ABSTRACT
The SARS-CoV-2 epidemic in southern Africa has been characterized by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, while the second and third waves were driven by the Beta (B.1.351) and Delta (B.1.617.2) variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron, B.1.1.529) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, which are predicted to influence antibody neutralization and spike function4. Here we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.
Subject(s)
COVID-19/epidemiology , COVID-19/virology , Immune Evasion , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/immunology , Botswana/epidemiology , COVID-19/immunology , COVID-19/transmission , Humans , Models, Molecular , Mutation , Phylogeny , Recombination, Genetic , SARS-CoV-2/classification , SARS-CoV-2/immunology , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunologyABSTRACT
Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3-5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes.
Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/isolation & purification , Seasons , COVID-19/diagnosis , COVID-19/epidemiology , Europe/epidemiology , Genotype , Humans , Phylogeny , SARS-CoV-2/genetics , Time Factors , Travel/legislation & jurisprudence , Travel/statistics & numerical dataABSTRACT
The SARS-CoV-2 pandemic has led to the emergence of various variants of concern (VoCs) that are associated with increased transmissibility, immune evasion, or differences in disease severity. The emergence of VoCs fueled interest in understanding the potential impact of travel restrictions and surveillance strategies to prevent or delay the early spread of VoCs. We performed phylogenetic analyses and mathematical modeling to study the importation and spread of the VoCs Alpha and Delta in Switzerland in 2020 and 2021. Using a phylogenetic approach, we estimated between 383-1,038 imports of Alpha and 455-1,347 imports of Delta into Switzerland. We then used the results from the phylogenetic analysis to parameterize a dynamic transmission model that accurately described the subsequent spread of Alpha and Delta. We modeled different counterfactual intervention scenarios to quantify the potential impact of border closures and surveillance of travelers on the spread of Alpha and Delta. We found that implementing border closures after the announcement of VoCs would have been of limited impact to mitigate the spread of VoCs. In contrast, increased surveillance of travelers could prove to be an effective measure for delaying the spread of VoCs in situations where their severity remains unclear. Our study shows how phylogenetic analysis in combination with dynamic transmission models can be used to estimate the number of imported SARS-CoV-2 variants and the potential impact of different intervention scenarios to inform the public health response during the pandemic.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Phylogeny , SARS-CoV-2/genetics , Switzerland/epidemiology , COVID-19/epidemiology , PandemicsABSTRACT
Compartmental models that describe infectious disease transmission across subpopulations are central for assessing the impact of non-pharmaceutical interventions, behavioral changes and seasonal effects on the spread of respiratory infections. We present a Bayesian workflow for such models, including four features: (1) an adjustment for incomplete case ascertainment, (2) an adequate sampling distribution of laboratory-confirmed cases, (3) a flexible, time-varying transmission rate, and (4) a stratification by age group. Within the workflow, we benchmarked the performance of various implementations of two of these features (2 and 3). For the second feature, we used SARS-CoV-2 data from the canton of Geneva (Switzerland) and found that a quasi-Poisson distribution is the most suitable sampling distribution for describing the overdispersion in the observed laboratory-confirmed cases. For the third feature, we implemented three methods: Brownian motion, B-splines, and approximate Gaussian processes (aGP). We compared their performance in terms of the number of effective samples per second, and the error and sharpness in estimating the time-varying transmission rate over a selection of ordinary differential equation solvers and tuning parameters, using simulated seroprevalence and laboratory-confirmed case data. Even though all methods could recover the time-varying dynamics in the transmission rate accurately, we found that B-splines perform up to four and ten times faster than Brownian motion and aGPs, respectively. We validated the B-spline model with simulated age-stratified data. We applied this model to 2020 laboratory-confirmed SARS-CoV-2 cases and two seroprevalence studies from the canton of Geneva. This resulted in detailed estimates of the transmission rate over time and the case ascertainment. Our results illustrate the potential of the presented workflow including stratified transmission to estimate age-specific epidemiological parameters. The workflow is freely available in the R package HETTMO, and can be easily adapted and applied to other infectious diseases.
Subject(s)
Bayes Theorem , COVID-19 , SARS-CoV-2 , Workflow , Humans , COVID-19/transmission , COVID-19/epidemiology , Computational Biology , Computer Simulation , Adult , Switzerland/epidemiologyABSTRACT
In infectious disease epidemiology, the instantaneous reproduction number [Formula: see text] is a time-varying parameter defined as the average number of secondary infections generated by an infected individual at time t. It is therefore a crucial epidemiological statistic that assists public health decision makers in the management of an epidemic. We present a new Bayesian tool (EpiLPS) for robust estimation of the time-varying reproduction number. The proposed methodology smooths the epidemic curve and allows to obtain (approximate) point estimates and credible intervals of [Formula: see text] by employing the renewal equation, using Bayesian P-splines coupled with Laplace approximations of the conditional posterior of the spline vector. Two alternative approaches for inference are presented: (1) an approach based on a maximum a posteriori argument for the model hyperparameters, delivering estimates of [Formula: see text] in only a few seconds; and (2) an approach based on a Markov chain Monte Carlo (MCMC) scheme with underlying Langevin dynamics for efficient sampling of the posterior target distribution. Case counts per unit of time are assumed to follow a negative binomial distribution to account for potential overdispersion in the data that would not be captured by a classic Poisson model. Furthermore, after smoothing the epidemic curve, a "plug-in'' estimate of the reproduction number can be obtained from the renewal equation yielding a closed form expression of [Formula: see text] as a function of the spline parameters. The approach is extremely fast and free of arbitrary smoothing assumptions. EpiLPS is applied on data of SARS-CoV-1 in Hong-Kong (2003), influenza A H1N1 (2009) in the USA and on the SARS-CoV-2 pandemic (2020-2021) for Belgium, Portugal, Denmark and France.
Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , Bayes Theorem , SARS-CoV-2 , ReproductionABSTRACT
BACKGROUND: The World Health Organization recommends changing the first-line antimicrobial treatment for gonorrhoea when ≥ 5% of Neisseria gonorrhoeae cases fail treatment or are resistant. Susceptibility to ceftriaxone, the last remaining treatment option has been decreasing in many countries. We used antimicrobial resistance surveillance data and developed mathematical models to project the time to reach the 5% threshold for resistance to first-line antimicrobials used for N. gonorrhoeae. METHODS: We used data from the Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) in England and Wales from 2000-2018 about minimum inhibitory concentrations (MIC) for ciprofloxacin, azithromycin, cefixime and ceftriaxone and antimicrobial treatment in two groups, heterosexual men and women (HMW) and men who have sex with men (MSM). We developed two susceptible-infected-susceptible models to fit these data and produce projections of the proportion of resistance until 2030. The single-step model represents the situation in which a single mutation results in antimicrobial resistance. In the multi-step model, the sequential accumulation of resistance mutations is reflected by changes in the MIC distribution. RESULTS: The single-step model described resistance to ciprofloxacin well. Both single-step and multi-step models could describe azithromycin and cefixime resistance, with projected resistance levels higher with the multi-step than the single step model. For ceftriaxone, with very few observed cases of full resistance, the multi-step model was needed to describe long-term dynamics of resistance. Extrapolating from the observed upward drift in MIC values, the multi-step model projected ≥ 5% resistance to ceftriaxone could be reached by 2030, based on treatment pressure alone. Ceftriaxone resistance was projected to rise to 13.2% (95% credible interval [CrI]: 0.7-44.8%) among HMW and 19.6% (95%CrI: 2.6-54.4%) among MSM by 2030. CONCLUSIONS: New first-line antimicrobials for gonorrhoea treatment are needed. In the meantime, public health authorities should strengthen surveillance for AMR in N. gonorrhoeae and implement strategies for continued antimicrobial stewardship. Our models show the utility of long-term representative surveillance of gonococcal antimicrobial susceptibility data and can be adapted for use in, and for comparison with, other countries.
Subject(s)
Gonorrhea , Sexual and Gender Minorities , Male , Humans , Female , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Cefixime/pharmacology , Cefixime/therapeutic use , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Homosexuality, Male , Drug Resistance, Bacterial , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Microbial Sensitivity TestsABSTRACT
BACKGROUND: Vaccination is an effective strategy to reduce morbidity and mortality from coronavirus disease 2019 (COVID-19). However, the uptake of COVID-19 vaccination has varied across and within countries. Switzerland has had lower levels of COVID-19 vaccination uptake in the general population than many other high-income countries. Understanding the socio-demographic factors associated with vaccination uptake can help to inform future vaccination strategies to increase uptake. METHODS: We conducted a longitudinal online survey in the Swiss population, consisting of six survey waves from June to September 2021. Participants provided information on socio-demographic characteristics, history of testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), social contacts, willingness to be vaccinated, and vaccination status. We used a multivariable Poisson regression model to estimate the adjusted rate ratio (aRR) and 95% confidence intervals (CI) of COVID-19 vaccine uptake. RESULTS: We recorded 6,758 observations from 1,884 adults. For the regression analysis, we included 3,513 observations from 1,883 participants. By September 2021, 600 (75%) of 806 study participants had received at least one vaccine dose. Participants who were older, male, and students, had a higher educational level, household income, and number of social contacts, and lived in a household with a medically vulnerable person were more likely to have received at least one vaccine dose. Female participants, those who lived in rural areas and smaller households, and people who perceived COVID-19 measures as being too strict were less likely to be vaccinated. We found no significant association between previous SARS-CoV-2 infections and vaccination uptake. CONCLUSIONS: Our results suggest that socio-demographic factors as well as individual behaviours and attitudes played an important role in COVID-19 vaccination uptake in Switzerland. Therefore, appropriate communication with the public is needed to ensure that public health interventions are accepted and implemented by the population. Tailored COVID-19 vaccination strategies in Switzerland that aim to improve uptake should target specific subgroups such as women, people from rural areas or people with lower socio-demographic status.
Subject(s)
COVID-19 , Adult , Female , Humans , Male , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Switzerland/epidemiology , SARS-CoV-2 , Vaccination , EthnicityABSTRACT
BACKGROUND: As of 16 May 2020, more than 4.5 million cases and more than 300,000 deaths from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported. Reliable estimates of mortality from SARS-CoV-2 infection are essential for understanding clinical prognosis, planning healthcare capacity, and epidemic forecasting. The case-fatality ratio (CFR), calculated from total numbers of reported cases and reported deaths, is the most commonly reported metric, but it can be a misleading measure of overall mortality. The objectives of this study were to (1) simulate the transmission dynamics of SARS-CoV-2 using publicly available surveillance data and (2) infer estimates of SARS-CoV-2 mortality adjusted for biases and examine the CFR, the symptomatic case-fatality ratio (sCFR), and the infection-fatality ratio (IFR) in different geographic locations. METHOD AND FINDINGS: We developed an age-stratified susceptible-exposed-infected-removed (SEIR) compartmental model describing the dynamics of transmission and mortality during the SARS-CoV-2 epidemic. Our model accounts for two biases: preferential ascertainment of severe cases and right-censoring of mortality. We fitted the transmission model to surveillance data from Hubei Province, China, and applied the same model to six regions in Europe: Austria, Bavaria (Germany), Baden-Württemberg (Germany), Lombardy (Italy), Spain, and Switzerland. In Hubei, the baseline estimates were as follows: CFR 2.4% (95% credible interval [CrI] 2.1%-2.8%), sCFR 3.7% (3.2%-4.2%), and IFR 2.9% (2.4%-3.5%). Estimated measures of mortality changed over time. Across the six locations in Europe, estimates of CFR varied widely. Estimates of sCFR and IFR, adjusted for bias, were more similar to each other but still showed some degree of heterogeneity. Estimates of IFR ranged from 0.5% (95% CrI 0.4%-0.6%) in Switzerland to 1.4% (1.1%-1.6%) in Lombardy, Italy. In all locations, mortality increased with age. Among individuals 80 years or older, estimates of the IFR suggest that the proportion of all those infected with SARS-CoV-2 who will die ranges from 20% (95% CrI 16%-26%) in Switzerland to 34% (95% CrI 28%-40%) in Spain. A limitation of the model is that count data by date of onset are required, and these are not available in all countries. CONCLUSIONS: We propose a comprehensive solution to the estimation of SARS-Cov-2 mortality from surveillance data during outbreaks. The CFR is not a good predictor of overall mortality from SARS-CoV-2 and should not be used for evaluation of policy or comparison across settings. Geographic differences in IFR suggest that a single IFR should not be applied to all settings to estimate the total size of the SARS-CoV-2 epidemic in different countries. The sCFR and IFR, adjusted for right-censoring and preferential ascertainment of severe cases, are measures that can be used to improve and monitor clinical and public health strategies to reduce the deaths from SARS-CoV-2 infection.
Subject(s)
Coronavirus Infections/mortality , Pneumonia, Viral/mortality , Age Factors , Betacoronavirus/isolation & purification , COVID-19 , China/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Europe/epidemiology , Humans , Models, Statistical , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2ABSTRACT
OBJECTIVES: A new variant of Chlamydia trachomatis (nvCT) was discovered in Sweden in 2006. The nvCT has a plasmid deletion, which escaped detection by two nucleic acid amplification tests (Abbott-Roche, AR), which were used in 14 of 21 Swedish counties. The objectives of this study were to assess when and where nvCT emerged in Sweden, the proportion of nvCT in each county and the role of a potential fitness difference between nvCT and co-circulating wild-type strains (wtCT). METHODS: We used a compartmental mathematical model describing the spatial and temporal spread of nvCT and wtCT. We parameterised the model using sexual behaviour data and Swedish spatial and demographic data. We used Bayesian inference to fit the model to surveillance data about reported diagnoses of chlamydia infection in each county and data from four counties that assessed the proportion of nvCT in multiple years. RESULTS: Model results indicated that nvCT emerged in central Sweden (Dalarna, Gävleborg, Västernorrland), reaching a proportion of 1% of prevalent CT infections in late 2002 or early 2003. The diagnostic selective advantage enabled rapid spread of nvCT in the presence of high treatment rates. After detection, the proportion of nvCT decreased from 30%-70% in AR counties and 5%-20% in counties that Becton Dickinson tests, to around 5% in 2015 in all counties. The decrease in nvCT was consistent with an estimated fitness cost of around 5% in transmissibility or 17% reduction in infectious duration. CONCLUSIONS: We reconstructed the course of a natural experiment in which a mutant strain of C. trachomatis spread across Sweden. Our modelling study provides support, for the first time, of a reduced transmissibility or infectious duration of nvCT. This mathematical model improved our understanding of the first nvCT epidemic in Sweden and can be adapted to investigate the impact of future diagnostic escape mutants.
Subject(s)
Chlamydia Infections/epidemiology , Bayes Theorem , Chlamydia Infections/diagnosis , Chlamydia Infections/microbiology , Chlamydia Infections/transmission , Chlamydia trachomatis/genetics , Epidemics , Humans , Models, Theoretical , Mutation , Nucleic Acid Amplification Techniques , Plasmids/genetics , Prevalence , Sweden/epidemiologyABSTRACT
To date, non-pharmacological interventions (NPI) have been the mainstay for controlling the coronavirus disease-2019 (COVID-19) pandemic. While NPIs are effective in preventing health systems overload, these long-term measures are likely to have significant adverse economic consequences. Therefore, many countries are currently considering to lift the NPIs-increasing the likelihood of disease resurgence. In this regard, dynamic NPIs, with intervals of relaxed social distancing, may provide a more suitable alternative. However, the ideal frequency and duration of intermittent NPIs, and the ideal "break" when interventions can be temporarily relaxed, remain uncertain, especially in resource-poor settings. We employed a multivariate prediction model, based on up-to-date transmission and clinical parameters, to simulate outbreak trajectories in 16 countries, from diverse regions and economic categories. In each country, we then modelled the impacts on intensive care unit (ICU) admissions and deaths over an 18-month period for following scenarios: (1) no intervention, (2) consecutive cycles of mitigation measures followed by a relaxation period, and (3) consecutive cycles of suppression measures followed by a relaxation period. We defined these dynamic interventions based on reduction of the mean reproduction number during each cycle, assuming a basic reproduction number (R0) of 2.2 for no intervention, and subsequent effective reproduction numbers (R) of 0.8 and 0.5 for illustrative dynamic mitigation and suppression interventions, respectively. We found that dynamic cycles of 50-day mitigation followed by a 30-day relaxation reduced transmission, however, were unsuccessful in lowering ICU hospitalizations below manageable limits. By contrast, dynamic cycles of 50-day suppression followed by a 30-day relaxation kept the ICU demands below the national capacities. Additionally, we estimated that a significant number of new infections and deaths, especially in resource-poor countries, would be averted if these dynamic suppression measures were kept in place over an 18-month period. This multi-country analysis demonstrates that intermittent reductions of R below 1 through a potential combination of suppression interventions and relaxation can be an effective strategy for COVID-19 pandemic control. Such a "schedule" of social distancing might be particularly relevant to low-income countries, where a single, prolonged suppression intervention is unsustainable. Efficient implementation of dynamic suppression interventions, therefore, confers a pragmatic option to: (1) prevent critical care overload and deaths, (2) gain time to develop preventive and clinical measures, and (3) reduce economic hardship globally.
Subject(s)
Communicable Disease Control/methods , Coronavirus Infections/prevention & control , Coronavirus , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Humans , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2ABSTRACT
Since December 2019, China has been experiencing a large outbreak of a novel coronavirus (2019-nCoV) which can cause respiratory disease and severe pneumonia. We estimated the basic reproduction number R0 of 2019-nCoV to be around 2.2 (90% high density interval: 1.4-3.8), indicating the potential for sustained human-to-human transmission. Transmission characteristics appear to be of similar magnitude to severe acute respiratory syndrome-related coronavirus (SARS-CoV) and pandemic influenza, indicating a risk of global spread.
Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/transmission , Disease Outbreaks/statistics & numerical data , Pneumonia, Viral/transmission , Severe Acute Respiratory Syndrome/transmission , Virus Replication , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Global Health , Humans , Infection Control , Influenza A virus/pathogenicity , Influenza, Human/transmission , Pandemics , Pneumonia, Viral/epidemiology , Risk , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2ABSTRACT
OBJECTIVES: To explore whether existence of long-lasting partial immunity against reinfection with Chlamydia trachomatis is necessary to explain C. trachomatis prevalence patterns by age and sexual risk, and to provide a plausible estimate for the effect size, defined here as a reduction in susceptibility to reinfection. METHODS: A population-based mathematical model was constructed to describe C. trachomatis natural history and transmission dynamics by age and sexual risk. The model was parameterised using natural history, and epidemiological and sexual behaviour data, and applied for UK and US data. Sensitivity analyses were conducted to assess the robustness of predictions to variations in model structure and to examine the impact of alternative assumptions for the mechanism underlying partial immunity. RESULTS: Partial immunity against reinfection was found necessary to explain observed C. trachomatis prevalence patterns by age and sexual risk. The reduction in susceptibility to reinfection was estimated at 93% using UK data (95% uncertainty interval (UI)=88%-97%) and at 67% using US data (95% UI=24%-88%). The model-structure sensitivity analyses affirmed model predictions. The immunity-mechanism sensitivity analyses suggested a mechanism of susceptibility reduction against reinfection or a mechanism of infectious-period duration reduction upon reinfection. CONCLUSIONS: A strong long-lasting partial immunity against C. trachomatis reinfection should be present to explain observed prevalence patterns. The mechanism of immunity could be either a reduction in susceptibility to reinfection or a reduction in duration of infection on reinfection. C. trachomatis infection appears to naturally elicit a strong long-lasting immune response, supporting the concept of vaccine development.
Subject(s)
Age Factors , Chlamydia Infections/epidemiology , Chlamydia Infections/immunology , Models, Theoretical , Sexual Behavior , Adolescent , Adult , Chlamydia Infections/transmission , Chlamydia trachomatis , Disease Susceptibility , Female , Humans , Male , Middle Aged , Population , Prevalence , Recurrence , Risk Factors , United Kingdom/epidemiology , United States/epidemiology , Young AdultABSTRACT
The sexually transmitted bacterium Neisseria gonorrhoeae has developed resistance to all antibiotic classes that have been used for treatment and strains resistant to multiple antibiotic classes have evolved. In many countries, there is only one antibiotic remaining for empirical N. gonorrhoeae treatment, and antibiotic management to counteract resistance spread is urgently needed. Understanding dynamics and drivers of resistance spread can provide an improved rationale for antibiotic management. In our study, we first used antibiotic resistance surveillance data to estimate the rates at which antibiotic-resistant N. gonorrhoeae spread in two host populations, heterosexual men (HetM) and men who have sex with men (MSM). We found higher rates of spread for MSM (0.86 to 2.38 y-1, mean doubling time: 6 months) compared to HetM (0.24 to 0.86 y-1, mean doubling time: 16 months). We then developed a dynamic transmission model to reproduce the observed dynamics of N. gonorrhoeae transmission in populations of heterosexual men and women (HMW) and MSM. We parameterized the model using sexual behavior data and calibrated it to N. gonorrhoeae prevalence and incidence data. In the model, antibiotic-resistant N. gonorrhoeae spread with a median rate of 0.88 y-1 in HMW and 3.12 y-1 in MSM. These rates correspond to median doubling times of 9 (HMW) and 3 (MSM) months. Assuming no fitness costs, the model shows the difference in the host population's treatment rate rather than the difference in the number of sexual partners explains the differential spread of resistance. As higher treatment rates result in faster spread of antibiotic resistance, treatment recommendations for N. gonorrhoeae should carefully balance prevention of infection and avoidance of resistance spread.
Subject(s)
Drug Resistance, Microbial/drug effects , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Gonorrhea/transmission , Adult , Anti-Bacterial Agents/therapeutic use , Female , Humans , Incidence , Male , Models, Theoretical , Neisseria gonorrhoeae , Prevalence , Sexual PartnersABSTRACT
In a Perspective on the research article by Didelot and colleagues, Magnus Unemo and Christian Althaus discuss the value of modelling studies to inform antimicrobial resistance management and the limitations of the current evidence base informing such models.
Subject(s)
Gonorrhea , Neisseria gonorrhoeae/drug effects , Anti-Bacterial Agents , Cefixime , Drug Resistance, Bacterial/drug effects , Humans , Microbial Sensitivity TestsABSTRACT
BACKGROUND: Antibiotic resistance is threatening to make gonorrhoea untreatable. Point-of-care (POC) tests that detect resistance promise individually tailored treatment, but might lead to more treatment and higher levels of resistance. We investigate the impact of POC tests on antibiotic-resistant gonorrhoea. METHODS: We used data about the prevalence and incidence of gonorrhoea in men who have sex with men (MSM) and heterosexual men and women (HMW) to calibrate a mathematical gonorrhoea transmission model. With this model, we simulated four clinical pathways for the diagnosis and treatment of gonorrhoea: POC test with (POC+R) and without (POC-R) resistance detection, culture and nucleic acid amplification tests (NAATs). We calculated the proportion of resistant infections and cases averted after 5 years, and compared how fast resistant infections spread in the populations. RESULTS: The proportion of resistant infections after 30 years is lowest for POC+R (median MSM: 0.18%, HMW: 0.12%), and increases for culture (MSM: 1.19%, HMW: 0.13%), NAAT (MSM: 100%, HMW: 99.27%), and POC-R (MSM: 100%, HMW: 99.73%). Per 100 000 persons, NAAT leads to 36 366 (median MSM) and 1228 (median HMW) observed cases after 5 years. Compared with NAAT, POC+R averts more cases after 5 years (median MSM: 3353, HMW: 118). POC tests that detect resistance with intermediate sensitivity slow down resistance spread more than NAAT. POC tests with very high sensitivity for the detection of resistance are needed to slow down resistance spread more than by using culture. CONCLUSIONS: POC with high sensitivity to detect antibiotic resistance can keep gonorrhoea treatable longer than culture or NAAT. POC tests without reliable resistance detection should not be introduced because they can accelerate the spread of antibiotic-resistant gonorrhoea.
Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Microbial , Gonorrhea/drug therapy , Gonorrhea/transmission , Models, Theoretical , Neisseria gonorrhoeae/drug effects , Point-of-Care Testing , Adult , Female , Gonorrhea/microbiology , Humans , Incidence , Male , Microbial Sensitivity Tests/methods , Microbial Sensitivity Tests/statistics & numerical data , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/statistics & numerical data , Point-of-Care Systems/standards , Point-of-Care Systems/statistics & numerical data , Point-of-Care Testing/standards , Point-of-Care Testing/statistics & numerical data , Prevalence , Young AdultABSTRACT
Objectives: Rapid, cost-effective and objective methods for antimicrobial susceptibility testing of Neisseria gonorrhoeae would greatly enhance surveillance of antimicrobial resistance. Etest, disc diffusion and agar dilution methods are subjective, mostly laborious for large-scale testing and take â¼24 h. We aimed to develop a rapid broth microdilution assay using resazurin (blue), which is converted into resorufin (pink fluorescence) in the presence of viable bacteria. Methods: The resazurin-based broth microdilution assay was established using 132 N. gonorrhoeae strains and the antimicrobials ceftriaxone, cefixime, azithromycin, spectinomycin, ciprofloxacin, tetracycline and penicillin. A regression model was used to estimate the MICs. Assay results were obtained in â¼7.5 h. Results: The EC 50 of the dose-response curves correlated well with Etest MIC values (Pearson's r = 0.93). Minor errors resulting from misclassifications of intermediate strains were found for 9% of the samples. Major errors (susceptible strains misclassified as resistant) occurred for ceftriaxone (4.6%), cefixime (3.3%), azithromycin (0.6%) and tetracycline (0.2%). Only one very major error was found (a ceftriaxone-resistant strain misclassified as susceptible). Overall the sensitivity of the assay was 97.1% (95% CI 95.2-98.4) and the specificity 78.5% (95% CI 74.5-82.9). Conclusions: A rapid, objective, high-throughput, quantitative and cost-effective broth microdilution assay was established for gonococci. For use in routine diagnostics without confirmatory testing, the specificity might remain suboptimal for ceftriaxone and cefixime. However, the assay is an effective low-cost method to evaluate novel antimicrobials and for high-throughput screening, and expands the currently available methodologies for surveillance of antimicrobial resistance in gonococci.
Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Gonorrhea/diagnosis , Microbial Sensitivity Tests/methods , Neisseria gonorrhoeae/drug effects , Oxazines/pharmacology , Xanthenes/pharmacology , Azithromycin/pharmacology , Cefixime/pharmacology , Ciprofloxacin/pharmacology , Disk Diffusion Antimicrobial Tests , Fluorescence , Gonorrhea/microbiology , Humans , Microbial Sensitivity Tests/economics , Neisseria gonorrhoeae/isolation & purification , Oxazines/metabolism , Xanthenes/metabolismABSTRACT
Christian Althaus and Nicola Low reflect on the contribution of sexual transmission to the spread of Zika virus.
Subject(s)
Sexually Transmitted Diseases, Viral/transmission , Zika Virus Infection/transmission , Zika Virus/physiology , HumansABSTRACT
BACKGROUND: Gonorrhoea is a sexually transmitted infection caused by the Gram-negative bacterium Neisseria gonorrhoeae. Resistance to first-line empirical monotherapy has emerged, so robust methods are needed to evaluate the activity of existing and novel antimicrobials against the bacterium. Pharmacodynamic models describing the relationship between the concentration of antimicrobials and the minimum growth rate of the bacteria provide more detailed information than the MIC only. RESULTS: In this study, a novel standardised in vitro time-kill curve assay was developed. The assay was validated using five World Health Organization N. gonorrhoeae reference strains and a range of ciprofloxacin concentrations below and above the MIC. Then the activity of nine antimicrobials with different target mechanisms was examined against a highly antimicrobial susceptible clinical strain isolated in 1964. The experimental time-kill curves were analysed and quantified with a previously established pharmacodynamic model. First, the bacterial growth rates at each antimicrobial concentration were estimated with linear regression. Second, we fitted the model to the growth rates, resulting in four parameters that describe the pharmacodynamic properties of each antimicrobial. A gradual decrease of bactericidal effects from ciprofloxacin to spectinomycin and gentamicin was found. The beta-lactams ceftriaxone, cefixime and benzylpenicillin showed bactericidal and time-dependent properties. Chloramphenicol and tetracycline were purely bacteriostatic as they fully inhibited the growth but did not kill the bacteria. We also tested ciprofloxacin resistant strains and found higher pharmacodynamic MICs (zMIC) in the resistant strains and attenuated bactericidal effects at concentrations above the zMIC. CONCLUSIONS: N. gonorrhoeae time-kill curve experiments analysed with a pharmacodynamic model have potential for in vitro evaluation of new and existing antimicrobials. The pharmacodynamic parameters based on a wide range of concentrations below and above the MIC provide information that could support improving future dosing strategies to treat gonorrhoea.
Subject(s)
Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Models, Theoretical , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/growth & development , Cefixime/administration & dosage , Cefixime/pharmacokinetics , Ceftriaxone/administration & dosage , Ceftriaxone/pharmacokinetics , Cell Count , Cell Survival/drug effects , Chloramphenicol/administration & dosage , Ciprofloxacin/pharmacology , Gentamicins/administration & dosage , Gentamicins/pharmacokinetics , Growth Charts , Humans , In Vitro Techniques , Microbial Sensitivity Tests , Penicillin G/administration & dosage , Penicillin G/pharmacokinetics , Spectinomycin/administration & dosage , Spectinomycin/pharmacokinetics , Tetracycline/administration & dosage , Tetracycline/pharmacokinetics , Time FactorsABSTRACT
HIV-1-infected cells in peripheral blood can be grouped into different transcriptional subclasses. Quantifying the turnover of these cellular subclasses can provide important insights into the viral life cycle and the generation and maintenance of latently infected cells. We used previously published data from five patients chronically infected with HIV-1 that initiated combination antiretroviral therapy (cART). Patient-matched PCR for unspliced and multiply spliced viral RNAs combined with limiting dilution analysis provided measurements of transcriptional profiles at the single cell level. Furthermore, measurement of intracellular transcripts and extracellular virion-enclosed HIV-1 RNA allowed us to distinguish productive from non-productive cells. We developed a mathematical model describing the dynamics of plasma virus and the transcriptional subclasses of HIV-1-infected cells. Fitting the model to the data allowed us to better understand the phenotype of different transcriptional subclasses and their contribution to the overall turnover of HIV-1 before and during cART. The average number of virus-producing cells in peripheral blood is small during chronic infection. We find that a substantial fraction of cells can become defectively infected. Assuming that the infection is homogenous throughout the body, we estimate an average in vivo viral burst size on the order of 104 virions per cell. Our study provides novel quantitative insights into the turnover and development of different subclasses of HIV-1-infected cells, and indicates that cells containing solely unspliced viral RNA are a good marker for viral latency. The model illustrates how the pool of latently infected cells becomes rapidly established during the first months of acute infection and continues to increase slowly during the first years of chronic infection. Having a detailed understanding of this process will be useful for the evaluation of viral eradication strategies that aim to deplete the latent reservoir of HIV-1.