Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cytogenet Genome Res ; 153(2): 66-72, 2017.
Article in English | MEDLINE | ID: mdl-29248929

ABSTRACT

Unbalanced translocations involving X and Y chromosomes are rare and associated with a contiguous gene syndrome. The clinical phenotype is heterogeneous including mainly short stature, chondrodysplasia punctata, ichthyosis, hypogonadism, and intellectual disability. Here, we report 2 brothers with peculiar gestalt, short stature, and hearing loss, who harbor an X/Y translocation. Physical examination, brainstem acoustic potential evaluation, bone age, hormonal assessment, and X-ray investigations were performed. Because of their dysmorphic features, karyotyping, FISH, and aCGH were carried out. The probands had short stature, hypertelorism, midface hypoplasia, sensorineural hearing loss, normal intelligence as well as slight radial and ulnar bowing with brachytelephalangy. R-banding identified a derivative X chromosome with an abnormally expanded short arm. The mother was detected as a carrier of the same aberrant X chromosome. aCGH disclosed a 3.1-Mb distal deletion of chromosome region Xp22.33pter. This interval encompasses several genes, especially the short stature homeobox (SHOX) and arylsulfatase (ARSE) genes. The final karyotype of the probands was: 46,Y,der(X),t(X;Y)(p22;q12).ish der(X)(DXYS129-,DXYS153-)mat.arr[hg19] Xp22.33(61091_2689408)×1mat,Xp22.33(2701273_3258404)×0mat,Yq11.222q12 (21412851_59310245)×2. Herein, we describe a Moroccan family with a maternally inherited X/Y translocation and discuss the genotype-phenotype correlations according to the deleted genes.


Subject(s)
Abnormalities, Multiple/genetics , Arylsulfatases/genetics , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Hearing Loss, Bilateral/genetics , Hearing Loss, Sensorineural/genetics , Translocation, Genetic , Arylsulfatases/deficiency , Chromosomes, Human, X/ultrastructure , Chromosomes, Human, Y/ultrastructure , Consanguinity , Female , Humans , Hypertelorism/genetics , Infant, Newborn , Karyotyping , Male , Middle Aged , Morocco , Pedigree , Phenotype , Radius/abnormalities , Scoliosis/genetics , Siblings , Ulna/abnormalities , Young Adult
2.
J Appl Genet ; 65(2): 303-308, 2024 May.
Article in English | MEDLINE | ID: mdl-37987971

ABSTRACT

Noonan syndrome (NS; OMIM 163950) is an autosomal dominant RASopathy with variable clinical expression and genetic heterogeneity. Clinical manifestations include characteristic facial features, short stature, and cardiac anomalies. Variants in protein-tyrosine phosphatase, non-receptor-type 11 (PTPN11), encoding SHP-2, account for about half of NS patients, SOS1 in approximately 13%, RAF1 in 10%, and RIT1 each in 9%. Other genes have been reported to cause NS in less than 5% of cases including SHOC2, RASA2, LZTR1, SPRED2, SOS2, CBL, KRAS, NRAS, MRAS, PRAS, BRAF, PPP1CB, A2ML1, MAP2K1, and CDC42. Several additional genes associated with a Noonan syndrome-like phenotype have been identified. Clinical presentation and variants in patients with Noonan syndrome are this study's objectives. We performed Sanger sequencing of PTPN11 hotspot (exons 3, 8, and 13). We report molecular analysis of 61 patients with NS phenotype belonging to 58 families. We screened for hotspot variants (exons 3, 8, and 13) in PTPN11 gene by Sanger sequencing. Twenty-seven patients were carrying heterozygous pathogenic variants of PTPN11 gene with a similar frequency (41.4%) compared to the literature. Our findings expand the variant spectrum of Moroccan patients with NS phenotype in whom the analysis of hotspot variants showed a high frequency of exons 3 and 8. This screening test allowed us to establish a molecular diagnosis in almost half of the patients with a good benefit-cost ratio, with appropriate management and genetic counseling.


Subject(s)
Noonan Syndrome , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , alpha-Macroglobulins , Humans , Exons , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Noonan Syndrome/genetics , Noonan Syndrome/diagnosis , Noonan Syndrome/pathology , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , ras GTPase-Activating Proteins/genetics , Repressor Proteins/genetics , Transcription Factors/genetics
3.
Ital J Pediatr ; 47(1): 188, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34530895

ABSTRACT

BACKGROUND: 15q26 deletion is a relatively rare chromosomal disorder, and it is described only in few cases. Patients with this aberration show many signs and symptoms, particularly pre- and postnatal growth restriction, developmental delay, microcephaly, intellectual disability and various congenital malformations. CASE PRESENTATION: We report on a girl, 4 years old, of consanguineous parents, with a 15q26 deletion. Clinical manifestations included failure to thrive, developmental delay, microcephaly, dysmorphic facies with broad forehead, hypertelorism, narrowed eyelid slits and protruding columella. The patient also showed skeletal abnormalities, especially clinodactyly of the 5th finger, varus equine right foot and left club foot. Additionally, she had teething delay and divergent strabismus. Heart ultrasound displayed two atrial septal defects with left-to-right shunt, enlarging the right cavities. Routine cytogenetic analysis revealed a shortened 15q chromosome. Subsequent array analysis disclosed a terminal 9.15 Mb deletion at subband 15q26.1-q26.3. Four candidate genes associated with 15q26 deletion phenotype were within the deleted region, i.e. IGF1R, NR2F2, CHD2 and MEF2A. CONCLUSION: We report on an additional case of 15q26 monosomy, characterized by array-CGH. Molecular cytogenetic analysis allowed us to identify the exact size of the deletion, and four candidate genes for genotype-phenotype correlation. 15q26 monosomy should be considered when growth retardation is associated with hearing anomalies and congenital heart defect, especially atrioventricular septal defects (AVSDs) and/or aortic arch anomaly (AAA).


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 15/genetics , Growth Disorders/genetics , Heart Defects, Congenital/genetics , Intellectual Disability/genetics , Child, Preschool , Consanguinity , Failure to Thrive/genetics , Female , Humans
4.
Pediatr Rheumatol Online J ; 15(1): 72, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28950892

ABSTRACT

BACKGROUND: Scleroderma is a multisystem disease, characterized by fibrosis of skin and internal organs, immune dysregulation, and vasculopathy. The etiology of the disease remains unknown, but it is likely multifactorial. However, the genetic basis for this condition is defined by multiple genes that have only modest effect on disease susceptibility. METHODS: Three Moroccan siblings, born from non-consanguineous Moroccan healthy parents were referred for genetic evaluation of familial scleroderma. Whole Exome Sequencing was performed in the proband and his parents, in addition to Sanger sequencing that was carried out to confirm the results obtained. RESULTS: Mutation analysis showed two compound heterozygous mutations c.196C>T in exon 4 and c.635_636delTT in exon 9 of GNPTG gene. Sanger sequencing confirmed these mutations in the affected patient and demonstrated that their parents are heterozygous carriers. CONCLUSION: Our findings expand the mutation spectrum of the GNPTG gene and extend the knowledge of the phenotype-genotype correlation of Mucolipidosis Type III gamma. This report also highlights the diagnostic utility of Next Generation Sequencing particularly when the clinical presentation did not point to specific genes.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Mucolipidoses/diagnosis , Scleroderma, Systemic/diagnosis , Transferases (Other Substituted Phosphate Groups)/genetics , Adolescent , DNA Mutational Analysis , Diagnosis, Differential , Heterozygote , Humans , Male , Morocco , Mucolipidoses/genetics , Mutation , Pedigree , Siblings , Exome Sequencing
5.
BMC Res Notes ; 9: 5, 2016 Jan 02.
Article in English | MEDLINE | ID: mdl-26724919

ABSTRACT

BACKGROUND: Orofacial cleft (OFC) is one of the most common congenital malformations with a global incidence of approximately 1/700 live births. Clinically, OFCs can be syndromic or non-syndromic. CASE PRESENTATION: A 5 years old boy admitted for genetic evaluation because of psychomotor delay, failure to thrive, dysmorphic features and cleft palate. Conventional cytogenetic showed a notably short p arm of one chromosome 20. FISH analysis identified the derivative chromosome 20 as a de novo 20p12.3 deletion. CONCLUSION: We present in this paper a Moroccan patient with syndromic cleft palate caused by a de novo 20p12.3 deletion, and we highlight the interest of FISH in the diagnosis confirmation of chromosomal rearrangement. In practice, 20p12.3 deletion should be considered as an etiological diagnosis in the case of syndromic cleft palate.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 20/genetics , Cleft Palate/genetics , Child, Preschool , Chromosome Banding , Humans , In Situ Hybridization, Fluorescence , Infant , Infant, Newborn , Karyotyping , Male
6.
J Med Case Rep ; 10(1): 122, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27178284

ABSTRACT

BACKGROUND: 9p duplication is a structural chromosome abnormality, described in more than 150 patients to date. In most cases the duplicated segment was derived from a parent being a reciprocal translocation carrier. However, about 15 cases with de novo 9p duplication have been reported previously. Clinically, this condition is characterized by mental retardation, short stature, developmental delay, facial dysmorphism, hand and toe anomalies, heart defects and/or ocular manifestations. CASE PRESENTATION: We report here the case of a 2-year-old Moroccan girl with a de novo duplication of 9p24 to p12. Clinical manifestations included failure to thrive, psychomotor delay, microcephaly, dysmorphic features, equinus feet, and umbilical hernia. Further clinical investigations showed an insulin-like growth factor type 1 deficiency. Banding cytogenetics identified a derivative chromosome 9, with an abnormally elongated short arm. Molecular cytogenetics based on multicolor banding probes characterized an inverted duplication 9p24 to p12 involving several genes especially an insulin-like growth factor binding protein named insulin-like growth factor binding protein-like 1, which seemed to be overexpressed, leading to the insulin-like growth factor deficiency in our patient. CONCLUSIONS: This study showed that insulin-like growth factor type 1 deficiency can be another feature of 9p duplication, suggesting a likely involvement of insulin-like growth factor binding protein-like 1 overexpression in growth delay. However, further studies of the gene expressions are needed to better understand the phenotype-karyotype correlations.


Subject(s)
Developmental Disabilities/genetics , Insulin-Like Growth Factor I/deficiency , Trisomy/genetics , Child, Preschool , Chromosome Duplication/genetics , Chromosome Inversion/genetics , Chromosomes, Human, Pair 9/genetics , Female , Humans , Karyotyping , Morocco
SELECTION OF CITATIONS
SEARCH DETAIL