Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
EMBO Rep ; 24(8): e56754, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37278352

ABSTRACT

The use of beneficial microbes to mitigate drought stress tolerance of plants is of great potential albeit little understood. We show here that a root endophytic desert bacterium, Pseudomonas argentinensis strain SA190, enhances drought stress tolerance in Arabidopsis. Transcriptome and genetic analysis demonstrate that SA190-induced root morphogenesis and gene expression is mediated via the plant abscisic acid (ABA) pathway. Moreover, we demonstrate that SA190 primes the promoters of target genes in an epigenetic ABA-dependent manner. Application of SA190 priming on crops is demonstrated for alfalfa, showing enhanced performance under drought conditions. In summary, a single beneficial root bacterial strain can help plants to resist drought conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Drought Resistance , Arabidopsis/genetics , Arabidopsis/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plants, Genetically Modified/genetics , Plant Proteins/genetics
2.
BMC Plant Biol ; 24(1): 191, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486134

ABSTRACT

BACKGROUND: Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. RESULTS: The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). CONCLUSIONS: The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).


Subject(s)
Benzopyrans , Hordeum , Soil , Soil/chemistry , Humic Substances/analysis , Fertilizers/analysis , Phosphorus
3.
Microb Pathog ; 189: 106599, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428471

ABSTRACT

We have functionally evaluated a transcription factor CaMYB59 for its role in pepper immune responses to Ralstonia solanacearum attack and high temperature-high humidity (HTHH). Exposure to R. solanacearum inoculation (RSI) and HTHH resulted in up-regulation of this nucleus-localized TF. Function of this TF was confirmed by performing loss of function assay of CaMYB59 by VIGS (virus-induced gene silencing). Plants with silenced CaMYB59 displayed not only compromised pepper immunity against RSI but also impaired tolerance to HTHH along with decreased hypersensitive response (HR). This impairment in defense function was fully linked with low induction of stress-linked genes like CaPO2, CaPR1, CaAcc and thermo-tolerance linked CaHSP24 as well as CaHsfB2a. Conversely, transient overexpression of CaMYB59 enhanced pepper immunity. This reveals that CaMYB59 positively regulated host defense against RSI and HTHH by means of HR like mimic cell death, H2O2 production and up-regulation of defense as well as thermo-tolerance associated genes. These changes in attributes collectively confirm the role of CaMYB59 as a positive regulator of pepper immunity against R. solanacearum. We recommend that such positive regulation of pepper defense is dynamically supported by phyto-hormone signaling and transcriptional web of defense genes. These integrated and interlinked events stabilize plant growth and survival under abiotic and biotic stresses.


Subject(s)
Plant Growth Regulators , Ralstonia solanacearum , Humans , Plant Growth Regulators/genetics , Disease Resistance/genetics , Plant Immunity/genetics , Ralstonia solanacearum/genetics , Hydrogen Peroxide/metabolism , Temperature , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/genetics
4.
Fish Shellfish Immunol ; 148: 109496, 2024 May.
Article in English | MEDLINE | ID: mdl-38461875

ABSTRACT

Using the unique structures found in natural materials to produce new antibacterial drugs is crucial. Actinobacteria is well-known for its ability to produce naturally occurring chemicals with a variety of structural features that can be used as weapons against infectious bacteria. In the present study, the Streptomyces coeruleorubidus metabolites were characterized and their efficacy in suppressing Streptococcus agalactiae growth was carried out both in vitro and in vivo. The metabolites of S. coeruleorubidus were purified and identified as octasiloxane-hexadecamethyl (OHM). In vivo antibacterial activity of OHM revealed an inhibitory minimum concentration value of 0.5 µg/ml against S. agalactiae and induced ultrastructural cell changes revealed by scanning electron microscope. The safe concentration of OHM was determined as 0.8 mg/L for Nile tilapia. Four in vivo treatments were treated with 0 and 0.8 mg/L OHM and with or without challenge by S. agalactiae (1 × 107 CFU/mL) named control, OHM, S. agalactiae, and S. agalactiae + OHM groups. The OHM treatment improved the survival of Nile tilapia by 33.33% than S. agalactiae challenge group. Waterborne OHM treatment significantly mitigated the deleterious effects of S. agalactiae on hematological, hepato-renal functions, stress indicators, and antioxidant balance. OHM significantly alleviated nitric oxide levels, complement 3, IgM, and lysozyme activity, downregulation of liver antioxidant genes expression in S. agalactiae group. Furthermore, the addition of OHM to challenged fish with S. agalactiae-significantly reversed dramatic negative regulation of inflammatory, apoptosis, and immune related gene expression (caspase-3, bax, pcna, tnf-α, ifn-γ, il-8 il-1ß, il-10, tgf-ß, and bcl-2 in the Nile tilapia spleen. Additionally, the damaged hepatic and splenic structure induced by bacterial infection was restored with OHM treatment. Finally, S. coeruleorubidus metabolites (mainly OHM) revealed in vitro and in vivo antibacterial activity and showed alleviated effects on the physiological status of S. agalactiae infected tilapia.


Subject(s)
Cichlids , Fish Diseases , Streptococcal Infections , Streptomyces , Animals , Cytokines/genetics , Streptococcus agalactiae/physiology , Antioxidants , Anti-Bacterial Agents/pharmacology , Oxidative Stress , Gene Expression , Apoptosis
5.
BMC Vet Res ; 20(1): 84, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459543

ABSTRACT

In the present study, Aeromonas hydrophila was isolated from Tilapia zillii and Mugil cephalus samples collected during different seasons from various Suez Canal areas in Egypt. The prevalence of A. hydrophila, virulence genes, and antibiotic resistance profile of the isolates to the commonly used antibiotics in aquaculture were investigated to identify multiple drug resistance (MDR) and extensive drug-resistant (XDR) strains. In addition, a pathogenicity test was conducted using A. hydrophila, which was isolated and selected based on the prevalence of virulence and resistance genes, and morbidity of natural infected fish. The results revealed that A. hydrophila was isolated from 38 of the 120 collected fish samples (31.6%) and confirmed phenotypically and biochemically. Several virulence genes were detected in retrieved A. hydrophila isolates, including aerolysin aerA (57.9%), ser (28.9%), alt (26.3%), ast (13.1%), act (7.9%), hlyA (7.9%), and nuc (18.4%). Detection of antibiotic-resistant genes revealed that all isolates were positive for blapse1 (100%), blaSHV (42.1%), tetA (60.5%), and sul1 (42.1%). 63.1% of recovered isolates were considered MDR, while 28.9% of recovered isolates were considered XDR. Some isolates harbor both virulence and MDR genes; the highest percentage carried 11, followed by isolates harboring 9 virulence and resistance genes. It could be concluded that the high prevalence of A. hydrophila in aquaculture species and their diverse antibiotic resistance and virulence genes suggest the high risk of Aeromonas infection and could have important implications for aquaculture and public health.


Subject(s)
Aeromonas hydrophila , Tilapia , Animals , Aeromonas hydrophila/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Drug Resistance, Multiple
6.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34772809

ABSTRACT

Enterobacter sp. SA187 is a root endophytic bacterium that maintains growth and yield of plants under abiotic stress conditions. In this work, we compared the metabolic wirings of Arabidopsis and SA187 in the free-living and endophytic interaction states. The interaction of SA187 with Arabidopsis induced massive changes in bacterial gene expression for chemotaxis, flagellar biosynthesis, quorum sensing, and biofilm formation. Besides modification of the bacterial carbon and energy metabolism, various nutrient and metabolite transporters and the entire sulfur pathway were up-regulated. Under salt stress, Arabidopsis resembled plants under sulfate starvation but not when colonized by SA187, which reprogramed the sulfur regulon of Arabidopsis. In accordance, salt hypersensitivity of multiple Arabidopsis sulfur metabolism mutants was partially or completely rescued by SA187 as much as by the addition of sulfate, L-cysteine, or L-methionine. Many components of the sulfur metabolism that are localized in the chloroplast were partially rescued by SA187. Finally, salt-induced accumulation of reactive oxygen species as well as the hypersensitivity of LSU mutants were suppressed by SA187. LSUs encode a central regulator linking sulfur metabolism to chloroplast superoxide dismutase activity. The coordinated regulation of the sulfur metabolic pathways in both the beneficial microorganism and the host plant is required for salt stress tolerance in Arabidopsis and might be a common mechanism utilized by different beneficial microbes to mitigate the harmful effects of different abiotic stresses on plants.


Subject(s)
Enterobacter/metabolism , Salt Stress/genetics , Salt Tolerance/genetics , Salt-Tolerant Plants/metabolism , Sulfur/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Enterobacter/genetics , Gene Expression Regulation, Plant/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Salt-Tolerant Plants/genetics , Stress, Physiological/genetics
7.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 252-263, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37773023

ABSTRACT

Xylanase, an exogenous enzyme that plays an essential role in energy metabolism by hydrolysing xylan into xylose, has been shown to positively influence nutrient digestion and utilisation in ruminants. The objective of this study was to evaluate the effects of xylanase supplementation on the back-fat thickness, fatty acid profiles, antioxidant capacity, and differentially expressed genes (DEGs) in the subcutaneous fat of Tibetan sheep. Sixty three-month-old rams with an average weight of 19.35 ± 2.18 kg were randomly assigned to control (no enzyme added, WH group) and xylanase (0.2% of diet on a dry matter basis, WE group) treatments. The experiment was conducted over 97 d, including 7 d of adaption to the diets. The results showed that xylanase supplementation in the diet increased adipocyte volume of subcutaneous fat (p < 0.05), shown by hematoxylin and eosin (H&E) staining. Gas chromatography showed greater concentrations of C14:0 and C16:0 in the subcutaneous fat of controls compared with the enzyme-treated group (p < 0.05), while opposite trend was seen for the absolute contents of C18:1n9t, C20:1, C18:2n6c, C18:3, and C18:3n3 (p < 0.05). Compared with controls, supplementation with xylanase increased the activity of T-AOC significantly (p < 0.05). Transcriptomic analysis showed the presence of 1630 DEGs between the two groups, of which 1023 were up-regulated and 607 were down-regulated, with enrichment in 4833 Gene Ontology terms, and significant enrichment in 31 terms (p < 0.05). The common DEGs were enriched in 295 pathways and significantly enriched in 26 pathways. Additionally, the expression of lipid-related genes, including fatty acid synthase, superoxide dismutase, fatty acid binding protein 5, carnitine palmytoyltransferase 1 A, and peroxisome proliferator-activated receptor A were verified via quantitative reverse-transcription polymerase chain reaction. In conclusion, dietary xylanase supplementation was found to reduce subcutaneous fat deposition in Tibetan sheep, likely through modulating the expression of lipid-related genes.


Subject(s)
Dietary Supplements , Fatty Acids , Animals , Sheep , Male , Dietary Supplements/analysis , Fatty Acids/metabolism , Antioxidants/pharmacology , Triticum/metabolism , Tibet , Animal Feed/analysis , Endo-1,4-beta Xylanases/pharmacology , Digestion , Diet/veterinary , Subcutaneous Fat/metabolism
8.
Fish Physiol Biochem ; 50(3): 955-971, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38300372

ABSTRACT

The effects of long-term dietary supplementation with sandalwood (Santalum album L.) essential oil (SEO) was investigated on hemato-biochemical biomarkers, immune status, antioxidant capacity, and resistance against Staphylococcus aureus in Nile tilapia (Oreochromis niloticus). Five groups (with four replicates) of O. niloticus (12.60 ± 0.20 g) were fed diets supplemented with SEO at doses of 0, 0.5, 1.0, 2.0, and 4.0 mL/kg diet for 60 days. Results indicated a substantial increase in blood protein levels and lower serum cholesterol, cortisol, glucose, urea, creatinine levels and, transaminase activities of fish fed a 2.0-mL SEO/kg diet. Serum lysozyme activity, nitric oxide, complement-3 levels, and phagocytic activity were significantly improved in O. niloticus after 60 days of feeding SEO-supplemented diets. Dietary SEO at level of 2.0-mL SEO/kg diet increased the activities of SOD, CAT, and GPx, and decreased MDA levels in liver homogenate. In addition, dietary 2.0-mL SEO/kg diet significantly upregulated antioxidant genes expression (CAT, SOD, GPx, GST, and GSR) with downregulation of apoptotic genes (HSP70, TLR2, caspase-3, and PCNA) in the liver. Furthermore, SEO-enriched diets significantly down-regulated pro-inflammatory (TNF-α, IL-1ß, and IL-8) and up-regulated anti-inflammatory cytokine genes (TFG-ß and IL-10) in the spleen. Moreover, SEO fortification increased the relative percentage of survival against S. aureus challenge and regulated immune-antioxidant genes in the spleen after the challenge. Overall, the results revealed that long-term using SEO might strengthen the physiological performance, hepatic oxidant/antioxidant balance, innate immune response, and resistance of O. niloticus against bacterial infections.


Subject(s)
Antioxidants , Cichlids , Dietary Supplements , Immunity, Innate , Oils, Volatile , Animals , Cichlids/immunology , Cichlids/genetics , Cichlids/metabolism , Immunity, Innate/drug effects , Antioxidants/metabolism , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Staphylococcus aureus/drug effects , Animal Feed/analysis , Diet/veterinary , Fish Diseases/immunology , Gene Expression Regulation/drug effects , Staphylococcal Infections/veterinary
9.
BMC Plant Biol ; 23(1): 398, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37605164

ABSTRACT

BACKGROUND: Water deficit is one of the most significant abiotic factors affecting rice and agricultural production worldwide. In hybrid rice, cytoplasmic male sterility (CMS) is an important technique for creating high-yielding crop based on heterosis. The phytohormone kinetin (Kin) regulates cell division in plant during the early stages of grain formation, as well as flow assimilation and osmotic regulation under water stress. The present study performed to estimate the effects of irrigation intervals (irrigation each six days (I6), nine days (I9), twelve days (I12) and fifteen days (I15) against continuous flooding (CF, each three days)) and kinetin exogenously application (control, 15 mg L-1 and 30 mg L-1) on hybrid rice (L1, IR69625A; L2, G46A and R, Giza 178 R) seed production. RESULTS: Leaves traits (Chlorophyll content (CHC), relative water content (RWC), stomatal conductance (SC), Leaf temperature (LT) and transpiration rate (TR)), floral traits such as style length (SL) and total stigma length (TSL), in addition to root traits (i.e., root length (RL), root volume (RV), root: shoot ratio (RSR), root thickness (RT), root xylem vessels number (RXVN) and root xylem vessel area (RXVA) were evaluated and a significant enhancement in most traits was observed. Applying 30 mg L-1 kinetin significantly and positively enhanced all growth, floral and roots traits (RV and RXVA recorded the most increased values by 14.8% and 23.9%, respectively) under prolonging irrigation intervals, in comparison to non-treated plants. CONCLUSIONS: Subsequently, spraying kinetin exogenously on foliar could be an alternative method to reduce the harmful influences of water deficiency during seed production in hybrid rice.


Subject(s)
Oryza , Kinetin/pharmacology , Oryza/genetics , Seeds , Plant Leaves , Edible Grain
10.
Molecules ; 28(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37049752

ABSTRACT

Over the past few years, COVID-19 has caused widespread suffering worldwide. There is great research potential in this domain and it is also necessary. The main objective of this study was to identify potential inhibitors against acid sphingomyelinase (ASM) in order to prevent coronavirus infection. Experimental studies revealed that SARS-CoV-2 causes activation of the acid sphingomyelinase/ceramide pathway, which in turn facilitates the viral entry into the cells. The objective was to inhibit acid sphingomyelinase activity in order to prevent the cells from SARS-CoV-2 infection. Previous studies have reported functional inhibitors against ASM (FIASMAs). These inhibitors can be exploited to block the entry of SARS-CoV-2 into the cells. To achieve our objective, a drug library containing 257 functional inhibitors of ASM was constructed. Computational molecular docking was applied to dock the library against the target protein (PDB: 5I81). The potential binding site of the target protein was identified through structural alignment with the known binding pocket of a protein with a similar function. AutoDock Vina was used to carry out the docking steps. The docking results were analyzed and the inhibitors were screened based on their binding affinity scores and ADME properties. Among the 257 functional inhibitors, Dutasteride, Cepharanthine, and Zafirlukast presented the lowest binding affinity scores of -9.7, -9.6, and -9.5 kcal/mol, respectively. Furthermore, computational ADME analysis of these results revealed Cepharanthine and Zafirlukast to have non-toxic properties. To further validate these findings, the top two inhibitors in complex with the target protein were subjected to molecular dynamic simulations at 100 ns. The molecular interactions and stability of these compounds revealed that these inhibitors could be a promising tool for inhibiting SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Molecular Docking Simulation , Drug Repositioning , Sphingomyelin Phosphodiesterase , Protease Inhibitors/chemistry , Molecular Dynamics Simulation , Antiviral Agents/pharmacology
11.
Funct Plant Biol ; 512024 05.
Article in English | MEDLINE | ID: mdl-38723163

ABSTRACT

The investigation into cysteine-rich receptor-like kinases (CRLKs) holds pivotal significance as these conserved, upstream signalling molecules intricately regulate fundamental biological processes such as plant growth, development and stress adaptation. This study undertakes a comprehensive characterisation of CRLKs in Solanum tuberosum (potato), a staple food crop of immense economic importance. Employing comparative genomics and evolutionary analyses, we identified 10 distinct CRLK genes in potato. Further categorisation into three major groups based on sequence similarity was performed. Each CRLK member in potato was systematically named according to its chromosomal position. Multiple sequence alignment and phylogenetic analyses unveiled conserved gene structures and motifs within the same groups. The genomic distribution of CRLKs was observed across Chromosomes 2-5, 8 and 12. Gene duplication analysis highlighted a noteworthy trend, with most gene pairs exhibiting a Ka/Ks ratio greater than one, indicating positive selection of StCRLKs in potato. Salt and drought stresses significantly impacted peroxidase and catalase activities in potato seedlings. The presence of diverse cis -regulatory elements, including hormone-responsive elements, underscored their involvement in myriad biotic and abiotic stress responses. Interestingly, interactions between the phytohormone auxin and CRLK proteins unveiled a potential auxin-mediated regulatory mechanism. A holistic approach combining transcriptomics and quantitative PCR validation identified StCRLK9 as a potential candidate involved in plant response to heat, salt and drought stresses. This study lays a robust foundation for future research on the functional roles of the CRLK gene family in potatoes, offering valuable insights into their diverse regulatory mechanisms and potential applications in stress management.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Protein Kinases , Solanum tuberosum , Stress, Physiological , Hot Temperature , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/enzymology , Stress, Physiological/genetics
12.
Heliyon ; 10(6): e27227, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545154

ABSTRACT

Plants possess various defense mechanisms to cope with genotoxic and environmental challenges, with high temperatures posing a significant threat due to global warming. In this investigation, ten-day-old Trigonella foenum-graecum (fenugreek) seedlings were cultivated in a controlled environment chamber with conditions set at 70-80% relative humidity, a day/night cycle of 25/18 °C, and a photosynthetically active radiation (PAR) of 1000 µmol m-2 s-1. Other groups of seedlings were subjected to temperatures of 30, 35, or 40 °C. Our research aimed to investigate the relationship between temperature intensity, duration, growth responses, physiological and metabolic activities, and the stress alleviation by salicylic acid. The results demonstrated that high temperatures significantly reduced plant growth, membrane stability, while increasing proline and protein content, as well as electrolyte leakage in the leaves. The most pronounced results were observed when exposed to 40 °C for 24 h. Salicylic acid completely mitigated the negative impacts of high-temperature stress when it was applied at 40 °C for 24 h. We utilized two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to examine proteins across three groups: control plants, stressed plants, and plants subjected to salicylic acid treatment. Our results revealed that, among the proteins influenced by high-temperature stress, 12 displayed the most significant differences in regulation. These stress-responsive proteins played roles in signal transduction, stress defense, detoxification, amino acid metabolism, protein metabolism (including translation, processing, and degradation), photosynthesis, carbohydrate metabolism, and energy pathways. These proteins may hold practical implications for diverse biological activities. In conclusion, salicylic acid treatment enhanced thermotolerance in fenugreek plants, although further investigation is required at the genome level to elucidate the mechanism of salicylic acid action under heat stress.

13.
J Econ Entomol ; 117(3): 809-816, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38568949

ABSTRACT

In this study, we investigated the biological aspects and predation efficiency of 3 aphidophagous ladybird beetles, Coccinella novemnotata, Hippodamia variegata, and Coccinella septempunctata, on the cotton aphid, Aphis gossypii, reared on cucumber plants (Cucumis sativus L. cultivar barracuda) under laboratory conditions. The developmental periods of C. novemnotata, H. variegata, and C. septempunctata were observed to be 16.00 ±â€…0.25, 16.00 ±â€…0.25, and 20.58 ±â€…0.40 days, respectively. The larvae of these ladybird beetles consumed an average of 218.93 ±â€…8.86, 254.77 ±â€…8.86, and 537.36 ±â€…10.49 aphids, respectively. Fourth-instar larvae were particularly efficient, consuming 53.68%, 52.68%, and 52.64% of total aphids for C. novemnotata, H. variegata, and C. septempunctata, respectively. Adult emergence rates were promising, with 91.67%, 100.00%, and 92.86%, accompanied by sex ratios of 63.64%, 53.84%, and 61.54%, respectively. Notably, a single female of C. novemnotata, H. variegata, and C. septempunctata consumed an average of 2,215.30, 2,232.00, and 3,364.50 aphids, respectively, over its lifespan. Coccinella septempunctata demonstrated the highest predation efficiency among the 3 species, suggesting its potential for biological control of A. gossypii in both open fields and greenhouses, promoting sustainable agricultural practices.


Subject(s)
Aphids , Coleoptera , Larva , Pest Control, Biological , Predatory Behavior , Animals , Aphids/physiology , Coleoptera/physiology , Larva/growth & development , Larva/physiology , Cucumis sativus , Female , Male , Food Chain , Nymph/growth & development , Nymph/physiology
14.
Funct Plant Biol ; 512024 05.
Article in English | MEDLINE | ID: mdl-38758970

ABSTRACT

Heat stress represents a significant environmental challenge that restricts maize (Zea mays ) growth and yield on a global scale. Within the plant kingdom, the AGC gene family, encoding a group of protein kinases, has emerged as crucial players in various stress responses. Nevertheless, a comprehensive understanding of AGC genes in Z. mays under heat-stress conditions remains elusive. A genome-wide analysis was done using bioinformatics techniques to identify 39 AGC genes in Z. mays , categorising them into three subfamilies based on their conserved domains. We investigated their phylogenetic relationships, gene structures (including intron-exon configurations), and expression patterns. These genes are likely involved in diverse signalling pathways, fulfilling distinct roles when exposed to heat stress conditions. Notably, most ZmAGC1.5, ZmAGC1.9, ZmNDR3, ZmNDR5 and ZmIRE3 exhibited significant changes in expression levels under heat stress, featuring a high G-box ratio. Furthermore, we pinpointed a subset of AGC genes displaying highly coordinated expression, implying their potential involvement in the heat stress response pathway. Our study offers valuable insights into the contribution of AGC genes to Z. mays 's heat stress response, thus facilitating the development of heat-tolerant Z. mays varieties.


Subject(s)
Gene Expression Regulation, Plant , Heat-Shock Response , Plant Proteins , Zea mays , Zea mays/genetics , Zea mays/physiology , Heat-Shock Response/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Genes, Plant , Adaptation, Physiological/genetics
15.
Front Plant Sci ; 15: 1351075, 2024.
Article in English | MEDLINE | ID: mdl-38510445

ABSTRACT

Wheat is an important cereal crop constrained by several biotic and abiotic stresses including drought stress. Understating the effect of drought stress and the genetic basis of stress tolerance is important to develop drought resilient, high-yielding wheat cultivars. In this study, we investigated the effects of drought stress on seedling characteristics in an association panel consisting of 198 germplasm lines. Our findings revealed that drought stress had a detrimental effect on all the seedling characteristics under investigation with a maximum effect on shoot length (50.94% reduction) and the minimum effect on germination percentage (7.9% reduction). To gain a deeper understanding, we conducted a genome-wide association analysis using 12,511 single nucleotide polymorphisms (SNPs), which led to the identification of 39 marker-trait associations (MTAs). Of these 39 MTAs, 13 were particularly noteworthy as they accounted for >10% of the phenotypic variance with a LOD score >5. These high-confidence MTAs were further utilized to extract 216 candidate gene (CGs) models within 1 Mb regions. Gene annotation and functional characterization identified 83 CGs with functional relevance to drought stress. These genes encoded the WD40 repeat domain, Myb/SANT-like domain, WSD1-like domain, BTB/POZ domain, Protein kinase domain, Cytochrome P450, Leucine-rich repeat domain superfamily, BURP domain, Calmodulin-binding protein60, Ubiquitin-like domain, etc. Findings from this study hold significant promise for wheat breeders as they provide direct assistance in selecting lines harboring favorable alleles for improved drought stress tolerance. Additionally, the identified SNPs and CGs will enable marker-assisted selection of potential genomic regions associated with enhanced drought stress tolerance in wheat.

16.
Sci Rep ; 14(1): 2940, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38316807

ABSTRACT

Obesity upsurges the risk of developing cardiovascular disease, primarily heart failure and coronary heart disease. Chia seeds have a high concentration of dietary fiber and increased concentrations of anti-inflammatoryand antioxidant compounds. They are used for weight loss plus enhancing blood glucose and lipid profile. The current perspective was commenced to examine the protective influence of chia seeds ingestion on cardiovascular disease risk factors in high-fat diet-fed rats. Forty male albino rats (with an initial body weight of 180-200 g) were used in this study. Rats were randomly and equally divided into 4 groups: Group I was the control group and group II was a control group with chia seeds supplementation. Group III was a high-fat diet group (HFD) that received HFD for 10 weeks and group IV was fed on HFD plus chia seeds for 10 weeks. In all groups Echocardiographic measurements were performed, initial and final BMI, serum glucose, AC/TC ratio, lipid profile, insulin (with a computed HOMA-IR), creatinine phosphokinase-muscle/brain (CPK-MB), CRP, and cardiac troponin I (cTnI) and MAP were estimated. Whole heart weight (WHW) was calculated, and then WHW/body weight (BW) ratio was estimated. Eventually, a histopathological picture of cardiac tissues was performed to assess the changes in the structure of the heart under Haematoxylin and Eosin and Crossmon's trichrome stain. Ingestion of a high diet for 10 weeks induced a clear elevation in BMI, AC/ TC, insulin resistance, hyperlipidemia, CRP, CPK-MB, and cTnI in all HFD groups. Moreover, there was a significant increase in MAP, left ventricular end diastolic diameter (LVEDD), and left ventricular end systolic diameter (LVESD). Furthermore, histological cardiac examination showed structural alteration of the normal structure of the heart tissue with an increase in collagen deposition. Also, the Bcl-2 expression in the heart muscle was significantly lower, but Bax expression was significantly higher. Chia seeds ingestion combined with HFD noticeably ameliorated the previously-recorded biochemical biomarkers, hemodynamic and echocardiography measures, and histopathological changes. Outcomes of this report reveal that obesity is a hazard factor for cardiovascular disease and chia seeds could be a good candidate for cardiovascular system protection.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Rats , Male , Animals , Diet, High-Fat/adverse effects , Rats, Wistar , Cardiovascular Diseases/complications , Inflammation/complications , Obesity/metabolism , Lipids , Risk Factors , Oxidative Stress , Heart Diseases/complications , Seeds/metabolism
17.
Heliyon ; 10(5): e26077, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434411

ABSTRACT

Water deficit is a critical obstacle that devastatingly impacts rice production, particularly in arid regions under current climatic fluctuations. Accordingly, it is decisive to reinforce the drought tolerance of rice by employing sustainable approaches to enhance global food security. The present study aimed at exploring the effect of exogenous application using different biostimulants on physiological, morphological, and yield attributes of diverse rice genotypes under water deficit and well-watered conditions in 2-year field trial. Three diverse rice genotypes (IRAT-112, Giza-178, and IR-64) were evaluated under well-watered (14400 m3/ha in total for the entire season) and water deficit (9170 m3/ha) conditions and were exogenously sprayed by nano-silicon, potassium sulfate, or proline. The results showed that drought stress substantially decreased all studied photosynthetic pigments, growth traits, and yield attributes compared to well-watered conditions. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased compared with those under well-watered conditions. However, the foliar application of nano-silicon, potassium sulfate, and proline substantially mitigated the deleterious effects of drought stress and markedly enhanced photosynthetic pigments, antioxidant enzyme activities, growth parameters, and yield contributing traits compared to untreated stressed control. Among the assessed treatments, foliar spray with nano-silicon or proline was more effective in promoting drought tolerance. The exogenous application of proline improved chlorophyll a, chlorophyll b, and carotenoids by 21.4, 19.6 and 21.0% followed by nano-silicon treatment, which enhanced chlorophyll a, chlorophyll b, and carotenoids by 21.1, 17.6 and 9.5% compared to untreated control. Besides, the application of proline demonstrated a superior improvement in the content of proline by 52.5% compared with the untreated control. Moreover, nano-silicon exhibited the maximum enhancement of catalase and peroxidase activity compared to the other treatments. The positive impacts of applied exogenously nano-silicon or proline significantly increased panicle length, number of panicles/plant, number of grains/panicle, fertility percentage, 1000-grain weight, panicle weight, and grain yield, compared to untreated plants under water deficit conditions. In addition, the physiological and agronomic performance of evaluated rice genotypes significantly contrasted under drought conditions. The genotype Giza-178 displayed the best performance under water deficit conditions compared with the other genotypes. Consequently, the integration of applied exogenously nano-silicon or proline with tolerant rice genotype as Giza-178 is an efficient approach to ameliorating drought tolerance and achieving agricultural sustainability under water-scarce conditions in arid environments.

18.
Front Microbiol ; 15: 1381302, 2024.
Article in English | MEDLINE | ID: mdl-38832112

ABSTRACT

Biosynthetic metals have attracted global attention because of their safety, affordability, and environmental friendliness. As a consequence, the cell-free filtrate (CFF) of Dill leaf-derived endophytic fungus Aspergillus luchuensis was employed for the extracellularly synthesis silver nanoparticles (AgNPs). A reddish-brown color shift confirmed that AgNPs were successfully produced. The obtained AgNPs were characterized by UV-Vis (ultraviolet-visible spectroscopy), Transmission electron microscopy (TEM), FTIR, EDX, and zeta potential. Results demonstrated the creation of crystalline AgNPs with a spherical shape at 427.81 nm in the UV-Vis spectrum, and size ranged from 16 to 18 nm as observed by TEM. Additionally, the biogenic AgNPs had a promising antibacterial activity versus multidrug-resistant bacteria, notably, S. aureus, E. coli, and S. typhi. The highest growth reduction was recorded in the case of E. coli. Furthermore, the biosynthesized AgNPs demonstrated potent antifungal potential versus a variety of harmful fungi. The maximum growth inhibition was evaluated from A. brasinsilles, followed by C. albicans as compared to cell-free extract and AgNO3. In addition, data revealed that AgNPs possess powerful antioxidant activity, and their ability to scavenge radicals increased from 33.0 to 85.1% with an increment in their concentration from 3.9 to 1,000 µg/mL. Furthermore, data showed that AgNPs displayed high catalytic activity of safranin under light irradiation. The maximum decolorization percentage (100%) was observed after 6 h. Besides, the biosynthesized AgNPs showed high insecticidal potential against 3rd larval instar of Culex pipiens. Taken together, data suggested that endophytic fungus, A. luchuensis, is an attractive candidate as an environmentally sustainable and friendly fungal nanofactory.

19.
PeerJ ; 12: e17588, 2024.
Article in English | MEDLINE | ID: mdl-38948224

ABSTRACT

In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Plant Extracts , Plant Leaves , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Humans , Plant Leaves/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Azadirachta/chemistry , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Green Chemistry Technology/methods , Particle Size , Cell Line, Tumor
20.
Plants (Basel) ; 13(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611480

ABSTRACT

Under salinity conditions, growth and productivity of grain crops decrease, leading to inhibition and limited absorption of water and elements necessary for plant growth, osmotic imbalance, ionic stress, and oxidative stress. Microorganisms in bio-fertilizers have several mechanisms to provide benefits to crop plants and reduce the harmful effect of salinity. They can be effective in dissolving phosphate, fixing nitrogen, promoting plant growth, and can have a combination of all these qualities. During two successful agricultural seasons, two field experiments were conducted to evaluate the effect of bio-fertilizer applications, including phosphate solubilizing bacteria (PSB), nitrogen fixation bacteria and a mix of phosphate-solubilizing bacteria and nitrogen fixation bacteria with three rates, 50, 75 and 100% NPK, of the recommended dose of minimal fertilizer on agronomic traits, yield and nutrient uptake of barley (Hordeum vulgare) under saline condition in Village 13, Farafra Oasis, New Valley Governorate, Egypt. The results showed that the application of Microbein + 75% NPK recorded the highest values of plant height, spike length, number of spikes/m2, grain yield (Mg ha-1), straw yield (Mg ha-1), biological yield (Mg ha-1), protein content %, nitrogen (N), phosphorus (P), potassium (K) uptakes in grain and straw (kg ha-1), available nitrogen (mg/kg soil), available phosphorus (mg/kg soil), total microbial count of soil, antioxidant activity of soil (AOA), dehydrogenase, nitrogen fixers, and PSB counts. The application of bio-fertilizers led to an increase in plant tolerance to salt stress, plant growth, grain yield, and straw yield, in addition to the application of the bio-fertilizers, which resulted in a 25% saving in the cost of mineral fertilizers used in barley production.

SELECTION OF CITATIONS
SEARCH DETAIL