Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Rep ; 39(13): 111010, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35767960

ABSTRACT

Although transplantation of single genes in yeast plays a key role in elucidating gene functionality in metazoans, technical challenges hamper humanization of full pathways and processes. Empowered by advances in synthetic biology, this study demonstrates the feasibility and implementation of full humanization of glycolysis in yeast. Single gene and full pathway transplantation revealed the remarkable conservation of glycolytic and moonlighting functions and, combined with evolutionary strategies, brought to light context-dependent responses. Human hexokinase 1 and 2, but not 4, required mutations in their catalytic or allosteric sites for functionality in yeast, whereas hexokinase 3 was unable to complement its yeast ortholog. Comparison with human tissues cultures showed preservation of turnover numbers of human glycolytic enzymes in yeast and human cell cultures. This demonstration of transplantation of an entire essential pathway paves the way for establishment of species-, tissue-, and disease-specific metazoan models.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , Glycolysis , Hexokinase/genetics , Hexokinase/metabolism , Humans , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Synthetic Biology
2.
Heliyon ; 6(6): e04329, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32637708

ABSTRACT

Understanding how endothelial cell phenotype is affected by topography could improve the design of new tools for tissue engineering as many tissue engineering approaches make use of topography-mediated cell stimulation. Therefore, we cultured human pulmonary microvascular endothelial cells (ECs) on a directional topographical gradient to screen the EC vascular-like network formation and alignment response to nano to microsized topographies. The cell response was evaluated by microscopy. We found that ECs formed unstable vascular-like networks that aggregated in the smaller topographies and flat parts whereas ECs themselves aligned on the larger topographies. Subsequently, we designed a mixed topography where we could explore the network formation and proliferative properties of these ECs by live imaging for three days. Vascular-like network formation continued to be unstable on the topography and were only produced on the flat areas and a fibronectin coating did not improve the network stability. However, an instructive adipose tissue-derived stromal cell (ASC) coating provided the correct environment to sustain the vascular-like networks, which were still affected by the topography underneath. It was concluded that large microsized topographies inhibit vascular endothelial network formation but not proliferation and flat and nano/microsized topographies allow formation of early networks that can be stabilized by using an ASC instructive layer.

3.
Polymers (Basel) ; 12(9)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872193

ABSTRACT

Understanding the response of endothelial cells to aligned myotubes is important to create an appropriate environment for tissue-engineered vascularized skeletal muscle. Part of the native tissue environment is the extracellular matrix (ECM). The ECM is a supportive scaffold for cells and allows cellular processes such as proliferation, differentiation, and migration. Interstitial matrix and basal membrane both comprise proteinaceous and polysaccharide components for strength, architecture, and volume retention. Virtually all cells are anchored to their basal lamina. One of the physical factors that affects cell behavior is topography, which plays an important role on cell alignment. We tested the hypothesis that topography-driven aligned human myotubes promote and support vascular network formation as a prelude to in vitro engineered vascularized skeletal muscle. Therefore, we used a PDMS-based topography substrate to investigate the influence of pre-aligned myotubes on the network formation of microvascular endothelial cells. The aligned myotubes produced a network of collagen fibers and laminin. This network supported early stages of endothelial network formation.

4.
J Tissue Eng Regen Med ; 13(12): 2234-2245, 2019 12.
Article in English | MEDLINE | ID: mdl-31677226

ABSTRACT

Tissue engineering of skeletal muscle aims to replicate the parallel alignment of myotubes on the native tissue. Directional topography gradients allow the study of the influence of topography on cellular orientation, proliferation, and differentiation, resulting in yield cues and clues to develop a proper in vitro environment for muscle tissue engineering. In this study, we used a polydimethylsiloxane-based substrate containing an aligned topography gradient with sinusoidal features ranging from wavelength (λ) = 1,520 nm and amplitude (A) =176 nm to λ = 9,934 nm and A = 2,168 nm. With this topography gradient, we evaluated the effect of topography on human myoblasts distribution, dominant orientation, cell area, nuclei coverage, cell area per number of nuclei, and nuclei area of myotubes. We showed that human myoblasts aligned and differentiated irrespective of the topography section. In addition, aligned human myotubes showed functionality and maturity by contracting spontaneously and nuclei peripheral organization resembling natural myotubes.


Subject(s)
Cell Differentiation , Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Tissue Scaffolds/chemistry , Adult , Female , Humans , Male , Middle Aged , Muscle Fibers, Skeletal/cytology , Myoblasts, Skeletal/cytology
SELECTION OF CITATIONS
SEARCH DETAIL