of murine macrophages with pharmacological inhibitors of signaling molecules demonstrated the involvement of p38 MAPK and JNK in the IL-12 production induced by ArtinM and the involvement ofPI3K in IL-10 production. Thus, ArtinM interacts directly with TLR2 or TLR2 heterodimers in a carbohydrate recognition-dependent manner and functions as a TLR2 agonist with immunomodulatory properties.


Subject(s)
Polysaccharides/metabolism , Toll-Like Receptor 2/metabolism , Animals , Humans , Interleukin-10/metabolism , Interleukin-6/metabolism , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 6/metabolism , Trisaccharides/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
12.
J Extracell Vesicles ; 7(1): 1463779, 2018.
Article in English | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib15011

ABSTRACT

Trypanosoma cruzi, the aetiologic agent of Chagas disease, releases vesicles containing a wide range of surface molecules known to affect the host immunological responses and the cellular infectivity. Here, we compared the secretome of two distinct strains (Y and YuYu) of T. cruzi, which were previously shown to differentially modulate host innate and acquired immune responses. Tissue culture-derived trypomastigotes of both strains secreted extracellular vesicles (EVs), as demonstrated by electron scanning microscopy. EVs were purified by exclusion chromatography or ultracentrifugation and quantitated using nanoparticle tracking analysis. Trypomastigotes from YuYu strain released higher number of EVs than those from Y strain, enriched with virulence factors trans-sialidase (TS) and cruzipain. Proteomic analysis confirmed the increased abundance of proteins coded by the TS gene family, mucin-like glycoproteins, and some typical exosomal proteins in the YuYu strain, which also showed considerable differences between purified EVs and vesicle-free fraction as compared to the Y strain. To evaluate whether such differences were related to parasite infectivity, J774 macrophages and LLC-MK2 kidney cells were preincubated with purified EVs from both strains and then infected with Y strain trypomastigotes. EVs released by YuYu strain caused a lower infection but higher intracellular proliferation in J774 macrophages than EVs from Y strain. In contrast, YuYu strain-derived EVs caused higher infection of LLC-MK2 cells than Y strain-derived EVs. In conclusion, quantitative and qualitative differences in EVs and secreted proteins from different T. cruzi strains may correlate with infectivity/virulence during the host-parasite interaction.

13.
J Extracell Vesicles, v. 7, n. 1, 1463779, 2018
Article in English | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2451

ABSTRACT

Trypanosoma cruzi, the aetiologic agent of Chagas disease, releases vesicles containing a wide range of surface molecules known to affect the host immunological responses and the cellular infectivity. Here, we compared the secretome of two distinct strains (Y and YuYu) of T. cruzi, which were previously shown to differentially modulate host innate and acquired immune responses. Tissue culture-derived trypomastigotes of both strains secreted extracellular vesicles (EVs), as demonstrated by electron scanning microscopy. EVs were purified by exclusion chromatography or ultracentrifugation and quantitated using nanoparticle tracking analysis. Trypomastigotes from YuYu strain released higher number of EVs than those from Y strain, enriched with virulence factors trans-sialidase (TS) and cruzipain. Proteomic analysis confirmed the increased abundance of proteins coded by the TS gene family, mucin-like glycoproteins, and some typical exosomal proteins in the YuYu strain, which also showed considerable differences between purified EVs and vesicle-free fraction as compared to the Y strain. To evaluate whether such differences were related to parasite infectivity, J774 macrophages and LLC-MK2 kidney cells were preincubated with purified EVs from both strains and then infected with Y strain trypomastigotes. EVs released by YuYu strain caused a lower infection but higher intracellular proliferation in J774 macrophages than EVs from Y strain. In contrast, YuYu strain-derived EVs caused higher infection of LLC-MK2 cells than Y strain-derived EVs. In conclusion, quantitative and qualitative differences in EVs and secreted proteins from different T. cruzi strains may correlate with infectivity/virulence during the host-parasite interaction.

14.
PLoS One ; 8(9): e76233, 2013.
Article in English | MEDLINE | ID: mdl-24312681

ABSTRACT

BACKGROUND: Lysophosphatidylcholine (LPC) is the main phospholipid component of oxidized low-density lipoprotein (oxLDL) and is usually noted as a marker of several human diseases, such as atherosclerosis, cancer and diabetes. Some studies suggest that oxLDL modulates Toll-like receptor (TLR) signaling. However, effector molecules that are present in oxLDL particles and can trigger TLR signaling are not yet clear. LPC was previously described as an attenuator of sepsis and as an immune suppressor. In the present study, we have evaluated the role of LPC as a dual modulator of the TLR-mediated signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS: HEK 293A cells were transfected with TLR expression constructs and stimulated with LPC molecules with different fatty acid chain lengths and saturation levels. All LPC molecules activated both TLR4 and TLR2-1 signaling, as evaluated by NF-қB activation and IL-8 production. These data were confirmed by Western blot analysis of NF-қB translocation in isolated nuclei of peritoneal murine macrophages. However, LPC counteracted the TLR4 signaling induced by LPS. In this case, NF-қB translocation, nitric oxide (NO) synthesis and the expression of inducible nitric oxide synthase (iNOS) were blocked. Moreover, LPC activated the MAP Kinases p38 and JNK, but not ERK, in murine macrophages. Interestingly, LPC blocked LPS-induced ERK activation in peritoneal macrophages but not in TLR-transfected cells. CONCLUSIONS/SIGNIFICANCE: The above results indicate that LPC is a dual-activity ligand molecule. It is able to trigger a classical proinflammatory phenotype by activating TLR4- and TLR2-1-mediated signaling. However, in the presence of classical TLR ligands, LPC counteracts some of the TLR-mediated intracellular responses, ultimately inducing an anti-inflammatory phenotype; LPC may thus play a role in the regulation of cell immune responses and disease progression.


Subject(s)
Lysophosphatidylcholines/pharmacology , Macrophages, Peritoneal/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide/biosynthesis , Signal Transduction/drug effects , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Animals , Drug Antagonism , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/immunology , Male , Mice , Phosphorylation/drug effects , Protein Transport/drug effects , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics
15.
Mem. Inst. Oswaldo Cruz ; 110(3): 422-432, 05/2015. tab
Article in English | LILACS | ID: lil-745981

ABSTRACT

The definition of a biomarker provided by the World Health Organization is any substance, structure, or process that can be measured in the body, or its products and influence, or predict the incidence or outcome of disease. Currently, the lack of prognosis and progression markers for chronic Chagas disease has posed limitations for testing new drugs to treat this neglected disease. Several molecules and techniques to detect biomarkers in Trypanosoma cruzi-infected patients have been proposed to assess whether specific treatment with benznidazole or nifurtimox is effective. Isolated proteins or protein groups from different T. cruzi stages and parasite-derived glycoproteins and synthetic neoglycoconjugates have been demonstrated to be useful for this purpose, as have nucleic acid amplification techniques. The amplification of T. cruzi DNA using the real-time polymerase chain reaction method is the leading test for assessing responses to treatment in a short period of time. Biochemical biomarkers have been tested early after specific treatment. Cytokines and surface markers represent promising molecules for the characterisation of host cellular responses, but need to be further assessed.


Subject(s)
Humans , Chagas Disease/drug therapy , Nitroimidazoles/therapeutic use , Trypanocidal Agents/therapeutic use , Biomarkers/blood , Chronic Disease
16.
Rev. Soc. Bras. Med. Trop ; Rev. Soc. Bras. Med. Trop;40(1): 68-70, jan.-fev. 2007. tab
Article in Portuguese | LILACS | ID: lil-449173

ABSTRACT

Quando utilizadas, em conjunto, a hemaglutinação indireta, a imunofluorescência indireta e ELISA para diagnóstico sorológico da doença de Chagas por vezes ocorrem resultados considerados discordantes, por não haver concordância entre o que indicam essas técnicas. A disponibilidade do método quimioluminescente-ELISA permitiu executá-lo com 200 soros que examinados pelos três testes citados que motivaram a obtenção de resultados discordantes. Com o método quimioluminescente-ELISA sucederam 193 negativos e sete positivos. O emprego desse novo procedimento trouxe mais um subsídio para compreensão do assunto, mas avanço mais concreto dependerá de documentação com soros de pessoas infectadas ou não pelo Trypanosoma cruzi conforme comprovação parasitológica.


When indirect hemagglutination, indirect immunofluorescence and enzyme-linked immunosorbent assay are used together for serologically diagnosing Chagas disease, results that are considered discordant sometimes occur because there is disagreement between what these tests indicate. The availability of the chemiluminescent ELISA method enabled tests on 200 serum samples that had previously produced discordant results from the three abovementioned methods. CL-ELISA revealed that 193 of these samples were negative and seven were positive. The use of this new procedure provides further support for understanding this subject, but more concrete advances will depend on documentation with blood analyses from people previously demonstrated to be unquestionably infected or uninfected with Trypanosoma cruzi.


Subject(s)
Humans , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan , Chagas Disease/diagnosis , Luminescent Measurements , Trypanosoma cruzi/immunology , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Antibody Technique, Indirect , Hemagglutination Tests
SELECTION OF CITATIONS
SEARCH DETAIL