Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Bioorg Med Chem Lett ; 27(22): 5014-5021, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29032026

ABSTRACT

The continued emergence of bacteria resistant to current standard of care antibiotics presents a rapidly growing threat to public health. New chemical entities (NCEs) to treat these serious infections are desperately needed. Herein we report the discovery, synthesis, SAR and in vivo efficacy of a novel series of 4-hydroxy-2-pyridones exhibiting activity against Gram-negative pathogens. Compound 1c, derived from the N-debenzylation of 1b, preferentially inhibits bacterial DNA synthesis as determined by standard macromolecular synthesis assays. The structural features of the 4-hydroxy-2-pyridone scaffold required for antibacterial activity were explored and compound 6q, identified through further optimization of the series, had an MIC90 value of 8Ć¢Ā€ĀÆĀµg/mL against a panel of highly resistant strains of E. coli. In a murine septicemia model, compound 6q exhibited a PD50 of 8Ć¢Ā€ĀÆmg/kg in mice infected with a lethal dose of E. coli. This novel series of 4-hydroxy-2-pyridones serves as an excellent starting point for the identification of NCEs treating Gram-negative infections.


Subject(s)
Anti-Bacterial Agents/metabolism , Azabicyclo Compounds/chemistry , DNA/metabolism , Niacin/analogs & derivatives , Pyridines/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/metabolism , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , DNA/chemistry , Drug Evaluation, Preclinical , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Half-Life , Mice , Microbial Sensitivity Tests , Niacin/metabolism , Niacin/pharmacology , Niacin/therapeutic use , Pyridines/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Structure-Activity Relationship
2.
Antimicrob Agents Chemother ; 57(7): 3250-61, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23629699

ABSTRACT

While new direct-acting antiviral agents for the treatment of chronic hepatitis C virus (HCV) infection have been approved, there is a continued need for novel antiviral agents that act on new targets and can be used in combination with current therapies to enhance efficacy and to restrict the emergence of drug-resistant viral variants. To this end, we have identified a novel class of small molecules, exemplified by PTC725, that target the nonstructural protein 4B (NS4B). PTC725 inhibited HCV 1b (Con1) replicons with a 50% effective concentration (EC50) of 1.7 nM and an EC90 of 9.6 nM and demonstrated a >1,000-fold selectivity window with respect to cytotoxicity. The compounds were fully active against HCV replicon mutants that are resistant to inhibitors of NS3 protease and NS5B polymerase. Replicons selected for resistance to PTC725 harbored amino acid substitutions F98L/C and V105M in NS4B. Anti-replicon activity of PTC725 was additive to synergistic in combination with alpha interferon or with inhibitors of HCV protease and polymerase. Immunofluorescence microscopy demonstrated that neither the HCV inhibitors nor the F98C substitution altered the subcellular localization of NS4B or NS5A in replicon cells. Oral dosing of PTC725 showed a favorable pharmacokinetic profile with high liver and plasma exposure in mice and rats. Modeling of dosing regimens in humans indicates that a once-per-day or twice-per-day oral dosing regimen is feasible. Overall, the preclinical data support the development of PTC725 for use in the treatment of chronic HCV infection.


Subject(s)
Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepatitis C/drug therapy , Indoles/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/metabolism , Amino Acid Substitution , Animals , Antiviral Agents/pharmacokinetics , Cell Line, Tumor , Drug Resistance, Viral/genetics , Drug Synergism , Humans , Indoles/metabolism , Indoles/pharmacokinetics , Interferon-alpha/pharmacology , Male , Mice , Microbial Sensitivity Tests , Rats , Rats, Sprague-Dawley , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
3.
Nature ; 447(7140): 87-91, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17450125

ABSTRACT

Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal manifestations of disease. To address the need for a drug capable of suppressing premature termination, we identified PTC124-a new chemical entity that selectively induces ribosomal readthrough of premature but not normal termination codons. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2-8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well characterized activity profile, oral bioavailability and pharmacological properties indicate that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options.


Subject(s)
Codon, Nonsense/genetics , Genetic Diseases, Inborn/drug therapy , Genetic Diseases, Inborn/genetics , Oxadiazoles/pharmacology , Oxadiazoles/therapeutic use , Protein Biosynthesis/drug effects , Alleles , Animals , Biological Availability , Dystrophin/biosynthesis , Dystrophin/genetics , Genetic Diseases, Inborn/blood , Humans , Mice , Mice, Inbred mdx , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacokinetics , Phenotype , Protein Biosynthesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Substrate Specificity
4.
Mol Cancer Ther ; 18(1): 3-16, 2019 01.
Article in English | MEDLINE | ID: mdl-30352802

ABSTRACT

PTC299 was identified as an inhibitor of VEGFA mRNA translation in a phenotypic screen and evaluated in the clinic for treatment of solid tumors. To guide precision cancer treatment, we performed extensive biological characterization of the activity of PTC299 and demonstrated that inhibition of VEGF production and cell proliferation by PTC299 is linked to a decrease in uridine nucleotides by targeting dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme for de novo pyrimidine nucleotide synthesis. Unlike previously reported DHODH inhibitors that were identified using in vitro enzyme assays, PTC299 is a more potent inhibitor of DHODH in isolated mitochondria suggesting that mitochondrial membrane lipid engagement in the DHODH conformation in situ is required for its optimal activity. PTC299 has broad and potent activity against hematologic cancer cells in preclinical models, reflecting a reduced pyrimidine nucleotide salvage pathway in leukemia cells. Archived serum samples from patients treated with PTC299 demonstrated increased levels of dihydroorotate, the substrate of DHODH, indicating target engagement in patients. PTC299 has advantages over previously reported DHODH inhibitors, including greater potency, good oral bioavailability, and lack of off-target kinase inhibition and myelosuppression, and thus may be useful for the targeted treatment of hematologic malignancies.


Subject(s)
Hematologic Neoplasms/drug therapy , Imidazoles/administration & dosage , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Thiazoles/administration & dosage , Vascular Endothelial Growth Factor A/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dihydroorotate Dehydrogenase , Hematologic Neoplasms/blood , Hematologic Neoplasms/enzymology , Humans , Imidazoles/pharmacology , K562 Cells , Mice , Oxidoreductases Acting on CH-CH Group Donors/blood , Thiazoles/pharmacology , Xenograft Model Antitumor Assays
5.
J Med Chem ; 61(10): 4456-4475, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29727185

ABSTRACT

There exists an urgent medical need to identify new chemical entities (NCEs) targeting multidrug resistant (MDR) bacterial infections, particularly those caused by Gram-negative pathogens. 4-Hydroxy-2-pyridones represent a novel class of nonfluoroquinolone inhibitors of bacterial type II topoisomerases active against MDR Gram-negative bacteria. Herein, we report on the discovery and structure-activity relationships of a series of fused indolyl-containing 4-hydroxy-2-pyridones with improved in vitro antibacterial activity against fluoroquinolone resistant strains. Compounds 6o and 6v are representative of this class, targeting both bacterial DNA gyrase and topoisomerase IV (Topo IV). In an abbreviated susceptibility screen, compounds 6o and 6v showed improved MIC90 values against Escherichia coli (0.5-1 Āµg/mL) and Acinetobacter baumannii (8-16 Āµg/mL) compared to the precursor compounds. In a murine septicemia model, both compounds showed complete protection in mice infected with a lethal dose of E. coli.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Topoisomerases, Type II/chemistry , Drug Discovery , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Sepsis/drug therapy , Topoisomerase II Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Female , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Protein Conformation , Pyridines/chemistry , Sepsis/microbiology , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemistry
6.
J Clin Pharmacol ; 47(4): 430-44, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17389552

ABSTRACT

Nonsense (premature stop codon) mutations are causative in 5% to 15% of patients with monogenetic inherited disorders. PTC124, a 284-Dalton 1,2,4-oxadiazole, promotes ribosomal readthrough of premature stop codons in mRNA and offers therapeutic potential for multiple genetic diseases. The authors conducted 2 phase I studies of PTC124 in 62 healthy adult volunteers. The initial, single-dose study evaluated doses of 3 to 200 mg/kg and assessed fed-fasting status on pharmacokinetics following a dose of 50 mg/kg. The subsequent multiple-dose study evaluated doses from 10 to 50 mg/kg/dose twice per day (bid) for up to 14 days. PTC124 administered orally as a liquid suspension was palatable and well tolerated through single doses of 100 mg/kg. At 150 and 200 mg/kg, PTC124 induced mild headache, dizziness, and gastrointestinal events. With repeated doses through 50 mg/kg/dose bid, reversible transaminase elevations <2 times the upper limit of normal were sometimes observed. Immunoblot analyses of peripheral blood mononuclear cell extracts revealed no protein elongation due to nonspecific ribosomal readthrough of normal stop codons. PTC124 plasma concentrations exceeding the 2- to 10-microg/mL values associated with activity in preclinical genetic disease models were safely achieved. No sex-related differences in pharmacokinetics were seen. No drug accumulation with repeated dosing was apparent. Diurnal variation was observed, with greater PTC124 exposures after evening doses. PTC124 excretion in the urine was <2%. PTC124 pharmacokinetics were described by a 1-compartment model. Collectively, the data support initiation of phase II studies of PTC124 in patients with nonsense mutation-mediated cystic fibrosis and Duchenne muscular dystrophy.


Subject(s)
Codon, Nonsense/antagonists & inhibitors , Oxadiazoles/pharmacokinetics , Adolescent , Adult , Area Under Curve , Circadian Rhythm , Dose-Response Relationship, Drug , Double-Blind Method , Female , Food-Drug Interactions , Half-Life , Humans , Immunoblotting , Male , Oxadiazoles/administration & dosage , Oxadiazoles/adverse effects
7.
PLoS One ; 11(12): e0168366, 2016.
Article in English | MEDLINE | ID: mdl-27992500

ABSTRACT

Current anti-VEGF (Vascular Endothelial Growth Factor A) therapies to treat various cancers indiscriminately block VEGF function in the patient resulting in the global loss of VEGF signaling which has been linked to dose-limiting toxicities as well as treatment failures due to acquired resistance. Accumulating evidence suggests that this resistance is at least partially due to increased production of compensatory tumor angiogenic factors/cytokines. VEGF protein production is differentially controlled depending on whether cells are in the normal "homeostatic" state or in a stressed state, such as hypoxia, by post-transcriptional regulation imparted by elements in the 5' and 3' untranslated regions (UTR) of the VEGF mRNA. Using the Gene Expression Modulation by Small molecules (GEMS™) phenotypic assay system, we performed a high throughput screen to identify low molecular weight compounds that target the VEGF mRNA UTR-mediated regulation of stress-induced VEGF production in tumor cells. We identified a number of compounds that potently and selectively reduce endogenous VEGF production under hypoxia in HeLa cells. Medicinal chemistry efforts improved the potency and pharmaceutical properties of one series of compounds resulting in the discovery of PTC-510 which inhibits hypoxia-induced VEGF expression in HeLa cells at low nanomolar concentration. In mouse xenograft studies, oral administration of PTC-510 results in marked reduction of intratumor VEGF production and single agent control of tumor growth without any evident toxicity. Here, we show that selective suppression of stress-induced VEGF production within tumor cells effectively controls tumor growth. Therefore, this approach may minimize the liabilities of current global anti-VEGF therapies.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Antineoplastic Agents/administration & dosage , High-Throughput Screening Assays/methods , Neoplasms/drug therapy , Untranslated Regions/drug effects , Vascular Endothelial Growth Factor A/genetics , Administration, Oral , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Mice , Neoplasms/genetics , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Xenograft Model Antitumor Assays
8.
J Med Chem ; 59(13): 6070-85, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27299569

ABSTRACT

The underlying cause of spinal muscular atrophy (SMA) is a deficiency of the survival motor neuron (SMN) protein. Starting from hits identified in a high-throughput screening campaign and through structure-activity relationship investigations, we have developed small molecules that potently shift the alternative splicing of the SMN2 exon 7, resulting in increased production of the full-length SMN mRNA and protein. Three novel chemical series, represented by compounds 9, 14, and 20, have been optimized to increase the level of SMN protein by >50% in SMA patient-derived fibroblasts at concentrations of <160 nM. Daily administration of these compounds to severe SMA Δ7 mice results in an increased production of SMN protein in disease-relevant tissues and a significant increase in median survival time in a dose-dependent manner. Our work supports the development of an orally administered small molecule for the treatment of patients with SMA.


Subject(s)
Alternative Splicing/drug effects , Muscular Atrophy, Spinal/drug therapy , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Cell Line , Drug Discovery , Exons/drug effects , HEK293 Cells , Humans , Mice, Knockout , Muscular Atrophy, Spinal/genetics , RNA, Messenger/genetics , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship , Survival of Motor Neuron 2 Protein/genetics
9.
Science ; 345(6197): 688-93, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-25104390

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. A paralogous gene in humans, SMN2, produces low, insufficient levels of functional SMN protein due to alternative splicing that truncates the transcript. The decreased levels of SMN protein lead to progressive neuromuscular degeneration and high rates of mortality. Through chemical screening and optimization, we identified orally available small molecules that shift the balance of SMN2 splicing toward the production of full-length SMN2 messenger RNA with high selectivity. Administration of these compounds to Δ7 mice, a model of severe SMA, led to an increase in SMN protein levels, improvement of motor function, and protection of the neuromuscular circuit. These compounds also extended the life span of the mice. Selective SMN2 splicing modifiers may have therapeutic potential for patients with SMA.


Subject(s)
Alternative Splicing/drug effects , Coumarins/administration & dosage , Isocoumarins/administration & dosage , Longevity/drug effects , Muscular Atrophy, Spinal/drug therapy , Pyrimidinones/administration & dosage , Small Molecule Libraries/administration & dosage , Survival of Motor Neuron 2 Protein/genetics , Administration, Oral , Animals , Cells, Cultured , Coumarins/chemistry , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Isocoumarins/chemistry , Mice , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Pyrimidinones/chemistry , RNA, Messenger/genetics , Sequence Deletion , Small Molecule Libraries/chemistry , Survival of Motor Neuron 2 Protein/metabolism
10.
Org Lett ; 15(8): 1882-5, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23574146

ABSTRACT

Strategies for carrying out the reaction of 4,6-dichloropyrimidine-5-carboxaldehyde with various hydrazines to generate 1-substituted 4-chloropyrazolo[3,4-d]pyrimidines in a selective and high-yielding manner are presented. For aromatic hydrazines, the reaction is performed in the absence of an external base, which promotes exclusive hydrazone formation. The hydrazones subsequently cyclize at an elevated temperature to form the desired pyrazolo[3,4-d]pyrimidine products. For aliphatic hydrazines, the reaction sequence proceeds as a single step in the presence of an external base.


Subject(s)
Heterocyclic Compounds, 2-Ring/chemical synthesis , Hydrazines/chemistry , Hydrocarbons, Chlorinated/chemistry , Hydrocarbons, Chlorinated/chemical synthesis , Pyrazoles/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Catalysis , Combinatorial Chemistry Techniques , Cyclization , Heterocyclic Compounds, 2-Ring/chemistry , Molecular Structure , Pyrazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL