Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Hormones (Athens) ; 7(2): 114-22, 2008.
Article in English | MEDLINE | ID: mdl-18477548

ABSTRACT

According to the free radical theory of aging proposed by Denham Harman more than 50 years ago, oxidatively modified cellular components accumulate continuously in the cells during the organism's lifespan leading to progressive decline of cellular functions. Since then, it has been shown that proteins, lipids, nucleic acids and other cell components undergo reversible and/or irreversible oxidative modifications during aging. Moreover, oxidized cell components can undergo further oxidative modifications leading to formation of products that cell degradation systems are incapable of removing. Accumulation of such non-degradable aggregates further inhibits the functionality of degradation systems, thus aggravating the effects and leading to a vicious cycle. In this presentation, we propose that the availability of intracellular iron in its redox active form (labile iron) represents the main catalyst that mediates extensive oxidative modifications of cellular components and ultimately leads to their accumulation and consequent cellular dysfunction. It is tempting to speculate that regulated restriction of labile iron may have positive effects on health in general and aging in particular.


Subject(s)
Aging/metabolism , Iron/metabolism , Oxidative Stress/physiology , Aged , Humans
2.
Free Radic Biol Med ; 43(10): 1377-87, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17936184

ABSTRACT

Apoptosis represents a physiological form of cell death, the perturbation of which may contribute to the development of several diseases connected with accumulation of unwanted cells or excessive cell loss. We have previously shown that the continuous presence of low concentrations of H2O2 (generated by the action of glucose oxidase) was able to inhibit caspase-mediated apoptosis in Jurkat cells. The main purpose of the present study was to elucidate the exact molecular mechanism(s) underlying this inhibitory action of H2O2. The results presented show that events like outer mitochondrial membrane permeabilization, release of cytochrome c from mitochondria, oligomerization of Apaf-1, and recruitment of procaspase-9 to apoptosomes were taking place normally, but further advancement toward activation of the execution caspases was interrupted when H2O2 was present during the apoptotic process. From the results presented in this work, it emerges that the inhibition of procaspase-9 autoactivation was probably due to the reversible oxidation of sensitive cysteine residues in this molecule. Remarkably, caspase-9 activation and the ensuing caspase cascade proceeded normally in the presence of H2O2 under conditions of iron deprivation, indicating that the inhibition of procaspase-9 activation was an iron-dependent process. Collectively, these results highlighted the potential role of available intracellular iron ions in signaling mechanisms related to apoptotic cell death.


Subject(s)
Apoptosis/drug effects , Caspase Inhibitors , Hydrogen Peroxide/pharmacology , Iron/metabolism , Apoptosomes/metabolism , Caspase 9/metabolism , Cysteine/metabolism , Cytochromes c/metabolism , Enzyme Activation/drug effects , Humans , Jurkat Cells , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL