Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Mol Genet ; 31(7): 1159-1170, 2022 03 31.
Article in English | MEDLINE | ID: mdl-34875050

ABSTRACT

Telomeres are repetitive DNA sequences located at the end of chromosomes, which are associated to biological aging, cardiovascular disease, cancer and mortality. Lipid and fatty acid metabolism have been associated with telomere shortening. We have conducted an in-depth study investigating the association of metabolic biomarkers with telomere length (LTL). We performed an association analysis of 226 metabolic biomarkers with LTL using data from 11 775 individuals from six independent population-based cohorts (BBMRI-NL consortium). Metabolic biomarkers include lipoprotein lipids and subclasses, fatty acids, amino acids, glycolysis measures and ketone bodies. LTL was measured by quantitative polymerase chain reaction or FlowFISH. Linear regression analysis was performed adjusting for age, sex, lipid-lowering medication and cohort-specific covariates (model 1) and additionally for body mass index (BMI) and smoking (model 2), followed by inverse variance-weighted meta-analyses (significance threshold Pmeta = 6.5 × 10-4). We identified four metabolic biomarkers positively associated with LTL, including two cholesterol to lipid ratios in small VLDL (S-VLDL-C % and S-VLDL-CE %) and two omega-6 fatty acid ratios (FAw6/FA and LA/FA). After additionally adjusting for BMI and smoking, these metabolic biomarkers remained associated with LTL with similar effect estimates. In addition, cholesterol esters in very small VLDL (XS-VLDL-CE) became significantly associated with LTL (P = 3.6 × 10-4). We replicated the association of FAw6/FA with LTL in an independent dataset of 7845 individuals (P = 1.9 × 10-4). To conclude, we identified multiple metabolic biomarkers involved in lipid and fatty acid metabolism that may be involved in LTL biology. Longitudinal studies are needed to exclude reversed causation.


Subject(s)
Leukocytes , Telomere Shortening , Biomarkers/metabolism , Cross-Sectional Studies , Fatty Acids/metabolism , Humans , Leukocytes/metabolism , Lipids , Telomere/genetics
3.
PLoS Genet ; 11(10): e1005378, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26426971

ABSTRACT

Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.


Subject(s)
Body Mass Index , Body Size/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Adult , Age Factors , Aged , Chromosome Mapping , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Sex Characteristics , Waist-Hip Ratio , White People
4.
Hum Mol Genet ; 21(16): 3727-38, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22595969

ABSTRACT

Variable number tandem repeats (VNTRs) constitute a relatively under-examined class of genomic variants in the context of complex disease because of their sequence complexity and the challenges in assaying them. Recent large-scale genome-wide copy number variant mapping and association efforts have highlighted the need for improved methodology for association studies using these complex polymorphisms. Here we describe the in-depth investigation of a complex region on chromosome 8p21.2 encompassing the dedicator of cytokinesis 5 (DOCK5) gene. The region includes two VNTRs of complex sequence composition which flank a common 3975 bp deletion, all three of which were genotyped by polymerase chain reaction and fragment analysis in a total of 2744 subjects. We have developed a novel VNTR association method named VNTRtest, suitable for association analysis of multi-allelic loci with binary and quantitative outcomes, and have used this approach to show significant association of the DOCK5 VNTRs with childhood and adult severe obesity (P(empirical)= 8.9 × 10(-8) and P= 3.1 × 10(-3), respectively) which we estimate explains ~0.8% of the phenotypic variance. We also identified an independent association between the 3975 base pair (bp) deletion and obesity, explaining a further 0.46% of the variance (P(combined)= 1.6 × 10(-3)). Evidence for association between DOCK5 transcript levels and the 3975 bp deletion (P= 0.027) and both VNTRs (P(empirical)= 0.015) was also identified in adipose tissue from a Swedish family sample, providing support for a functional effect of the DOCK5 deletion and VNTRs. These findings highlight the potential role of DOCK5 in human obesity and illustrate a novel approach for analysis of the contribution of VNTRs to disease susceptibility through association studies.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Minisatellite Repeats , Obesity, Morbid/genetics , Adipose Tissue/physiology , Adult , Case-Control Studies , Child , Chromosomes, Human, Pair 8 , Cohort Studies , Dietary Fats , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Sequence Deletion
5.
Eur Respir J ; 43(4): 983-92, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24311771

ABSTRACT

Several clinical studies suggest the involvement of premature ageing processes in chronic obstructive pulmonary disease (COPD). Using an epidemiological approach, we studied whether accelerated ageing indicated by telomere length, a marker of biological age, is associated with COPD and asthma, and whether intrinsic age-related processes contribute to the interindividual variability of lung function. Our meta-analysis of 14 studies included 934 COPD cases with 15 846 controls defined according to the Global Lungs Initiative (GLI) criteria (or 1189 COPD cases according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria), 2834 asthma cases with 28 195 controls, and spirometric parameters (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC) of 12 595 individuals. Associations with telomere length were tested by linear regression, adjusting for age, sex and smoking status. We observed negative associations between telomere length and asthma (ß= -0.0452, p=0.024) as well as COPD (ß= -0.0982, p=0.001), with associations being stronger and more significant when using GLI criteria than those of GOLD. In both diseases, effects were stronger in females than males. The investigation of spirometric indices showed positive associations between telomere length and FEV1 (p=1.07×10(-7)), FVC (p=2.07×10(-5)), and FEV1/FVC (p=5.27×10(-3)). The effect was somewhat weaker in apparently healthy subjects than in COPD or asthma patients. Our results provide indirect evidence for the hypothesis that cellular senescence may contribute to the pathogenesis of COPD and asthma, and that lung function may reflect biological ageing primarily due to intrinsic processes, which are likely to be aggravated in lung diseases.


Subject(s)
Asthma/blood , Leukocytes/cytology , Lung Diseases/blood , Pulmonary Disease, Chronic Obstructive/blood , Telomere/ultrastructure , Aged , Asthma/genetics , Case-Control Studies , Cohort Studies , Europe , Female , Forced Expiratory Volume , Humans , Lung Diseases/genetics , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/genetics , Regression Analysis , Smoking , Spirometry , Vital Capacity
6.
Intern Emerg Med ; 19(5): 1439-1458, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38416303

ABSTRACT

This study aims to apply machine learning models to identify new biomarkers associated with the early diagnosis and prognosis of SARS-CoV-2 infection.Plasma and serum samples from COVID-19 patients (mild, moderate, and severe), patients with other pneumonia (but with negative COVID-19 RT-PCR), and healthy volunteers (control) from hospitals in four different countries (China, Spain, France, and Italy) were analyzed by GC-MS, LC-MS, and NMR. Machine learning models (PCA and PLS-DA) were developed to predict the diagnosis and prognosis of COVID-19 and identify biomarkers associated with these outcomes.A total of 1410 patient samples were analyzed. The PLS-DA model presented a diagnostic and prognostic accuracy of around 95% of all analyzed data. A total of 23 biomarkers (e.g., spermidine, taurine, L-aspartic, L-glutamic, L-phenylalanine and xanthine, ornithine, and ribothimidine) have been identified as being associated with the diagnosis and prognosis of COVID-19. Additionally, we also identified for the first time five new biomarkers (N-Acetyl-4-O-acetylneuraminic acid, N-Acetyl-L-Alanine, N-Acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristate) that are also associated with the severity and diagnosis of COVID-19. These five new biomarkers were elevated in severe COVID-19 patients compared to patients with mild disease or healthy volunteers.The PLS-DA model was able to predict the diagnosis and prognosis of COVID-19 around 95%. Additionally, our investigation pinpointed five novel potential biomarkers linked to the diagnosis and prognosis of COVID-19: N-Acetyl-4-O-acetylneuraminic acid, N-Acetyl-L-Alanine, N-Acetyltriptophan, palmitoylcarnitine, and glycerol 1-myristate. These biomarkers exhibited heightened levels in severe COVID-19 patients compared to those with mild COVID-19 or healthy volunteers.


Subject(s)
Biomarkers , COVID-19 , Humans , COVID-19/blood , COVID-19/diagnosis , Biomarkers/blood , Male , Female , Middle Aged , Italy , Machine Learning , Carnitine/blood , Carnitine/analogs & derivatives , France/epidemiology , SARS-CoV-2 , Adult , China , Prognosis , Spain , Multiomics
7.
Nat Commun ; 14(1): 6172, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794016

ABSTRACT

Atopic dermatitis (AD) is a common inflammatory skin condition and prior genome-wide association studies (GWAS) have identified 71 associated loci. In the current study we conducted the largest AD GWAS to date (discovery N = 1,086,394, replication N = 3,604,027), combining previously reported cohorts with additional available data. We identified 81 loci (29 novel) in the European-only analysis (which all replicated in a separate European analysis) and 10 additional loci in the multi-ancestry analysis (3 novel). Eight variants from the multi-ancestry analysis replicated in at least one of the populations tested (European, Latino or African), while two may be specific to individuals of Japanese ancestry. AD loci showed enrichment for DNAse I hypersensitivity and eQTL associations in blood. At each locus we prioritised candidate genes by integrating multi-omic data. The implicated genes are predominantly in immune pathways of relevance to atopic inflammation and some offer drug repurposing opportunities.


Subject(s)
Dermatitis, Atopic , Genome-Wide Association Study , Humans , Dermatitis, Atopic/genetics , Genetic Predisposition to Disease/genetics , Hispanic or Latino/genetics , Black People , Polymorphism, Single Nucleotide
8.
Anal Chem ; 82(18): 7779-86, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20715759

ABSTRACT

A series of six protocols were evaluated for UPLC-MS based untargeted metabolic profiling of liver extracts in terms of reproducibility and number of metabolite features obtained. These protocols, designed to extract both polar and nonpolar metabolites, were based on (i) a two stage extraction approach or (ii) a simultaneous extraction in a biphasic mixture, employing different volumes and combinations of extraction and resuspension solvents. A multivariate statistical strategy was developed to allow comparison of the multidimensional variation between the methods. The optimal protocol for profiling both polar and nonpolar metabolites was found to be an aqueous extraction with methanol/water followed by an organic extraction with dichloromethane/methanol, with resuspension of the dried extracts in methanol/water before UPLC-MS analysis. This protocol resulted in a median CV of feature intensities among experimental replicates of <20% for aqueous extracts and <30% for organic extracts. These data demonstrate the robustness of the proposed protocol for extracting metabolites from liver samples and make it well suited for untargeted liver profiling in studies exploring xenobiotic hepatotoxicity and clinical investigations of liver disease. The generic nature of this protocol facilitates its application to other tissues, for example, brain or lung, enhancing its utility in clinical and toxicological studies.


Subject(s)
Chemical Fractionation/methods , Chromatography, High Pressure Liquid/methods , Liver/metabolism , Mass Spectrometry/methods , Metabolomics/methods , Animals , Methylene Chloride/chemistry , Multivariate Analysis , Principal Component Analysis , Reproducibility of Results , Solvents/chemistry , Water/chemistry
9.
Commun Biol ; 3(1): 755, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311586

ABSTRACT

Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10-16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 10-19), TMPRSS5 (rs4936279, P = 2.5 × 10-10), LINC01412 (rs16823886, P = 1.3 × 10-9), GLTSCR1 (rs1005911, P = 9.8 × 10-9), and COMMD1 (rs62149908, P = 1.2 × 10-8). The results suggest a strong link of age-related nuclear cataract with congenital cataract and eye development genes, and the importance of common genetic variants in maintaining crystalline lens integrity in the aging eye.


Subject(s)
Cataract/etiology , Genetic Predisposition to Disease , Genetic Variation , SOXB1 Transcription Factors/genetics , Alleles , Cataract/diagnosis , Genetic Association Studies , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide
10.
Anal Chem ; 81(6): 2075-84, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19220030

ABSTRACT

Structural assignment of resonances is an important problem in NMR spectroscopy, and statistical total correlation spectroscopy (STOCSY) is a useful tool aiding this process for small molecules in complex mixture analysis and metabolic profiling studies. STOCSY delivers intramolecular information (delineating structural connectivity) and in metabolism studies can generate information on pathway-related correlations. To understand further the behavior of STOCSY for structural assignment, we analyze the statistical distribution of structural and nonstructural correlations from 1050 (1)H NMR spectra of normal rat urine samples. We find that the distributions of structural/nonstructural correlations are significantly different (p < 10(-112)). From the area under the curve of the receiver operating characteristic (ROC AUC) we show that structural correlations exceed nonstructural correlations with probability AUC = 0.98. Through a bootstrap resampling approach, we demonstrate that sample size has a surprisingly small effect (e.g., AUC = 0.97 for a sample size of 50). We identify specific signatures in the correlation maps resulting from small matrix-derived variations in peak positions but find that their effect on discrimination of structural and nonstructural correlations is negligible for most metabolites. A correlation threshold of r > 0.89 is required to assign two peaks to the same metabolite with high probability (positive predictive value, PPV = 0.9), whereas sensitivity and specificity are equal at 93% for r = 0.22. To assess the wider applicability of our results, we analyze (1)H NMR spectra of urine from rats treated with 115 model toxins or physiological stressors. Across the data sets, we find that the thresholds required to obtain PPV = 0.9 are not significantly different and the degree of overlap between the structural and nonstructural distributions is always small (median AUC = 0.97). The STOCSY method is effective for structural characterization under diverse biological conditions and sample sizes provided the degree of correlation resulting from nonstructural associations (e.g., from nonstationary processes) is small. This study validates the use of the STOCSY approach in the routine assignment of signals in NMR metabolic profiling studies and provides practical benchmarks against which researchers can interpret the results of a STOCSY analysis.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Animals , Area Under Curve , Male , Metabolome , ROC Curve , Rats , Rats, Sprague-Dawley , Toxins, Biological/pharmacology , Urinalysis
11.
J Ginseng Res ; 43(4): 654-665, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31700261

ABSTRACT

BACKGROUND: Panax ginseng Meyer has widely been used as a traditional herbal medicine because of its diverse health benefits. Amounts of ginseng compounds, mainly ginsenosides, vary according to seasons, varieties, geographical regions, and age of ginseng plants. However, no study has comprehensively determined perturbations of various metabolites in ginseng plants including roots and leaves as they grow. METHODS: Nuclear magnetic resonance (1H NMR)-based metabolomics was applied to better understand the metabolic physiology of ginseng plants and their association with climate through global profiling of ginseng metabolites in roots and leaves during whole growing periods. RESULTS: The results revealed that all metabolites including carbohydrates, amino acids, organic acids, and ginsenosides in ginseng roots and leaves were clearly dependent on growing seasons from March to October. In particular, ginsenosides, arginine, sterols, fatty acids, and uracil diphosphate glucose-sugars were markedly synthesized from March until May, together with accelerated sucrose catabolism, possibly associated with climatic changes such as sun exposure time and rainfall. CONCLUSION: This study highlights the intrinsic metabolic characteristics of ginseng plants and their associations with climate changes during their growth. It provides important information not only for better understanding of the metabolic phenotype of ginseng but also for quality improvement of ginseng through modification of cultivation.

12.
Genome Med ; 9(1): 18, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28219444

ABSTRACT

BACKGROUND: Expression quantitative trait loci (eQTL) databases represent a valuable resource to link disease-associated SNPs to specific candidate genes whose gene expression is significantly modulated by the SNP under investigation. We previously identified signal inhibitory receptor on leukocytes-1 (SIRL-1) as a powerful regulator of human innate immune cell function. While it is constitutively high expressed on neutrophils, on monocytes the SIRL-1 surface expression varies strongly between individuals. The underlying mechanism of regulation, its genetic control as well as potential clinical implications had not been explored yet. METHODS: Whole blood eQTL data of a Chinese cohort was used to identify SNPs regulating the expression of VSTM1, the gene encoding SIRL-1. The genotype effect was validated by flow cytometry (cell surface expression), correlated with electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) and bisulfite sequencing (C-methylation) and its functional impact studied the inhibition of reactive oxygen species (ROS). RESULTS: We found a significant association of a single CpG-SNP, rs612529T/C, located in the promoter of VSTM1. Through flow cytometry analysis we confirmed that primarily in the monocytes the protein level of SIRL-1 is strongly associated with genotype of this SNP. In monocytes, the T allele of this SNP facilitates binding of the transcription factors YY1 and PU.1, of which the latter has been recently shown to act as docking site for modifiers of DNA methylation. In line with this notion rs612529T associates with a complete demethylation of the VSTM1 promoter correlating with the allele-specific upregulation of SIRL-1 expression. In monocytes, this upregulation strongly impacts the IgA-induced production of ROS by these cells. Through targeted association analysis we found a significant Meta P value of 1.14 × 10-6 for rs612529 for association to atopic dermatitis (AD). CONCLUSION: Low expression of SIRL-1 on monocytes is associated with an increased risk for the manifestation of an inflammatory skin disease. It thus underlines the role of both the cell subset and this inhibitory immune receptor in maintaining immune homeostasis in the skin. Notably, the genetic regulation is achieved by a single CpG-SNP, which controls the overall methylation state of the promoter gene segment.


Subject(s)
DNA Methylation , Dermatitis, Atopic/metabolism , Gene Expression Regulation , Monocytes/metabolism , Polymorphism, Single Nucleotide , Receptors, Immunologic/genetics , Asian People/genetics , Dermatitis, Atopic/genetics , Female , Humans , Male , Promoter Regions, Genetic , Young Adult
13.
Nat Genet ; 49(12): 1758-1766, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29083408

ABSTRACT

We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.


Subject(s)
Exome/genetics , Genetic Association Studies/methods , Genetic Variation , Lipids/blood , Coronary Artery Disease/blood , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease/genetics , Genotype , Humans , Macular Degeneration/blood , Macular Degeneration/genetics , Phenotype , Risk Factors
14.
PLoS One ; 11(2): e0147388, 2016.
Article in English | MEDLINE | ID: mdl-26836265

ABSTRACT

BACKGROUND: Forced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes. METHODS: Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and 5,062 children (ALSPAC). Associations were considered replicated if the replication p-value survived Bonferroni correction (p<0.002; 0.05/25), with a nominal p-value considered as suggestive evidence. For SNPs with evidence of replication, effects on the expression levels of nearby genes in lung tissue were tested in 1,111 lung samples (Lung eQTL consortium), with further functional investigation performed using public epigenomic profiling data (ENCODE). RESULTS: NCOR2-rs12708369 showed strong replication in children (p = 0.0002), with replication unavailable in adults due to low imputation quality. This intronic variant is in a strong transcriptional enhancer element in lung fibroblasts, but its eQTL effects could not be tested due to low imputation quality in the eQTL dataset. SERPINE2-rs6754561 replicated at nominal level in both adults (p = 0.036) and children (p = 0.045), while WNT16-rs2707469 replicated at nominal level only in adults (p = 0.026). The eQTL analyses showed association of WNT16-rs2707469 with expression levels of the nearby gene CPED1. We found no statistically significant eQTL effects for SERPINE2-rs6754561. CONCLUSIONS: We have identified a new gene, NCOR2, in the retinoic acid signalling pathway pointing to a role of vitamin A metabolism in the regulation of FVC. Our findings also support SERPINE2, a COPD gene with weak previous evidence of association with FVC, and suggest WNT16 as a further promising candidate.


Subject(s)
Forced Expiratory Volume/genetics , Genes, Developmental , Genetic Association Studies , Nuclear Receptor Co-Repressor 2/genetics , Adult , Aged , Female , Gene Expression Profiling , Genome-Wide Association Study , Humans , Lung/embryology , Lung/metabolism , Male , Middle Aged , Nuclear Receptor Co-Repressor 2/metabolism , Organogenesis/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Young Adult
15.
Nat Commun ; 6: 8658, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26635082

ABSTRACT

Lung function measures are used in the diagnosis of chronic obstructive pulmonary disease. In 38,199 European ancestry individuals, we studied genome-wide association of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes Project (phase 1)-imputed genotypes and followed up top associations in 54,550 Europeans. We identify 14 novel loci (P<5 × 10(-8)) in or near ENSA, RNU5F-1, KCNS3, AK097794, ASTN2, LHX3, CCDC91, TBX3, TRIP11, RIN3, TEKT5, LTBP4, MN1 and AP1S2, and two novel signals at known loci NPNT and GPR126, providing a basis for new understanding of the genetic determinants of these traits and pulmonary diseases in which they are altered.


Subject(s)
Genome-Wide Association Study , Lung Diseases/genetics , Lung/physiopathology , Adult , Aged , Aged, 80 and over , Female , Forced Expiratory Volume , Humans , Lung Diseases/physiopathology , Male , Middle Aged , Polymorphism, Single Nucleotide , White People/genetics , Young Adult
16.
Nat Genet ; 47(12): 1449-1456, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26482879

ABSTRACT

Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis.


Subject(s)
Dermatitis, Atopic/ethnology , Dermatitis, Atopic/genetics , Ethnicity/genetics , Genetic Loci , Genetic Markers/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Case-Control Studies , Dermatitis, Atopic/pathology , Humans , Immunity, Innate/genetics , Risk Factors , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
17.
Nat Genet ; 46(7): 669-77, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24929828

ABSTRACT

Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.


Subject(s)
Genetic Loci/genetics , Genome, Human , Genome-Wide Association Study , Lung Diseases/genetics , Vital Capacity/genetics , Cohort Studies , Databases, Genetic , Follow-Up Studies , Forced Expiratory Volume , Genetic Predisposition to Disease , Humans , Lung Diseases/pathology , Meta-Analysis as Topic , Polymorphism, Single Nucleotide/genetics , Prognosis , Quantitative Trait Loci/genetics , Respiratory Function Tests , Spirometry
18.
Lancet Diabetes Endocrinol ; 2(9): 719-29, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24974252

ABSTRACT

BACKGROUND: Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. METHODS: In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. FINDINGS: In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (ß per 10% increase, -0·12 mm Hg, 95% CI -0·20 to -0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97-0·99; p=0·0003), but not with decreased diastolic blood pressure (ß per 10% increase, -0·02 mm Hg, -0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of -0·10 mm Hg in systolic blood pressure (-0·21 to -0·0001; p=0·0498) and a change of -0·08 mm Hg in diastolic blood pressure (-0·15 to -0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96-0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of -0·29 mm Hg in diastolic blood pressure (-0·52 to -0·07; p=0·01), a change of -0·37 mm Hg in systolic blood pressure (-0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87-0·97; p=0·002). INTERPRETATION: Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study. FUNDING: British Heart Foundation, UK Medical Research Council, and Academy of Finland.


Subject(s)
Cholestanetriol 26-Monooxygenase/genetics , Hypertension/prevention & control , Oxidoreductases Acting on CH-CH Group Donors/genetics , Polymorphism, Single Nucleotide , Vitamin D Deficiency/prevention & control , Vitamin D/analogs & derivatives , Adult , Body Mass Index , Cytochrome P450 Family 2 , Female , Genetic Predisposition to Disease , Humans , Hypertension/blood , Hypertension/genetics , Male , Mendelian Randomization Analysis , Middle Aged , Phenotype , Randomized Controlled Trials as Topic , Vitamin D/administration & dosage , Vitamin D Deficiency/blood , Vitamin D Deficiency/genetics
19.
J Biotechnol ; 165(3-4): 167-74, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23591594

ABSTRACT

Whole-cell mass spectrometry analysis is a powerful tool to rapidly identify microorganisms. Several studies reported the successful application of this technique to identify a variety of bacterial species with a discriminatory power at the strain level, mainly for bacteria of clinical importance. In this study we used matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) to assess the diversity of wheat-associated bacterial isolates. Wheat plants cultivated in non-sterile vermiculite, under greenhouse conditions were used for bacterial isolation. Total cellular extracts of 138 isolates were analyzed by MALDI-TOF MS and the mass spectra were used to cluster the isolates. Taxonomic identification and phylogenetic reconstruction based on 16S rRNA gene sequences showed the presence of Pseudomonas, Pantoea, Acinetobacter, Enterobacter and Curtobacterium. The 16S rRNA gene sequence analyses were congruent with the clusterization from mass spectra profile. Moreover, MALDI-TOF whole cell mass profiling allowed a finer discrimination of the isolates, suggesting that this technique has the potential of differentiating bacterial isolates at the strain level.


Subject(s)
Bacteria/classification , Plant Roots/microbiology , Single-Cell Analysis/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Triticum/microbiology , Bacteria/genetics , Bacteria/isolation & purification , DNA, Plant/analysis , Genes, Plant/genetics , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics
20.
Nat Genet ; 45(8): 902-906, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23817571

ABSTRACT

Allergen-specific immunoglobulin E (present in allergic sensitization) has a central role in the pathogenesis of allergic disease. We performed the first large-scale genome-wide association study (GWAS) of allergic sensitization in 5,789 affected individuals and 10,056 controls and followed up the top SNP at each of 26 loci in 6,114 affected individuals and 9,920 controls. We increased the number of susceptibility loci with genome-wide significant association with allergic sensitization from three to ten, including SNPs in or near TLR6, C11orf30, STAT6, SLC25A46, HLA-DQB1, IL1RL1, LPP, MYC, IL2 and HLA-B. All the top SNPs were associated with allergic symptoms in an independent study. Risk-associated variants at these ten loci were estimated to account for at least 25% of allergic sensitization and allergic rhinitis. Understanding the molecular mechanisms underlying these associations may provide new insights into the etiology of allergic disease.


Subject(s)
Genetic Loci , Genome-Wide Association Study , Hypersensitivity/genetics , Alleles , Computational Biology , Gene Regulatory Networks , Genomics , Humans , Hypersensitivity/metabolism , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL