Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 53(4): 793-804.e9, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32910906

ABSTRACT

Allergies are considered to represent mal-directed type 2 immune responses against mostly innocuous exogenous compounds. Immunoglobulin E (IgE) antibodies are a characteristic feature of allergies and mediate hypersensitivity against allergens through activation of effector cells, particularly mast cells (MCs). Although the physiological functions of this dangerous branch of immunity have remained enigmatic, recent evidence shows that allergic immune reactions can help to protect against the toxicity of venoms. Because bacteria are a potent alternative source of toxins, we assessed the possible role of allergy-like type 2 immunity in antibacterial host defense. We discovered that the adaptive immune response against Staphylococcus aureus (SA) skin infection substantially improved systemic host defense against secondary SA infections in mice. Moreover, this acquired protection depended on IgE effector mechanisms and MCs. Importantly, our results reveal a previously unknown physiological function of allergic immune responses, IgE antibodies, and MCs in host defense against a pathogenic bacterium.


Subject(s)
Adaptive Immunity/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Staphylococcal Infections/immunology , Staphylococcal Skin Infections/immunology , Staphylococcus aureus/immunology , Allergens/immunology , Animals , Female , Hypersensitivity/immunology , Hypersensitivity/microbiology , Mast Cells/microbiology , Mice , Mice, Inbred C57BL , Skin/immunology , Skin/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Skin Infections/microbiology
2.
Nature ; 588(7839): 670-675, 2020 12.
Article in English | MEDLINE | ID: mdl-33238290

ABSTRACT

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.


Subject(s)
COVID-19/virology , Lung/cytology , Models, Biological , Organoids/cytology , Organoids/virology , SARS-CoV-2/physiology , Tissue Culture Techniques , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , COVID-19/metabolism , COVID-19/pathology , Cell Differentiation , Cell Division , Clone Cells/cytology , Clone Cells/metabolism , Clone Cells/virology , Humans , In Vitro Techniques , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/physiology , Integrin alpha6/analysis , Integrin beta4/analysis , Keratin-5/analysis , Organoids/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2/growth & development , Single-Cell Analysis , TWEAK Receptor/analysis
3.
Nat Chem Biol ; 18(7): 698-705, 2022 07.
Article in English | MEDLINE | ID: mdl-35332331

ABSTRACT

Oxidative stress is a defining feature of most cancers, including those that stem from carcinogenic infections. Reactive oxygen species can drive tumor formation, yet the molecular oxidation events that contribute to tumorigenesis are largely unknown. Here we show that inactivation of a single, redox-sensitive cysteine in the host protease legumain, which is oxidized during infection with the gastric cancer-causing bacterium Helicobacter pylori, accelerates tumor growth. By using chemical proteomics to map cysteine reactivity in human gastric cells, we determined that H. pylori infection induces oxidation of legumain at Cys219. Legumain oxidation dysregulates intracellular legumain processing and decreases the activity of the enzyme in H. pylori-infected cells. We further show that the site-specific loss of Cys219 reactivity increases tumor growth and mortality in a xenograft model. Our findings establish a link between an infection-induced oxidation site and tumorigenesis while underscoring the importance of cysteine reactivity in tumor growth.


Subject(s)
Cysteine Endopeptidases , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Cell Transformation, Neoplastic/metabolism , Cysteine/metabolism , Cysteine Endopeptidases/metabolism , Humans , Oxidation-Reduction , Stomach Neoplasms/metabolism , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology
5.
Nature ; 548(7668): 451-455, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28813421

ABSTRACT

The constant regeneration of stomach epithelium is driven by long-lived stem cells, but the mechanism that regulates their turnover is not well understood. We have recently found that the gastric pathogen Helicobacter pylori can activate gastric stem cells and increase epithelial turnover, while Wnt signalling is known to be important for stem cell identity and epithelial regeneration in several tissues. Here we find that antral Wnt signalling, marked by the classic Wnt target gene Axin2, is limited to the base and lower isthmus of gastric glands, where the stem cells reside. Axin2 is expressed by Lgr5+ cells, as well as adjacent, highly proliferative Lgr5- cells that are able to repopulate entire glands, including the base, upon depletion of the Lgr5+ population. Expression of both Axin2 and Lgr5 requires stroma-derived R-spondin 3 produced by gastric myofibroblasts proximal to the stem cell compartment. Exogenous R-spondin administration expands and accelerates proliferation of Axin2+/Lgr5- but not Lgr5+ cells. Consistent with these observations, H. pylori infection increases stromal R-spondin 3 expression and expands the Axin2+ cell pool to cause hyperproliferation and gland hyperplasia. The ability of stromal niche cells to control and adapt epithelial stem cell dynamics constitutes a sophisticated mechanism that orchestrates epithelial regeneration and maintenance of tissue integrity.


Subject(s)
Helicobacter Infections/metabolism , Homeostasis , Stem Cells/cytology , Stem Cells/metabolism , Stomach/cytology , Stromal Cells/metabolism , Thrombospondins/metabolism , Animals , Axin Protein/metabolism , Cell Proliferation , Epithelial Cells/cytology , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori/pathogenicity , Male , Mice , Mice, Inbred C57BL , Myofibroblasts/cytology , Myofibroblasts/metabolism , Pyloric Antrum/metabolism , Receptors, G-Protein-Coupled/metabolism , Stem Cell Niche , Stromal Cells/cytology , Wnt Signaling Pathway
6.
PLoS Pathog ; 16(9): e1008851, 2020 09.
Article in English | MEDLINE | ID: mdl-32986782

ABSTRACT

Enteroaggregative Escherichia coli (EAEC) is a significant cause of acute and chronic diarrhea, foodborne outbreaks, infections of the immunocompromised, and growth stunting in children in developing nations. There is no vaccine and resistance to antibiotics is rising. Unlike related E. coli pathotypes that are often associated with acute bouts of infection, EAEC is associated with persistent diarrhea and subclinical long-term colonization. Several secreted virulence factors have been associated with EAEC pathogenesis and linked to disease in humans, less certain are the molecular drivers of adherence to the intestinal mucosa. We previously established human intestinal enteroids (HIEs) as a model system to study host-EAEC interactions and aggregative adherence fimbriae A (AafA) as a major driver of EAEC adherence to HIEs. Here, we report a large-scale assessment of the host response to EAEC adherence from all four segments of the intestine across at least three donor lines for five E. coli pathotypes. The data demonstrate that the host response in the duodenum is driven largely by the infecting pathotype, whereas the response in the colon diverges in a patient-specific manner. Major pathways altered in gene expression in each of the four enteroid segments differed dramatically, with responses observed for inflammation, apoptosis and an overwhelming response to different mucin genes. In particular, EAEC both associated with large mucus droplets and specific mucins at the epithelial surface, binding that was ameliorated when mucins were removed, a process dependent on AafA. Pan-screening for glycans for binding to purified AafA identified the human ligand as heparan sulfate proteoglycans (HSPGs). Removal of HSPG abrogated EAEC association with HIEs. These results may mean that the human intestine responds remarkably different to distinct pathobionts that is dependent on the both the individual and intestinal segment in question, and uncover a major role for surface heparan sulfate proteoglycans as tropism-driving factor in adherence and/or colonization.


Subject(s)
Bacterial Adhesion/physiology , Escherichia coli Infections/metabolism , Escherichia coli Proteins/metabolism , Heparan Sulfate Proteoglycans/metabolism , Adhesins, Escherichia coli/genetics , Escherichia coli/metabolism , Fimbriae, Bacterial/metabolism , Humans , Intestinal Mucosa/metabolism , Virulence Factors/metabolism
7.
PLoS Biol ; 17(8): e3000395, 2019 08.
Article in English | MEDLINE | ID: mdl-31465435

ABSTRACT

The gastric pathogen Helicobacter pylori requires a noncanonical cytosolic chemoreceptor transducer-like protein D (TlpD) for efficient colonization of the mammalian stomach. Here, we reconstituted a complete chemotransduction signaling complex in vitro with TlpD and the chemotaxis (Che) proteins CheW and CheA, enabling quantitative assays for potential chemotaxis ligands. We found that TlpD is selectively sensitive at micromolar concentrations to bleach (hypochlorous acid, HOCl), a potent antimicrobial produced by neutrophil myeloperoxidase during inflammation. HOCl acts as a chemoattractant by reversibly oxidizing a conserved cysteine within a 3His/1Cys Zn-binding motif in TlpD that inactivates the chemotransduction signaling complex. We found that H. pylori is resistant to killing by millimolar concentrations of HOCl and responds to HOCl in the micromolar range by increasing its smooth-swimming behavior, leading to chemoattraction to HOCl sources. We show related protein domains from Salmonella enterica and Escherichia coli possess similar reactivity toward HOCl. We propose that this family of proteins enables host-associated bacteria to sense sites of tissue inflammation, a strategy that H. pylori uses to aid in colonizing and persisting in inflamed gastric tissue.


Subject(s)
Chemotaxis/physiology , Helicobacter pylori/metabolism , Receptors, Formyl Peptide/metabolism , Bacterial Proteins/metabolism , Bleaching Agents , Chemoreceptor Cells/metabolism , Chemotactic Factors/metabolism , Cytosol/metabolism , Cytosol/physiology , Helicobacter pylori/physiology , Hypochlorous Acid , Oxidation-Reduction , Receptors, Formyl Peptide/physiology , Signal Transduction
8.
PLoS Biol ; 17(5): e3000231, 2019 05.
Article in English | MEDLINE | ID: mdl-31048876

ABSTRACT

Lifelong infection of the gastric mucosa by Helicobacter pylori can lead to peptic ulcers and gastric cancer. However, how the bacteria maintain chronic colonization in the face of constant mucus and epithelial cell turnover in the stomach is unclear. Here, we present a new model of how H. pylori establish and persist in stomach, which involves the colonization of a specialized microenvironment, or microniche, deep in the gastric glands. Using quantitative three-dimensional (3D) confocal microscopy and passive CLARITY technique (PACT), which renders tissues optically transparent, we analyzed intact stomachs from mice infected with a mixture of isogenic, fluorescent H. pylori strains with unprecedented spatial resolution. We discovered that a small number of bacterial founders initially establish colonies deep in the gastric glands and then expand to colonize adjacent glands, forming clonal population islands that persist over time. Gland-associated populations do not intermix with free-swimming bacteria in the surface mucus, and they compete for space and prevent newcomers from establishing in the stomach. Furthermore, bacterial mutants deficient in gland colonization are outcompeted by wild-type (WT) bacteria. Finally, we found that host factors such as the age at infection and T-cell responses control bacterial density within the glands. Collectively, our results demonstrate that microniches in the gastric glands house a persistent H. pylori reservoir, which we propose replenishes the more transient bacterial populations in the superficial mucosa.


Subject(s)
Gastric Mucosa/microbiology , Helicobacter pylori/growth & development , Microscopy, Confocal/methods , Animals , Anti-Bacterial Agents/pharmacology , Cell Line, Tumor , Colony Count, Microbial , Female , Gastric Mucosa/drug effects , Helicobacter Infections/microbiology , Helicobacter pylori/drug effects , Helicobacter pylori/genetics , Host-Pathogen Interactions/drug effects , Humans , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Species Specificity , T-Lymphocytes/drug effects
9.
Gastroenterology ; 159(1): 214-226.e1, 2020 07.
Article in English | MEDLINE | ID: mdl-32247021

ABSTRACT

BACKGROUND & AIMS: Intestinal microfold (M) cells are a unique subset of intestinal epithelial cells in the Peyer's patches that regulate mucosal immunity, serving as portals for sampling and uptake of luminal antigens. The inability to efficiently develop human M cells in cell culture has impeded studies of the intestinal immune system. We aimed to identify signaling pathways required for differentiation of human M cells and establish a robust culture system using human ileum enteroids. METHODS: We analyzed transcriptome data from mouse Peyer's patches to identify cell populations in close proximity to M cells. We used the human enteroid system to determine which cytokines were required to induce M-cell differentiation. We performed transcriptome, immunofluorescence, scanning electron microscope, and transcytosis experiments to validate the development of phenotypic and functional human M cells. RESULTS: A combination of retinoic acid and lymphotoxin induced differentiation of glycoprotein 2-positive human M cells, which lack apical microvilli structure. Upregulated expression of innate immune-related genes within M cells correlated with a lack of viral antigens after rotavirus infection. Human M cells, developed in the enteroid system, internalized and transported enteric viruses, such as rotavirus and reovirus, across the intestinal epithelium barrier in the enteroids. CONCLUSIONS: We identified signaling pathways required for differentiation of intestinal M cells, and used this information to create a robust culture method to develop human M cells with capacity for internalization and transport of viruses. Studies of this model might increase our understanding of antigen presentation and the systemic entry of enteric pathogens in the human intestine.


Subject(s)
Cell Differentiation/immunology , Lymphotoxin-alpha/metabolism , Peyer's Patches/immunology , Signal Transduction/immunology , Tretinoin/metabolism , Animals , Antigen Presentation/immunology , Cell Culture Techniques/methods , Epithelial Cells/immunology , Epithelial Cells/metabolism , Humans , Ileum/cytology , Ileum/immunology , Immunity, Mucosal , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Mice , NF-kappa B/metabolism , Organoids , Peyer's Patches/cytology , Peyer's Patches/metabolism , Primary Cell Culture , Recombinant Proteins/metabolism
10.
J Biol Chem ; 294(15): 5993-6006, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30770472

ABSTRACT

Genome replication and virion assembly of segmented RNA viruses are highly coordinated events, tightly regulated by sequence and structural elements in the UTRs of viral RNA. This process is poorly defined and likely requires the participation of host proteins in concert with viral proteins. In this study, we employed a proteomics-based approach, named RNA-protein interaction detection (RaPID), to comprehensively screen for host proteins that bind to a conserved motif within the rotavirus (RV) 3' terminus. Using this assay, we identified ATP5B, a core subunit of the mitochondrial ATP synthase, as having high affinity to the RV 3'UTR consensus sequences. During RV infection, ATP5B bound to the RV 3'UTR and co-localized with viral RNA and viroplasm. Functionally, siRNA-mediated genetic depletion of ATP5B or other ATP synthase subunits such as ATP5A1 and ATP5O reduced the production of infectious viral progeny without significant alteration of intracellular viral RNA levels or RNA translation. Chemical inhibition of ATP synthase diminished RV yield in both conventional cell culture and in human intestinal enteroids, indicating that ATP5B positively regulates late-stage RV maturation in primary intestinal epithelial cells. Collectively, our results shed light on the role of host proteins in RV genome assembly and particle formation and identify ATP5B as a novel pro-RV RNA-binding protein, contributing to our understanding of how host ATP synthases may galvanize virus growth and pathogenesis.


Subject(s)
3' Untranslated Regions , Mitochondrial Proton-Translocating ATPases/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Rotavirus/physiology , Viral Proteins/metabolism , Virus Assembly/physiology , Genome, Viral , HEK293 Cells , Humans , Mitochondrial Proton-Translocating ATPases/genetics , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Viral Proteins/genetics
11.
Nat Chem Biol ; 14(6): 609-617, 2018 06.
Article in English | MEDLINE | ID: mdl-29769740

ABSTRACT

Serine hydrolases play diverse roles in regulating host-pathogen interactions in a number of organisms, yet few have been characterized in the human pathogen Staphylococcus aureus. Here we describe a chemical proteomic screen that identified ten previously uncharacterized S. aureus serine hydrolases that mostly lack human homologs. We termed these enzymes fluorophosphonate-binding hydrolases (FphA-J). One hydrolase, FphB, can process short fatty acid esters, exhibits increased activity in response to host cell factors, is located predominantly on the bacterial cell surface in a subset of cells, and is concentrated in the division septum. Genetic disruption of fphB confirmed that the enzyme is dispensable for bacterial growth in culture but crucial for establishing infection in distinct sites in vivo. A selective small molecule inhibitor of FphB effectively reduced infectivity in vivo, suggesting that it may be a viable therapeutic target for the treatment or management of Staphylococcus infections.


Subject(s)
Bacterial Proteins/metabolism , Hydrolases/metabolism , Staphylococcus aureus/metabolism , Virulence Factors/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Binding Sites , Cloning, Molecular , Fatty Acids/chemistry , Genetic Techniques , HEK293 Cells , Host-Pathogen Interactions , Humans , Hydrolysis , Kinetics , Mice , Microbial Sensitivity Tests , Organophosphonates/chemistry , Phylogeny , Proteomics/methods , Serine/chemistry , Staphylococcal Infections , Virulence , Virulence Factors/genetics
12.
PLoS Pathog ; 13(1): e1006118, 2017 01.
Article in English | MEDLINE | ID: mdl-28103315

ABSTRACT

Helicobacter pylori's ability to respond to environmental cues in the stomach is integral to its survival. By directly visualizing H. pylori swimming behavior when encountering a microscopic gradient consisting of the repellent acid and attractant urea, we found that H. pylori is able to simultaneously detect both signals, and its response depends on the magnitudes of the individual signals. By testing for the bacteria's response to a pure acid gradient, we discovered that the chemoreceptors TlpA and TlpD are each independent acid sensors. They enable H. pylori to respond to and escape from increases in hydrogen ion concentration near 100 nanomolar. TlpD also mediates attraction to basic pH, a response dampened by another chemoreceptor TlpB. H. pylori mutants lacking both TlpA and TlpD (ΔtlpAD) are unable to sense acid and are defective in establishing colonization in the murine stomach. However, blocking acid production in the stomach with omeprazole rescues ΔtlpAD's colonization defect. We used 3D confocal microscopy to determine how acid blockade affects the distribution of H. pylori in the stomach. We found that stomach acid controls not only the overall bacterial density, but also the microscopic distribution of bacteria that colonize the epithelium deep in the gastric glands. In omeprazole treated animals, bacterial abundance is increased in the antral glands, and gland colonization range is extended to the corpus. Our findings indicate that H. pylori has evolved at least two independent receptors capable of detecting acid gradients, allowing not only survival in the stomach, but also controlling the interaction of the bacteria with the epithelium.


Subject(s)
Bacterial Proteins/metabolism , Helicobacter Infections/metabolism , Helicobacter pylori/pathogenicity , Host-Pathogen Interactions/physiology , Stomach/virology , Animals , Disease Models, Animal , Female , Fluorescent Antibody Technique , Hydrogen-Ion Concentration , Immunoblotting , Mice , Mice, Inbred C57BL , Microscopy, Confocal
13.
FASEB J ; : fj201800651, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29920220

ABSTRACT

Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

14.
J Am Chem Soc ; 140(47): 16140-16151, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30388366

ABSTRACT

New strategies are urgently needed to target MRSA, a major global health problem and the leading cause of mortality from antibiotic-resistant infections in many countries. Here, we report a general approach to this problem exemplified by the design and synthesis of a vancomycin-d-octaarginine conjugate (V-r8) and investigation of its efficacy in addressing antibiotic-insensitive bacterial populations. V-r8 eradicated MRSA biofilm and persister cells in vitro, outperforming vancomycin by orders of magnitude. It also eliminated 97% of biofilm-associated MRSA in a murine wound infection model and displayed no acute dermal toxicity. This new dual-function conjugate displays enhanced cellular accumulation and membrane perturbation as compared to vancomycin. Based on its rapid and potent activity against biofilm and persister cells, V-r8 is a promising agent against clinical MRSA infections.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Biofilms/drug effects , Cell-Penetrating Peptides/therapeutic use , Methicillin-Resistant Staphylococcus aureus/physiology , Vancomycin/analogs & derivatives , Vancomycin/therapeutic use , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Cell Line , Cell-Penetrating Peptides/chemical synthesis , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/toxicity , Drug Design , Humans , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice, Inbred C57BL , Microbial Sensitivity Tests , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Oligopeptides/toxicity , Vancomycin/pharmacology , Vancomycin/toxicity , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/physiology
15.
Proc Natl Acad Sci U S A ; 112(46): 14337-42, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26489655

ABSTRACT

Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7(-/-) mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections.


Subject(s)
Adherens Junctions/metabolism , Bacterial Toxins/metabolism , Hemolysin Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Staphylococcal Infections/metabolism , Vasculitis/metabolism , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM10 Protein , Adherens Junctions/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Bacterial Toxins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Hemolysin Proteins/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Mice, Knockout , Staphylococcal Infections/genetics , Staphylococcal Infections/pathology , Vasculitis/genetics , Vasculitis/microbiology , Vasculitis/pathology
16.
Mol Microbiol ; 97(6): 1063-78, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26061894

ABSTRACT

Chemotaxis is important for Helicobacter pylori to colonize the stomach. Like other bacteria, H. pylori uses chemoreceptors and conserved chemotaxis proteins to phosphorylate the flagellar rotational response regulator, CheY, and modulate the flagellar rotational direction. Phosphorylated CheY is returned to its non-phosphorylated state by phosphatases such as CheZ. In previously studied cases, chemotaxis phosphatases localize to the cellular poles by interactions with either the CheA chemotaxis kinase or flagellar motor proteins. We report here that the H. pylori CheZ, CheZ(HP), localizes to the poles independently of the flagellar motor, CheA, and all typical chemotaxis proteins. Instead, CheZ(HP) localization depends on the chemotaxis regulatory protein ChePep, and reciprocally, ChePep requires CheZ(HP) for its polar localization. We furthermore show that these proteins interact directly. Functional domain mapping of CheZ(HP) determined the polar localization motif lies within the central domain of the protein and that the protein has regions outside of the active site that participate in chemotaxis. Our results suggest that CheZ(HP) and ChePep form a distinct complex. These results therefore suggest the intriguing idea that some phosphatases localize independently of the other chemotaxis and motility proteins, possibly to confer unique regulation on these proteins' activities.


Subject(s)
Bacterial Proteins/metabolism , Chemotaxis , Helicobacter pylori/metabolism , Signal Transduction , Bacterial Proteins/chemistry , Flagella/metabolism , Helicobacter pylori/chemistry , Helicobacter pylori/cytology , Phosphoric Monoester Hydrolases/metabolism , Protein Multimerization
17.
Gastroenterology ; 148(7): 1392-404.e21, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25725293

ABSTRACT

BACKGROUND & AIMS: Helicobacter pylori infection is the main risk factor for gastric cancer. We characterized the interactions of H pylori with gastric epithelial progenitor and stem cells in humans and mice and investigated how these interactions contribute to H pylori-induced pathology. METHODS: We used quantitative confocal microscopy and 3-dimensional reconstruction of entire gastric glands to determine the localizations of H pylori in stomach tissues from humans and infected mice. Using lineage tracing to mark cells derived from leucine-rich repeat-containing G-protein coupled receptor 5-positive (Lgr5(+)) stem cells (Lgr5-eGFP-IRES-CreERT2/Rosa26-TdTomato mice) and in situ hybridization, we analyzed gastric stem cell responses to infection. Isogenic H pylori mutants were used to determine the role of specific virulence factors in stem cell activation and pathology. RESULTS: H pylori grow as distinct bacterial microcolonies deep in the stomach glands and interact directly with gastric progenitor and stem cells in tissues from mice and humans. These gland-associated bacteria activate stem cells, increasing the number of stem cells, accelerating Lgr5(+) stem cell proliferation, and up-regulating expression of stem cell-related genes. Mutant bacteria with defects in chemotaxis that are able to colonize the stomach surface but not the antral glands in mice do not activate stem cells. In addition, bacteria that are unable to inject the contact-dependent virulence factor CagA into the epithelium colonized stomach glands in mice, but did not activate stem cells or produce hyperplasia to the same extent as wild-type H pylori. CONCLUSIONS: H pylori colonize and manipulate the progenitor and stem cell compartments, which alters turnover kinetics and glandular hyperplasia. Bacterial ability to alter the stem cells has important implications for gastrointestinal stem cell biology and H pylori-induced gastric pathology.


Subject(s)
Gastric Mucosa/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori/growth & development , Receptors, G-Protein-Coupled/metabolism , Stem Cells/microbiology , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biomarkers/metabolism , Cell Proliferation , Disease Models, Animal , Gastric Mucosa/metabolism , Genotype , Helicobacter Infections/immunology , Helicobacter Infections/pathology , Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , Host-Pathogen Interactions , Humans , Hyperplasia , Kinetics , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Organoids , Phenotype , Receptors, G-Protein-Coupled/genetics , Stem Cells/metabolism , Stem Cells/pathology , Tissue Culture Techniques , Virulence
18.
J Infect Dis ; 211(11): 1790-4, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25505301

ABSTRACT

Helicobacter pylori strains that harbor the oncoprotein CagA increase gastric cancer risk, and this risk is augmented under iron-deficient conditions. We demonstrate here that iron depletion induces coccoid morphology in strains lacking cagA. To evaluate the stability of augmented H. pylori virulence phenotypes stimulated by low-iron conditions, H. pylori isolated from iron-depleted conditions in vivo were serially passaged in vitro. Long-term passage decreased the ability of hypervirulent strains to translocate CagA or induce interleukin 8, indicating that hypervirulent phenotypes stimulated by low-level iron conditions are reversible. Therefore, rectifying iron deficiency may attenuate disease among H. pylori-infected persons with no response to antibiotics.


Subject(s)
Helicobacter Infections , Helicobacter pylori/pathogenicity , Iron Deficiencies , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Knockout Techniques , Gerbillinae , Helicobacter Infections/microbiology , Helicobacter Infections/physiopathology , Helicobacter pylori/cytology , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Stomach/microbiology , Virulence/genetics
19.
Proc Natl Acad Sci U S A ; 109(2): 466-71, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22190486

ABSTRACT

The small intestine epithelium undergoes rapid and continuous regeneration supported by crypt intestinal stem cells (ISCs). Bmi1 and Lgr5 have been independently identified to mark long-lived multipotent ISCs by lineage tracing in mice; however, the functional distinctions between these two populations remain undefined. Here, we demonstrate that Bmi1 and Lgr5 mark two functionally distinct ISCs in vivo. Lgr5 marks mitotically active ISCs that exhibit exquisite sensitivity to canonical Wnt modulation, contribute robustly to homeostatic regeneration, and are quantitatively ablated by irradiation. In contrast, Bmi1 marks quiescent ISCs that are insensitive to Wnt perturbations, contribute weakly to homeostatic regeneration, and are resistant to high-dose radiation injury. After irradiation, however, the normally quiescent Bmi1(+) ISCs dramatically proliferate to clonally repopulate multiple contiguous crypts and villi. Clonogenic culture of isolated single Bmi1(+) ISCs yields long-lived self-renewing spheroids of intestinal epithelium that produce Lgr5-expressing cells, thereby establishing a lineage relationship between these two populations in vitro. Taken together, these data provide direct evidence that Bmi1 marks quiescent, injury-inducible reserve ISCs that exhibit striking functional distinctions from Lgr5(+) ISCs and support a model whereby distinct ISC populations facilitate homeostatic vs. injury-induced regeneration.


Subject(s)
Biomarkers/metabolism , Intestinal Mucosa/physiology , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Regeneration/physiology , Repressor Proteins/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Animals , Bacterial Proteins , Flow Cytometry , Intestinal Mucosa/cytology , Luminescent Proteins , Mice , Mice, Mutant Strains , Polycomb Repressive Complex 1 , Tamoxifen , Whole-Body Irradiation
20.
PLoS Pathog ; 7(5): e1002050, 2011 May.
Article in English | MEDLINE | ID: mdl-21589900

ABSTRACT

Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Gastric Mucosa/microbiology , Helicobacter pylori/physiology , Iron/metabolism , Transcytosis/physiology , Adaptation, Physiological , Animals , Antigens, Bacterial/genetics , Bacterial Adhesion/physiology , Bacterial Proteins/genetics , Caco-2 Cells , Cell Line , Cell Membrane/metabolism , Cell Membrane/microbiology , Cell Polarity/physiology , Dogs , Down-Regulation , Epithelium/metabolism , Epithelium/microbiology , Gastric Mucosa/metabolism , Gerbillinae/metabolism , Helicobacter Infections/microbiology , Helicobacter pylori/growth & development , Helicobacter pylori/metabolism , Helicobacter pylori/pathogenicity , Humans , Intercellular Junctions/metabolism , Intercellular Junctions/microbiology , Iron/pharmacology , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Sequence Deletion , Signal Transduction , Transferrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL