Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Mol Pharm ; 20(8): 4236-4255, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37455392

ABSTRACT

A surgically implantable device is an inevitable treatment option for millions of people worldwide suffering from diseases arising from orthopedic injuries. A global paradigm shift is currently underway to tailor and personalize replacement or reconstructive joints. Additive manufacturing (AM) has provided dynamic outflow to the customized fabrication of orthopedic implants by enabling need-based design and surface modification possibilities. Surgical grade 316L Stainless Steel (316L SS) is promising with its cost, strength, composition, and corrosion resistance to fabricate 3D implants. This work investigates the possibilities of application of the laser powder bed fusion (L-PBF) technique to fabricate 3D-printed (3DP) implants, which are functionalized with a multilayered antimicrobial coating to treat potential complications arising due to postsurgical infections (PSIs). Postsurgical implant-associated infection is a primary reason for implantation failure and is complicated mainly by bacterial colonization and biofilm formation at the installation site. PLGA (poly-d,l-lactide-co-glycolide), a biodegradable polymer, was utilized to impart multiple layers of coating using the airbrush spray technique on 3DP implant surfaces loaded with gentamicin (GEN). Various PLGA-based polymers were tested to optimize the ideal lactic acid: glycolic acid ratio and molecular weight suited for our investigation. 3D-Printed PLGA-GEN substrates sustained the release of gentamicin from the surface for approximately 6 weeks. The 3DP surface modification with PLGA-GEN facilitated cell adhesion and proliferation compared to control surfaces. The cell viability studies showed that the implants were safe for application. The 3DP PLGA-GEN substrates showed good concentration-dependent antibacterial efficacy against the common PSI pathogen Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). The GEN-loaded substrates demonstrated antimicrobial longevity and showed significant biofilm growth inhibition compared to control. The substrates offered great versatility regarding the in vitro release rates, antimicrobial properties, and biocompatibility studies. These results radiate great potential in future human and veterinary clinical applications pertinent to complications arising from PSIs, focusing on personalized sustained antibiotic delivery.


Subject(s)
Anti-Infective Agents , Gentamicins , Humans , Gentamicins/pharmacology , Gentamicins/chemistry , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcus epidermidis , Polymers , Printing, Three-Dimensional
2.
Nanomedicine ; 47: 102620, 2023 01.
Article in English | MEDLINE | ID: mdl-36265559

ABSTRACT

Copper diethyldithiocarbamate [Cu(DDC)2] is a promising anticancer agent. However, its poor water solubility is a significant obstacle to clinical application. In previous studies, we developed a stabilized metal ion ligand complex (SMILE) method to prepare Cu(DDC)2 nanoparticle (NP) to address the drug delivery challenge. In the current study, we investigate the use of Cu(DDC)2 NP for treating P-glycoprotein (P-gp) mediated drug-resistant cancers. We tested its anticancer efficacy with extensive in vitro cell-based assays and in vivo xenograft tumor model. We also explored the mechanism of overcoming drug resistance by Cu(DDC)2 NP. Our results indicate that Cu(DDC)2 NP is not a substrate of P-gp and thus can avoid P-gp mediated drug efflux. Further, the Cu(DDC)2 NP does not inhibit the activity or the expression of P-gp.


Subject(s)
Ditiocarb , Drug Resistance, Neoplasm , Neoplasms , Humans , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Copper/pharmacology , Ditiocarb/pharmacology , Metal Nanoparticles , Animals , Xenograft Model Antitumor Assays
3.
J Am Coll Nutr ; 38(8): 693-702, 2019.
Article in English | MEDLINE | ID: mdl-31008686

ABSTRACT

An estimated 9% of the American population experiences type II diabetes mellitus (T2DM) due to diet or genetic predisposition. Recent reports indicate that patients with T2DM are at increased risk for cognitive dysfunctions, as observed in conditions like Alzheimer's disease (AD). In addition, AD is the leading cause of dementia, highlighting the urgency of developing novel therapeutic targets for T2DM-induced cognitive deficits. The peroxisome proliferator activated receptor-δ (PPAR-δ) is highly expressed in the brain and has been shown to play an important role in spatial memory and hippocampal neurogenesis. However, the effect of PPAR-δ agonists on T2DM-induced cognitive impairment has not been explored. In this study, the effects of GW0742 (a selective PPAR-δ agonist) on hippocampal synaptic transmission, plasticity, and spatial memory were investigated in the db/db mouse model of T2DM. Oral administration of GW0742 for 2 weeks significantly improved hippocampal long-term potentiation. In addition, GW0742 effectively prevented deficits in hippocampal dependent spatial memory in db/db mice. PPAR-δ-mediated improvements in synaptic plasticity and behavior were accompanied by a significant recovery in hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated synaptic transmission. Our findings suggest that activation of PPAR-δ might ameliorate T2DM-induced impairments in hippocampal synaptic plasticity and memory.


Subject(s)
Cognitive Dysfunction/prevention & control , Diabetes Mellitus, Type 2/complications , PPAR delta/agonists , Protein Serine-Threonine Kinases/metabolism , Receptors, AMPA/metabolism , Thiazoles/pharmacology , Animals , Hippocampus/drug effects , Mice, Inbred NOD , Protein Serine-Threonine Kinases/genetics , Receptors, AMPA/genetics
4.
Neural Plast ; 2018: 4593530, 2018.
Article in English | MEDLINE | ID: mdl-30150999

ABSTRACT

Adiponectin, the most abundant plasma adipokine, plays an important role in the regulation of glucose and lipid metabolism. Adiponectin also possesses insulin-sensitizing, anti-inflammatory, angiogenic, and vasodilatory properties which may influence central nervous system (CNS) disorders. Although initially not thought to cross the blood-brain barrier, adiponectin enters the brain through peripheral circulation. In the brain, adiponectin signaling through its receptors, AdipoR1 and AdipoR2, directly influences important brain functions such as energy homeostasis, hippocampal neurogenesis, and synaptic plasticity. Overall, based on its central and peripheral actions, recent evidence indicates that adiponectin has neuroprotective, antiatherogenic, and antidepressant effects. However, these findings are not without controversy as human observational studies report differing correlations between plasma adiponectin levels and incidence of CNS disorders. Despite these controversies, adiponectin is gaining attention as a potential therapeutic target for diverse CNS disorders, such as stroke, Alzheimer's disease, anxiety, and depression. Evidence regarding the emerging role for adiponectin in these disorders is discussed in the current review.


Subject(s)
Adiponectin/metabolism , Brain/metabolism , Central Nervous System Diseases/metabolism , Animals , Brain/physiopathology , Humans , Receptors, Adiponectin/metabolism , Signal Transduction
5.
Am J Physiol Heart Circ Physiol ; 312(1): H128-H140, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27836895

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is associated with progressive cardiac pathology; however, the SIRT1/PGC1-α activator quercetin may cardioprotect dystrophic hearts. We tested the extent to which long-term 0.2% dietary quercetin enrichment attenuates dystrophic cardiopathology in Mdx/Utrn+/- mice. At 2 mo, Mdx/Utrn+/- mice were fed quercetin-enriched (Mdx/Utrn+/--Q) or control diet (Mdx/Utrn+/-) for 8 mo. Control C57BL/10 (C57) animals were fed a control diet for 10 mo. Cardiac function was quantified by MRI at 2 and 10 mo. Spontaneous physical activity was quantified during the last week of treatment. At 10 mo hearts were excised for histological and biochemical analysis. Quercetin feeding improved various physiological indexes of cardiac function in diseased animals. Mdx/Utrn+/--Q also engaged in more high-intensity physical activity than controls. Histological analyses of heart tissues revealed higher expression and colocalization of utrophin and α-sarcoglycan. Lower abundance of fibronectin, cardiac damage (Hematoxylin Eosin-Y), and MMP9 were observed in quercetin-fed vs. control Mdx/Utrn+/- mice. Quercetin evoked higher protein abundance of PGC-1α, cytochrome c, ETC complexes I-V, citrate synthase, SOD2, and GPX compared with control-fed Mdx/Utrn+/- Quercetin decreased abundance of inflammatory markers including NFκB, TGF-ß1, and F4/80 compared with Mdx/Utrn+/-; however, P-NFκB, P-IKBα, IKBα, CD64, and COX2 were similar between groups. Dietary quercetin enrichment improves cardiac function in aged Mdx/Utrn+/- mice and increases mitochondrial protein content and dystrophin glycoprotein complex formation. Histological analyses indicate a marked attenuation in pathological cardiac remodeling and indicate that long-term quercetin consumption benefits the dystrophic heart. NEW & NOTEWORTHY: The current investigation provides first-time evidence that quercetin provides physiological cardioprotection against dystrophic pathology and is associated with improved spontaneous physical activity. Secondary findings suggest that quercetin-dependent outcomes are in part due to PGC-1α pathway activation.


Subject(s)
Antioxidants/pharmacology , Heart/drug effects , Muscular Dystrophy, Animal/physiopathology , Quercetin/pharmacology , Animals , Antigens, Differentiation/drug effects , Antigens, Differentiation/metabolism , Blotting, Western , Citrate (si)-Synthase/drug effects , Citrate (si)-Synthase/metabolism , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/metabolism , Cytochromes c/drug effects , Cytochromes c/metabolism , Disease Models, Animal , Electron Transport Chain Complex Proteins/drug effects , Electron Transport Chain Complex Proteins/metabolism , Fibronectins/metabolism , Food, Fortified , Heart/diagnostic imaging , Heart/physiopathology , Magnetic Resonance Imaging , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred mdx , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Motor Activity , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne , Myocardium/metabolism , Myocardium/pathology , NF-KappaB Inhibitor alpha/drug effects , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/drug effects , NF-kappa B/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphorylation , Receptors, IgG/drug effects , Receptors, IgG/metabolism , Sarcoglycans/metabolism , Superoxide Dismutase/drug effects , Superoxide Dismutase/metabolism , Transforming Growth Factor beta1/drug effects , Transforming Growth Factor beta1/metabolism , Utrophin/genetics , Utrophin/metabolism
6.
Lipids Health Dis ; 16(1): 181, 2017 Sep 25.
Article in English | MEDLINE | ID: mdl-28946872

ABSTRACT

BACKGROUND: Increased consumption of omega-3 (ω-3) fatty acids found in cold-water fish and fish oil has been reported to protect against obesity. A potential mechanism may be through reduction in adipocyte differentiation. Stearidonic acid (SDA), a plant-based ω-3 fatty acid, has been targeted as a potential surrogate for fish-based fatty acids; however, its role in adipocyte differentiation is unknown. This study was designed to evaluate the effects of SDA on adipocyte differentiation in 3T3-L1 cells. METHODS: 3T3-L1 preadipocytes were differentiated in the presence of SDA or vehicle-control. Cell viability assay was conducted to determine potential toxicity of SDA. Lipid accumulation was measured by Oil Red O staining and triglyceride (TG) quantification in differentiated 3T3-L1 adipocytes. Adipocyte differentiation was evaluated by adipogenic transcription factors and lipid accumulation gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). Fatty acid analysis was conducted by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). RESULTS: 3T3-L1 cells treated with SDA were viable at concentrations used for all studies. SDA treatment reduced lipid accumulation in 3T3-L1 adipocytes. This anti-adipogenic effect by SDA was a result of down-regulation of mRNA levels of the adipogenic transcription factors CCAAT/enhancer-binding proteins alpha and beta (C/EBPα, C/EBPß), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol-regulatory element binding protein-1c (SREBP-1c). SDA treatment resulted in decreased expression of the lipid accumulation genes adipocyte fatty-acid binding protein (AP2), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD-1), lipoprotein lipase (LPL), glucose transporter 4 (GLUT4) and phosphoenolpyruvate carboxykinase (PEPCK). The transcriptional activity of PPARγ was found to be decreased with SDA treatment. SDA treatment led to significant EPA enrichment in 3T3-L1 adipocytes compared to vehicle-control. CONCLUSION: These results demonstrated that SDA can suppress adipocyte differentiation and lipid accumulation in 3T3-L1 cells through down-regulation of adipogenic transcription factors and genes associated with lipid accumulation. This study suggests the use of SDA as a dietary treatment for obesity.


Subject(s)
Adipocytes/drug effects , Cell Differentiation/drug effects , Fatty Acids, Omega-3/pharmacology , Gene Expression Regulation/drug effects , Lipid Metabolism/drug effects , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/metabolism , Animals , CCAAT-Enhancer-Binding Protein-beta/antagonists & inhibitors , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Proteins/antagonists & inhibitors , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Survival/drug effects , Fatty Acid Synthase, Type I/antagonists & inhibitors , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Fatty Acid-Binding Proteins/antagonists & inhibitors , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Glucose Transporter Type 4/antagonists & inhibitors , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Lipoprotein Lipase/antagonists & inhibitors , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Mice , PPAR gamma/antagonists & inhibitors , PPAR gamma/genetics , PPAR gamma/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/antagonists & inhibitors , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Stearoyl-CoA Desaturase/antagonists & inhibitors , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Sterol Regulatory Element Binding Protein 1/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
7.
Acta Pharmacol Sin ; 37(2): 187-95, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26616727

ABSTRACT

AIM: Adiponectin has been reported to exert protective effects during pathological ventricular remodeling, but the role of adiponectin in volume overload-induced heart failure remains unclear. In this study we investigated the effect of adiponectin on cardiac myocyte contractile dysfunction following volume overload in rats. METHODS: Volume overload was surgically induced in rats by infrarenal aorta-vena cava fistula. The rats were intravenously administered adenoviral adiponectin at 2-, 6- and 9-weeks following fistula. The protein expression of adiponectin, adiponectin receptors (AdipoR1/R2 and T-cadherin) and AMPK activity were measured using Western blot analyses. Isolated ventricular myocytes were prepared at 12 weeks post-fistula to examine the contractile performance of myocytes and intracellular Ca(2+) transient. RESULTS: A-V fistula resulted in significant reductions in serum and myocardial adiponectin levels, myocardial adiponectin receptor (AdipoR1/R2 and T-cadherin) levels, as well as myocardial AMPK activity. Consistent with these changes, the isolated myocytes exhibited significant depression in cell shortening and intracellular Ca(2+) transient. Administration of adenoviral adiponectin significantly increased serum adiponectin levels and prevented myocyte contractile dysfunction in fistula rats. Furthermore, pretreatment of isolated myocytes with recombinant adiponectin (2.5 µg/mL) significantly improved their contractile performance in fistula rats, but had no effects in control or adenoviral adiponectin-administered rats. CONCLUSION: These results demonstrate a positive correlation between adiponectin downregulation and volume overload-induced ventricular remodeling. Adiponectin plays a protective role in volume overload-induced heart failure.


Subject(s)
Adiponectin/blood , Down-Regulation , Heart Failure/blood , Heart Failure/pathology , Myocytes, Cardiac/pathology , AMP-Activated Protein Kinases/metabolism , Adiponectin/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Heart Failure/etiology , Heart Failure/metabolism , Male , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley
8.
Am J Physiol Heart Circ Physiol ; 308(11): H1423-33, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25820396

ABSTRACT

Interleukin-6 (IL-6) is a pleiotropic cytokine that protects against cardiac ischemia-reperfusion (I/R) injury following pharmacological and ischemic preconditioning (IPC), but the affiliated role in exercise preconditioning is unknown. Our study purpose was to characterize exercise-induced IL-6 cardiac signaling (aim 1) and evaluate myocardial preconditioning (aim 2). In aim 1, C57 and IL-6(-/-) mice underwent 3 days of treadmill exercise for 60 min/day at 18 m/min. Serum, gastrocnemius, and heart were collected preexercise, immediately postxercise, and 30 and 60 min following the final exercise session and analyzed for indexes of IL-6 signaling. For aim 2, a separate cohort of exercise-preconditioned (C57 EX and IL-6(-/-) EX) and sedentary (C57 SED and IL-6(-/-) SED) mice received surgical I/R injury (30 min I, 120 min R) or a time-matched sham operation. Ischemic and perfused tissues were examined for necrosis, apoptosis, and autophagy. In aim 1, serum IL-6 and IL-6 receptor (IL-6R), gastrocnemius, and myocardial IL-6R were increased following exercise in C57 mice only. Phosphorylated (p) signal transducer and activator of transcription 3 was increased in gastrocnemius and heart in C57 and IL-6(-/-) mice postexercise, whereas myocardial iNOS and cyclooxygenase-2 were unchanged in the exercised myocardium. Exercise protected C57 EX mice against I/R-induced arrhythmias and necrosis, whereas arrhythmia score and infarct outcomes were higher in C57 SED, IL-6(-/-) SED, and IL-6(-/-) EX mice compared with SH. C57 EX mice expressed increased p-p44/42 MAPK (Thr(202)/Tyr(204)) and p-p38 MAPK (Thr(180)/Tyr(182)) compared with IL-6(-/-) EX mice, suggesting pathway involvement in exercise preconditioning. Findings indicate exercise exerts cardioprotection via IL-6 and strongly implicates protective signaling originating from the exercised skeletal muscle.


Subject(s)
Interleukin-6/metabolism , Ischemic Preconditioning, Myocardial , Myocardial Reperfusion Injury/metabolism , Physical Exertion , Animals , Apoptosis , Autophagy , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Exercise Therapy , Interleukin-6/genetics , MAP Kinase Signaling System , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Necrosis , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
9.
Am J Physiol Heart Circ Physiol ; 309(5): H867-79, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26071548

ABSTRACT

Previous studies have demonstrated the protective signaling of hypoxia-inducible factor (HIF)-1 α against ischemia-reperfusion (I/R) injury in the heart. In the present study, we provide further evidence for a cardioprotective mechanism by HIF-1α against I/R injury exerted via the mitochondrial protein frataxin, which regulates mitochondrial Fe-S cluster formation. Disruption of frataxin has been found to induce mitochondrial iron overload and subsequent ROS production. We observed that frataxin expression was elevated in mice hearts subjected to I/R injury, and this response was blunted in cardiomyocyte-specific HIF-1α knockout (KO) mice. Furthermore, these HIF-1α KO mice sustained extensive cardiac damage from I/R injury compared with control mice. Similarly, reduction of HIF-1α by RNA inhibition resulted in an attenuation of frataxin expression in response to hypoxia in H9C2 cardiomyocytes. Therefore, we postulated that HIF-1α transcriptionally regulates frataxin expression in response to hypoxia and offers a cardioprotective mechanism against ischemic injury. Our promoter activity and chromatin immunoprecipitation assays confirmed the presence of a functional hypoxia response element in the frataxin promoter. Our data also suggest that increased frataxin mitigated mitochondrial iron overload and subsequent ROS production, thus preserving mitochondrial membrane integrity and viability of cardiomyocytes. We postulate that frataxin may exert its beneficial effects by acting as an iron storage protein under hypoxia and subsequently facilitates the maintenance of mitochondrial membrane potential and promotes cell survival. The findings from our study revealed that HIF-1α-frataxin signaling promotes a protective mechanism against hypoxic/ischemic stress.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Iron-Binding Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Animals , Cells, Cultured , Heart Ventricles/cytology , Heart Ventricles/growth & development , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Iron-Binding Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Sarcomeres/metabolism , Sarcomeres/ultrastructure , Signal Transduction , Frataxin
10.
Am J Physiol Heart Circ Physiol ; 309(5): H844-59, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26209053

ABSTRACT

Doxorubicin (DOX) is a highly effective anti-neoplastic agent; however, its cumulative dosing schedules are clinically limited by the development of cardiotoxicity. Previous studies have attributed the cause of DOX-mediated cardiotoxicity to mitochondrial iron accumulation and the ensuing reactive oxygen species (ROS) formation. The present study investigates the role of frataxin (FXN), a mitochondrial iron-sulfur biogenesis protein, and its role in development of DOX-mediated mitochondrial dysfunction. Athymic mice treated with DOX (5 mg/kg, 1 dose/wk with treatments, followed by 2-wk recovery) displayed left ventricular hypertrophy, as observed by impaired cardiac hemodynamic performance parameters. Furthermore, we also observed significant reduction in FXN expression in DOX-treated animals and H9C2 cardiomyoblast cell lines, resulting in increased mitochondrial iron accumulation and the ensuing ROS formation. This observation was paralleled in DOX-treated H9C2 cells by a significant reduction in the mitochondrial bioenergetics, as observed by the reduction of myocardial energy regulation. Surprisingly, similar results were observed in our FXN knockdown stable cell lines constructed by lentiviral technology using short hairpin RNA. To better understand the cardioprotective role of FXN against DOX, we constructed FXN overexpressing cardiomyoblasts, which displayed cardioprotection against mitochondrial iron accumulation, ROS formation, and reduction of mitochondrial bioenergetics. Lastly, our FXN overexpressing cardiomyoblasts were protected from DOX-mediated cardiac hypertrophy. Together, our findings reveal novel insights into the development of DOX-mediated cardiomyopathy.


Subject(s)
Cardiomegaly/metabolism , Doxorubicin/adverse effects , Iron-Binding Proteins/metabolism , Animals , Cardiomegaly/etiology , Cardiotoxicity , Cell Line , Cells, Cultured , Iron/metabolism , Iron-Binding Proteins/genetics , Mice , Mitochondria, Heart/metabolism , Reactive Oxygen Species/metabolism , Frataxin
11.
Exp Physiol ; 100(1): 12-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25557727

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does dietary quercetin enrichment improve biochemical and histological outcomes in hearts from mdx mice? What is the main finding and what is its importance? Biochemical and histological findings suggest that chronic quercetin feeding of mdx mice may improve mitochondrial function and attenuate tissue pathology. Patients with Duchenne muscular dystrophy suffer from cardiac pathology, which causes up to 40% of all deaths because of fibrosis and cardiac complications. Quercetin is a flavonol with anti-inflammatory and antioxidant effects and is also an activator of peroxisome proliferator-activated receptor γ coactivator 1α capable of antioxidant upregulation, mitochondrial biogenesis and prevention of cardiac complications. We sought to determine the extent to which dietary quercetin enrichment prevents (experiment 1) and rescues cardiac pathology (experiment 2) in mdx mice. In experiment 1, 3-week-old mdx mice were fed control chow (C3w6m, n = 10) or chow containing 0.2% quercetin for 6 months (Q3w6m, n = 10). In experiment 2, 3-month-old mdx mice were fed control chow (C3m6m, n = 10) or 0.2% chow containing 0.2% quercetin for 6 months (Q3m6m, n = 10). Hearts were excised for histological and biochemical analyses. In experiment 1, Western blot targets for mitochondrial biogenesis (cytochrome c, P = 0.007) and antioxidant expression (superoxide dismutase 2, P = 0.014) increased in Q3w6m mice compared with C3w6m. Histology revealed increased utrophin (P = 0.025) and decreased matrix metalloproteinase 9 abundance (P = 0.040) in Q3w6m mice compared with C3w6m. In experiment 2, relative (P = 0.023) and absolute heart weights (P = 0.020) decreased in Q3m6m mice compared with C3m6m. Indications of damage (Haematoxylin- and Eosin-stained sections, P = 0.007) and Western blot analysis of transforming growth factor ß1 (P = 0.009) were decreased in Q3m6m mice. Six months of quercetin feeding increased a mitochondrial biomarker, antioxidant protein and utrophin and decreased matrix metalloproteinase 9 in young mice. Given that these adaptations are associated with attenuated cardiac pathology and damage, the present findings may indicate that dietary quercetin enrichment attenuates dystrophic cardiac pathology, but physiological confirmation is needed.


Subject(s)
Cardiomyopathies/drug therapy , Cardiomyopathies/prevention & control , Dietary Supplements , Mitochondria, Heart/drug effects , Muscular Dystrophy, Animal/drug therapy , Muscular Dystrophy, Duchenne/drug therapy , Myocardium/pathology , Quercetin/pharmacology , Animals , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cytochromes c/metabolism , Cytoprotection , Disease Models, Animal , Matrix Metalloproteinase 9/metabolism , Mice, Inbred mdx , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Turnover/drug effects , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Myocardium/metabolism , Superoxide Dismutase/metabolism , Time Factors , Transforming Growth Factor beta1/metabolism , Utrophin/metabolism
12.
Exp Physiol ; 100(4): 410-21, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25639363

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does the δ-opioid receptor trigger exercise-induced cardioprotection against ischaemia-reperfusion injury? What is the main finding and its importance? In exercised hearts, the δ-opioid receptor appears to trigger cardioprotection against ischaemia-reperfusion-induced tissue necrosis but not apoptosis. ABSTRACT: Endogenous opioids mediate exercise-induced cardioprotection against ischaemia-reperfusion (IR) injury, although the opioid receptor subtype mediating this effect is unknown. We investigated whether the δ-opioid receptor mediates exercise-induced cardioprotection against IR injury. Endogenous opioids are produced in various tissues, including the heart and skeletal muscle; therefore, we also sought to identify the effect of exercise on circulating endogenous opioid as well as transcript, protein and receptor expression in heart and skeletal muscle. Male Sprague-Dawley rats (n = 73) were assigned randomly to treadmill exercise or sedentary treatments. Cardiac tissue and serum were harvested 0, 20 and 120 min following exercise and from sedentary animals (n = 32) to quantify effects on proenkephalin and δ-opioid receptor mRNA and protein levels, as well as serum enkephalin. Skeletal muscle (soleus) was harvested at identical time points for determination of proenkephalin protein and mRNA. A separate group of rats (n = 41) were randomly assigned to sham operation (Sham; surgical control), sedentary (Sed), exercise (Ex) or exercise + Î´-opioid receptor antagonist (ExD; naltrindole, 5 mg kg(-1) i.p.) and received IR by left anterior descending coronary artery ligation in vivo. After IR, tissues were harvested to quantify treatment effects on necrosis and apoptosis. Cardiac proenkephalin mRNA expression increased following exercise (0 min, P = 0.03; 120 min, P = 0.021), while soleus expression was unaffected. Exercise-induced changes in serum enkephalin were undetectable. After IR, tissue necrosis was elevated in Sed and ExD hearts (P < 0.001 and P = 0.003, respectively) compared with the Sham group, while the Ex group was partly protected. After IR, apoptosis was evident in Sed hearts (P = 0.016), while Ex and ExD hearts were protected. Data suggest that cardioprotective opioids are produced by the heart, but not by the soleus. After IR, the δ-opioid receptor may mediate, in part, cardioprotection against necrosis but not apoptosis.


Subject(s)
Heart Ventricles/physiopathology , Muscle, Skeletal/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Physical Conditioning, Animal/methods , Receptors, Opioid, delta/metabolism , Animals , Enkephalins/metabolism , Ischemic Preconditioning, Myocardial/methods , Male , Physical Fitness , Protein Precursors/metabolism , Rats , Rats, Sprague-Dawley , Treatment Outcome
13.
Pharm Res ; 32(3): 852-62, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25158648

ABSTRACT

PURPOSE: Cardiotoxicity associated with the use of doxorubicin (DOX), and other chemotherapeutics, limits their clinical potential. This study determined the pharmacokinetics and antitumor and cardioprotective activity of free and liposome encapsulated phenyl-2-aminoethyl-selenide (PAESe). METHODS: The pharmacokinetics of free PAESe and PAESe encapsulated in liposomes (SSL-PAESe) were determined in rats using liquid chromatography tandem mass-spectrometry. The antitumor and cardioprotective effects were determined in a mouse xenograft model of human prostate (PC-3) cancer and cardiomyocytes (H9C2). RESULTS: The encapsulation of PAESe in liposomes increased the circulation half-life and area under the drug concentration time profile, and decreased total systemic clearance significantly compared to free PAESe. Free- and SSL-PAESe improved survival, decreased weight-loss and prevented cardiac hypertrophy significantly in tumor bearing and healthy mice following treatment with DOX at 5 and 12.5 mg/kg. In vitro studies revealed PAESe treatment altered formation of reactive oxygen species (ROS), cardiac hypertrophy and gene expression, i.e., atrial natriuretic peptide and myosin heavy chain complex beta, in H9C2 cells. CONCLUSIONS: Treatment with free and SSL-PAESe exhibited antitumor activity in a prostate xenograft model and mitigated DOX-mediated cardiotoxicity.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antioxidants/administration & dosage , Antioxidants/pharmacokinetics , Cardiomegaly/prevention & control , Ethylamines/administration & dosage , Ethylamines/pharmacokinetics , Myocytes, Cardiac/drug effects , Organoselenium Compounds/administration & dosage , Organoselenium Compounds/pharmacokinetics , Prostatic Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Area Under Curve , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cell Line, Tumor , Chemistry, Pharmaceutical , Chromatography, Liquid , Disease Models, Animal , Dose-Response Relationship, Drug , Doxorubicin , Ethylamines/chemistry , Gene Expression Regulation/drug effects , Half-Life , Humans , Injections, Intravenous , Liposomes , Male , Mass Spectrometry , Metabolic Clearance Rate , Mice, Nude , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Organoselenium Compounds/chemistry , Oxidative Stress/drug effects , Prostatic Neoplasms/pathology , Rats, Inbred F344 , Reactive Oxygen Species/metabolism , Technology, Pharmaceutical/methods , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
14.
ACS Appl Mater Interfaces ; 16(11): 13509-13524, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38466024

ABSTRACT

Elesclomol (ES), a copper-binding ionophore, forms an ES-Cu complex with copper ions (Cu(II)). ES-Cu has been proven to induce mitochondrial oxidative stress and copper-dependent cell death (cuprotosis). However, ES-Cu is poorly water-soluble, and its delivery to various cancer cells is a challenge. Herein, we designed a d-α-tocopherol polyethylene glycol 1000 succinate/chondroitin sulfate-cholic acid (TPGS/CS-CA)-based micellar nanoparticle for delivering the ES-Cu complex to various cancer cell lines to demonstrate its efficacy as an anticancer agent. The ES-Cu nanoparticles exerted high encapsulation efficiency and excellent serum stability. The anticancer efficacy of ES-Cu nanoparticles was evaluated in various drug-sensitive cell lines (DU145, PC3, and A549) and drug-resistant cell lines (DU145TXR, PC3TXR, and A549TXR). The results showed that ES-Cu nanoparticles exerted potent anticancer activities in both drug-sensitive and drug-resistant cell lines. The Western blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and molecular docking results suggested that ES-Cu is not a substrate for P glycoprotein (P-gp), which is an efflux transporter potentially causing multidrug resistance (MDR) in cancer cells. ES-Cu nanoparticles could bypass P-gp without compromising their activity, indicating that they may overcome MDR in cancer cells and provide a novel therapeutic strategy. Additionally, the extracellular matrix of ES-Cu nanoparticles-pretreated drug-resistant cells could polarize Raw 264.7 macrophages into the M1 phenotype. Therefore, our TPGS/CS-CA-based ES-Cu nanoparticles provide an effective method of delivering the ES-Cu complex, a promising strategy to overcome MDR in cancer therapy with potential immune response stimulation.


Subject(s)
Antineoplastic Agents , Hydrazines , Nanoparticles , Neoplasms , Copper/chemistry , Molecular Docking Simulation , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Drug Resistance, Multiple , ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology , Drug Resistance, Neoplasm , Cell Line, Tumor
15.
Am J Physiol Endocrinol Metab ; 304(11): E1175-87, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23512805

ABSTRACT

Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35-50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Adipose Tissue, White/metabolism , Amino Acids, Branched-Chain/metabolism , Obesity/metabolism , Adipocytes/metabolism , Adult , Animals , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Insulin/blood , Mice , Mice, Obese , Middle Aged , Rats , Rats, Zucker
16.
Bioorg Med Chem Lett ; 23(3): 873-9, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23273519

ABSTRACT

Type 2 diabetes is at epidemic proportions and thus development of novel pharmaceutical therapies for improving insulin sensitivity has become of paramount importance. The objectives of the current study were to develop novel dual PPARγ/δ agonists without the deleterious side effects associated with full PPARγ agonists. Docking simulations of 23 novel compounds within the ligand binding domain of PPARγ/δ were performed using AutoDock Vina which consistently reproduced experimental binding poses from known PPAR agonists. Comparisons were made and described with other docking programs AutoDock and Surflex-Dock (from SYBYL-X). Biological evaluation of compounds was accomplished by transcriptional promoter activity assays, quantitative PCR gene analysis for known PPARγ/δ targets as well as in vitro assays for lipid accumulation and mitochondrial biogenesis verses known PPAR agonists. We found one (compound 9) out of the 23 compounds evaluated, to be the most potent and selective dual PPARγ/δ agonist which did not display the deleterious side effects associated with full PPARγ agonists.


Subject(s)
Drug Design , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , PPAR delta/agonists , PPAR gamma/agonists , Dose-Response Relationship, Drug , Drug Combinations , Hypoglycemic Agents/chemistry , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Binding/drug effects
17.
Pharmaceutics ; 15(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37376016

ABSTRACT

Disulfiram (DSF) is a thiocarbamate based drug that has been approved for treating alcoholism for over 60 years. Preclinical studies have shown that DSF has anticancer efficacy, and its supplementation with copper (CuII) significantly potentiates the efficacy of DSF. However, the results of clinical trials have not yielded promising results. The elucidation of the anticancer mechanisms of DSF/Cu (II) will be beneficial in repurposing DSF as a new treatment for certain types of cancer. DSF's anticancer mechanism is primarily due to its generating reactive oxygen species, inhibiting aldehyde dehydrogenase (ALDH) activity inhibition, and decreasing the levels of transcriptional proteins. DSF also shows inhibitory effects in cancer cell proliferation, the self-renewal of cancer stem cells (CSCs), angiogenesis, drug resistance, and suppresses cancer cell metastasis. This review also discusses current drug delivery strategies for DSF alone diethyldithocarbamate (DDC), Cu (II) and DSF/Cu (II), and the efficacious component Diethyldithiocarbamate-copper complex (CuET).

18.
Cells ; 12(8)2023 04 08.
Article in English | MEDLINE | ID: mdl-37190025

ABSTRACT

Background: The continuously increasing association of Alzheimer's disease (AD) with increased mortality rates indicates an unmet medical need and the critical need for establishing novel molecular targets for therapeutic potential. Agonists for peroxisomal proliferator activating receptors (PPAR) are known to regulate energy in the body and have shown positive effects against Alzheimer's disease. There are three members of this class (delta, gamma, and alpha), with PPAR-gamma being the most studied, as these pharmaceutical agonists offer promise for AD because they reduce amyloid beta and tau pathologies, display anti-inflammatory properties, and improve cognition. However, they display poor brain bioavailability and are associated with several adverse side effects on human health, thus limiting their clinical application. Methods: We have developed a novel series of PPAR-delta and PPAR-gamma agonists in silico with AU9 as our lead compound that displays selective amino acid interactions focused upon avoiding the Tyr-473 epitope in the PPAR-gamma AF2 ligand binding domain. Results: This design helps to avoid the unwanted side effects of current PPAR-gamma agonists and improve behavioral deficits and synaptic plasticity while reducing amyloid-beta levels and inflammation in 3xTgAD animals. Conclusions: Our innovative in silico design of PPAR-delta/gamma agonists may offer new perspectives for this class of agonists for AD.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/complications , Amyloid beta-Peptides/therapeutic use , PPAR gamma/metabolism , Cognition , Inflammation/drug therapy , Inflammation/complications
19.
Am J Physiol Endocrinol Metab ; 298(1): E28-37, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19843873

ABSTRACT

The nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma plays a key role in regulating whole body glucose homeostasis and insulin sensitivity. Although it is expressed most highly in adipose, it is also present at lower levels in many tissues, including skeletal muscle. The role muscle PPARgamma plays in metabolic regulation and in mediating the antidiabetic effects of the thiazolidinediones is not understood. The goal of this work was to examine the molecular and physiological effects of PPARgamma activation in muscle cells. We found that pharmacological activation of PPARgamma in primary cultured myocytes, and genetic activation of muscle PPARgamma in muscle tissue of transgenic mice, induced the production of adiponectin directly from muscle cells. This muscle-produced adiponectin was functional and capable of stimulating adiponectin signaling in myocytes. In addition, elevated skeletal muscle PPARgamma activity in transgenic mice provided a significant protection from high-fat diet-induced insulin resistance and associated changes in muscle phenotype, including reduced myocyte lipid content and an increase in the proportion of oxidative muscle fiber types. Our findings demonstrate that PPARgamma activation in skeletal muscle can have a significant protective effect on whole body glucose homeostasis and insulin resistance and that myocytes can produce and secrete functional adiponectin in a PPARgamma-dependent manner. We propose that activation of PPARgamma in myocytes induces a local production of adiponectin that acts on muscle tissue to improve insulin sensitivity.


Subject(s)
Insulin Resistance/physiology , Muscle, Skeletal/physiology , PPAR gamma/genetics , PPAR gamma/metabolism , Adiponectin/genetics , Adiponectin/metabolism , Animals , Autocrine Communication/physiology , Blood Glucose/metabolism , Cells, Cultured , Dietary Fats/pharmacology , Gene Expression/physiology , Homeostasis/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/physiology , Mutagenesis, Site-Directed , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Phenotype , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/physiology
20.
Am J Physiol Heart Circ Physiol ; 299(3): H690-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20622112

ABSTRACT

In experimental animal and cell culture models, activation of peroxisome proliferator-activated receptor (PPAR) gamma in heart has been shown to have beneficial effects on cardiac function and cardiomyocyte physiology. The goal of this study was to identify the signaling pathway by which PPARgamma activation protects cardiomyocytes from the deleterious effects of hypertrophic stimuli. In primary cardiomyocyte cultures, we found that genetic or pharmacological activation of PPARgamma protected cells from cardiac hypertrophy induced by alpha-adrenergic stimulation. Examination of gene expression in these cells revealed a surprising increase in the expression of adiponectin in cardiomyocytes and secretion of the high-molecular-weight form of the hormone into media. Using RNAi to block PPARgamma-induced adiponectin production or adiponectin receptor gene expression, we found that the PPARgamma-mediated anti-hypertrophic effect required cardiomyocyte-produced adiponectin, as well as an intact adiponectin signaling pathway. Furthermore, mice expressing constitutive-active PPARgamma and cardiomyocyte specific adiponectin expression were protected from high-fat diet-induced cardiac hypertrophy and remodeling. These findings demonstrate that functional adiponectin hormone can be produced from the heart and raise the possibility that beneficial effects of PPARgamma activation in heart could be due in part to local production of adiponectin that acts on cardiomyocytes in an autocrine manner.


Subject(s)
Adiponectin/metabolism , Autocrine Communication/physiology , Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , PPAR gamma/metabolism , Adiponectin/genetics , Analysis of Variance , Animals , Blotting, Western , Cardiomegaly/etiology , Cardiomegaly/prevention & control , Cells, Cultured , Dietary Fats/adverse effects , Immunohistochemistry , Mice , Mice, Transgenic , PPAR gamma/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL