Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Ecotoxicol Environ Saf ; 252: 114608, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36738612

ABSTRACT

Embryonic developmental effects of disinfection by-products, which are generated during drinking water treatment and widely detected in environment, have gained more and more attention nowadays, calling for construction of in vitro research models which can mimic early embryonic development to evaluate the embryotoxicity. The embryonic stem cell test offers a promising assay to predict embryotoxicity of environmental pollutions. However, it is not appropriate for the toxicological study of preimplantation embryos. Here, we used mouse extended stem cells (mEPS) to reconstruct embryo-like structures (blastoid), furtherly attempting to evaluate the reliability of this model for the prediction of possible developmental toxicity of 2,4,6-triiodophenol (TIP, 5-50 µM), a novel halogenated disinfection byproduct widely detected in water and even drinking water, to mammalian preimplantation embryo. To verify this, we treated mouse embryo derived from in vitro fertilization (IVF-embryo) as reference. The results showed that mEPS-blastoid was like natural blastocyst in morphology, cell composition, and could recapitulate key developmental events happened during mouse preimplantation stage. When blastoid and IVF-embryo models were separately exposed to TIP, their final blastocyst formation rates were not impaired, according to morphological features, meanwhile that TIP exposure caused slight cell apoptosis. Besides, TIP induced an ICM cell bias in cell fate decision, resulting in cell proportion change, which implied abnormal developmental potential. Though we could not evaluate TIP's embryotoxicity before 8-cell stage using blastoid model, its viability as a novel and high-throughput assessment platform for increasing environmental pollutants was still recognized.


Subject(s)
Drinking Water , Animals , Female , Mice , Pregnancy , Embryo, Mammalian , Embryonic Development , Mammals , Reproducibility of Results
2.
Ecotoxicol Environ Saf ; 241: 113745, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35691197

ABSTRACT

2,4,6-triiodophenol (TIP), a novel type of halophenolic disinfection byproducts, has been widely detected in water bodies, even in drinking water. Recently, TIP has drawn increasing concerns on account of considerable developmental toxicity towards lower organisms and cytotoxicity for mammalian cells. However, it remains unknown about its toxicity on mammalian pre-implantation embryos. Here, by exposing mouse zygotes derived in vitro fertilization to TIP, which ranged from 5 to 50 µM, we found that TIP impaired the quality of pre-implantation mouse embryos in a dose-dependent manner, inducing decline of both total and trophectoderm cell numbers, enhancing caspase 3/7 activity and reactive oxygen species generation, though it did not decrease blastocyst formation efficiency. For the sake that only high qualified embryos are able to implant in endometrium and generate health body finally, we applied a previously modified in vitro culture system to assess TIP-exposed blastocysts' further developmental potency beyond pre-implantation stage. Surprisingly, although the exposed dose was only 5 µM and TIP was removed as soon as the zygotes reached blastocyst stage, these blastocysts still nearly lost their implantation and egg cylinder formation ability, exhibiting abnormal embryonic lineage differentiation pattern as well. Therefore, our study not only entirely shows TIP embryonic toxicity on mouse pre-implantation embryos, but also proposes a model to evaluate embryotoxicity from the zygote to egg cylinder stage.


Subject(s)
Blastocyst , Embryonic Development , Animals , Embryo Implantation , Female , Mammals , Mice , Phenols , Zygote
3.
Reproduction ; 161(5): 523-537, 2021 05.
Article in English | MEDLINE | ID: mdl-33730690

ABSTRACT

Long ncRNAs regulate a complex array of fundamental biological processes, while its molecular regulatory mechanism in Leydig cells (LCs) remains unclear. In the present study, we established the lncRNA LOC102176306/miR-1197-3p/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) regulatory network by bioinformatic prediction, and investigated its roles in goat LCs. We found that lncRNA LOC102176306 could efficiently bind to miR-1197-3p and regulate PPARGC1A expression in goat LCs. Downregulation of lncRNA LOC102176306 significantly supressed testosterone (T) synthesis and ATP production, decreased the activities of antioxidant enzymes and mitochondrial complex I and complex III, caused the loss of mitochondrial membrane potential, and inhibited the proliferation of goat LCs by decreasing PPARGC1A expression, while these effects could be restored by miR-1197-3p inhibitor treatment. In addition, miR-1197-3p mimics treatment significantly alleviated the positive effects of lncRNA LOC102176306 overexpression on T and ATP production, antioxidant capacity and proliferation of goat LCs. Taken together, lncRNA LOC102176306 functioned as a sponge for miR-1197-3p to maintain PPARGC1A expression, thereby affecting the steroidogenesis, cell proliferation and oxidative stress of goat LCs. These findings extend our understanding of the molecular mechanisms of T synthesis, cell proliferation and oxidative stress of LCs.


Subject(s)
Leydig Cells/cytology , MicroRNAs/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA, Long Noncoding/genetics , Testis/cytology , Animals , Apoptosis , Cell Proliferation , Goats , Leydig Cells/metabolism , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Testis/metabolism , Testosterone/metabolism
4.
Reprod Fertil Dev ; 32(4): 373-382, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31747535

ABSTRACT

Fibroblast growth factors (FGFs) play crucial roles in early gonadal development and germ cell maturation of mammals; FGF9 is involved in mammalian testis steroidogenesis. However, the upstream regulators of FGF9 in ovine testosterone biosynthesis remain unknown. Long non-coding RNAs (lncRNAs) are crucial regulators of multiple biological functions that act by altering gene expression. In the present study, we analysed the role of LOC105611671, a lncRNA upstream of FGF9, in Hu sheep steroidogenesis. We found that LOC105611671 expression increased significantly in Hu sheep testes during sexual maturation (P<0.05). Moreover, levels of FGF9 and testosterone were decreased by LOC105611671 knockdown in Hu sheep Leydig cells (LCs). Results of transient transfection and luciferase assays revealed that FGF9 is a functional target gene of oar-miR-26a in ovine LCs. Further functional validation experiments revealed that LOC105611671 regulates testosterone biosynthesis by targeting oar-miR-26a. Overall, the present study describes the expression profile of LOC105611671 during sexual maturation and demonstrates that LOC105611671 modulates FGF9 expression by targeting oar-miR-26a to promote testis steroidogenesis in Hu sheep. Our research provides a new theoretical basis for genetic and molecular research on testosterone biosynthesis in sheep.


Subject(s)
Fibroblast Growth Factor 9/metabolism , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Sexual Development , Sheep, Domestic/metabolism , Testis/metabolism , Testosterone/biosynthesis , Age Factors , Animals , Cells, Cultured , Fibroblast Growth Factor 9/genetics , Gene Expression Regulation , Male , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Sheep, Domestic/genetics
5.
Arch Anim Nutr ; 74(6): 476-495, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33059482

ABSTRACT

The current study aimed to examine the effects of dietary spirulina supplementation in high-energy (HE) diets on fatty acid metabolism in sheep, and preliminarily explored the potential mechanisms underlying the associated autophagy-mediated regulation of lipid metabolism. In a 2 × 3 factorial design, including six treatment combinations of two metabolisable energy diets (10 and 11 MJ/kg DM), three spirulina supplementation levels (0, 1%, and 3%) were used. Serum alanineaminotransferase (ALT) (p = 0.003) and aspartatetransaminase (AST) (p = 0.002) activities increased, whereas total PUFA content (p < 0.001) decreased in the liver of lambs fed a HE diet. With the addition of spirulina, serum ALT (p = 0.037) and AST (p = 0.014) activities decreased, whereas EPA (p = 0.004), GLA (p = 0.019), n-6 PUFA (p = 0.005), and total PUFA contents (p = 0.019) increased. Moreover, the crude protein content in the Longissimus thoracis et lumborum (LTL) increased (p = 0.013), the expression of PPARα and PPARγ was up-regulated, while ELOVL2 was down-regulated in liver and LTL (p < 0.05). Spirulina supplementation increased mRNA expression levels of autophagy-associated genes, including that of Beclin-1, AMPK, and ULK1 (p < 0.05). In conclusion, spirulina supplementation in a HE diet exerted a protective effect on the liver, increased PUFA content, and modulated expression levels of autophagy-related genes in growing lambs.


Subject(s)
Autophagy/drug effects , Diet/veterinary , Lipid Metabolism/drug effects , Liver/drug effects , Muscle, Skeletal/drug effects , Sheep, Domestic/physiology , Spirulina/chemistry , Animal Feed/analysis , Animals , Diet/classification , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Liver/physiology , Male , Muscle, Skeletal/physiology , Random Allocation
6.
Reprod Fertil Dev ; 31(5): 855-866, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30641030

ABSTRACT

X (inactive)-specific transcript (Xist) is crucial in murine cloned embryo development, but its role in cloned goats remains unknown. Therefore, in this study we examined the expression and methylation status of Xist in somatic cell nuclear transfer (SCNT) embryos, as well as in ear, lung, and brain tissue of deceased cloned goats. First, the Xist sequence was amplified and a differentially methylated region was identified in oocytes and spermatozoa. Xist methylation levels were greater in SCNT- than intracytoplasmic sperm injection-generated female 8-cell embryos. In addition, compared with naturally bred controls, Xist methylation levels were significantly increased in the ear, lung, and brain tissue of 3-day-old female deceased cloned goats, but were unchanged in the ear tissue of female live cloned goats and in the lung and brain of male deceased cloned goats. Xist expression was significantly increased in the ear tissue of female live cloned goats, but decreased in the lung and brain of female deceased cloned goats. In conclusion, hypermethylation of Xist may have resulted from incomplete reprogramming and may be retained in 3-day-old female deceased cloned goats, subsequently leading to dysregulation of Xist.


Subject(s)
DNA Methylation , Nuclear Transfer Techniques/veterinary , Oocytes/metabolism , RNA, Long Noncoding/metabolism , Spermatozoa/metabolism , Animals , Cloning, Organism , Female , Goats , Male , RNA, Long Noncoding/genetics
7.
Front Cell Dev Biol ; 10: 799042, 2022.
Article in English | MEDLINE | ID: mdl-35178387

ABSTRACT

Numerous studies have reported how inner cell mass (ICM) and trophectoderm (TE) was determined during the process of early mouse embryonic development from zygotes into organized blastocysts, however, multiple mysteries still remain. It is noteworthy that pluripotent stem cells (PSCs), which are derived from embryos at different developmental stages, have identical developmental potential and molecular characteristics to their counterpart embryos. Advances of PSCs research may provide us a distinctive perspective of deciphering embryonic development mechanism. Minocycline hydrochloride (MiH), a critical component for maintaining medium of novel type of extended pluripotent stem cells, which possesses developmental potential similar to both ICM and TE, can be substituted with genetic disruption of Parp1 in our previous study. Though Parp1-deficient mouse ESCs are more susceptible to differentiate into trophoblast derivatives, what role of MiH plays in mouse preimplantation embryonic development is still a subject of concern. Here, by incubating mouse zygotes in a medium containing MiH till 100 h after fertilization, we found that MiH could slow down embryonic developmental kinetics during cleavage stage without impairing blastocyst formation potential. Olaparib and Talazoparib, two FDA approved PARP1 inhibitors, exhibited similar effects on mouse embryos, indicating the aforementioned effects of MiH were through inhibiting of PARP1. Besides, we showed an embryonic protective role of MiH against suboptimal environment including long term exposure to external environment and H2O2 treatment, which could mimic inevitable manipulation during embryo culture procedures in clinical IVF laboratory. To our knowledge, it is not only for the first time to study MiH in the field of embryo development, but also for the first time to propose MiH as a protective supplement for embryo culture, giving the way to more studies on exploring the multiple molecular mechanisms on embryonic development that might be useful in assisted reproductive technology.

8.
Front Genet ; 13: 905395, 2022.
Article in English | MEDLINE | ID: mdl-35937980

ABSTRACT

Extended pluripotent stem cells (EPS cells) have unlimited self-renewal ability and the potential to differentiate into mesodermal, ectodermal, and endodermal cells. Notably, in addition to developing the embryonic (Em) lineages, it can also make an effective contribution to extraembryonic (ExEm) lineages both in vitro and in vivo. However, multiple mysteries still remain about the underlying molecular mechanism of EPS cells' maintenance and developmental potential. WDR36 (WD Repeat Domain 36), a protein of 105 kDa with 14 WD40 repeats, which may fold into two ß-propellers, participates in 18sRNA synthesis and P53 stress response. Though WDR36 safeguards mouse early embryonic development, that is, homozygous knockout of WDR36 can result in embryonic lethality, what role does WDR36 plays in self-renewal and differentiation developmental potential of human EPS cells is still a subject of concern. Here, our findings suggested that the expression of WDR36 was downregulated during human hEPS cells lost self-renewal. Through constructing inducible knockdown or overexpressing WDR36-human EPS cell lines, we found that WDR36 knockdown disrupted self-renewal but promoted the mesodermal differentiation of human EPS cells; however, overexpressing of WDR36 had little effect. Additionally, P53 inhibition could reverse the effects of WDR36 knockdown, on both self-renewal maintenance and differentiation potential of human EPS cells. These data implied that WDR36 safeguards self-renewal and pluripotency of human EPS cells, which would extend our understanding of the molecular mechanisms of human EPS cells' self-renewal and differentiation.

9.
Theriogenology ; 155: 222-231, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32731005

ABSTRACT

Enhancer of zeste homolog 2 (EZH2) is a histone H3 lysine 27 (H3K27) methyltransferase that plays vital roles in mouse spermatogenesis. However, the expression pattern and role of EZH2 in goat spermatogonial stem cells (SSCs) is unknown. In the present study, we investigated EZH2 expression in the testis of postpubertal goats and its effect on the biological characteristics of goat SSCs. We found that EZH2 mRNA (P < 0.01) and protein (P < 0.05) expression was increased in the testes of postpubertal goats compared to that of prepubertal goats. Moreover, EZH2 was more highly expressed in goat SSCs than in Leydig cells (P < 0.01) and Sertoli cells (P < 0.01) as determined by qPCR, Western blot, and immunofluorescence. Compared to a negative control (NC), cell proliferation (P < 0.01) and viability (P < 0.01) were decreased in SSCs in which EZH2 was knocked down, and the G2/M phase of the cell cycle was blocked (P < 0.01), as determined by Edu staining, CCK-8 assay, and flow cytometry analysis. Additionally, the expression of CASP3, CASP9, and BAX was significantly increased (P < 0.01) while BCL2 expression was decreased (P < 0.01) in EZH2 knockdown SSCs. Notably, the expression of GDNF, a SSCs marker gene, and DAZL, a spermatogenesis-related gene, were significantly decreased (P < 0.01) while GFRA1 expression was significantly up-regulated (P < 0.01) in EZH2 knockdown SSCs. Our data suggest that EZH2 plays a pivotal role in the self-renewal of goat SSCs, and knockdown of EZH2 might impair spermatogenesis in goats.


Subject(s)
Cell Self Renewal , Enhancer of Zeste Homolog 2 Protein , Animals , Enhancer of Zeste Homolog 2 Protein/genetics , Goats , Male , Spermatogenesis , Spermatogonia , Testis
10.
Biochim Biophys Acta Gene Regul Mech ; 1863(9): 194606, 2020 09.
Article in English | MEDLINE | ID: mdl-32679187

ABSTRACT

Long non-coding RNAs (lncRNAs) play an important regulatory role in mammalian fecundity. Currently, most studies are primarily concentrated on ovarian lncRNAs, ignoring the influence of uterine lncRNAs on the fecundity of female sheep. In this study, we found a higher density of uterine glands and endometrial microvessel density (MVD) in high prolificacy group of Hu sheep compared to low prolificacy groups (p < 0.05) as well as an increased level of serum placental growth factor (PLGF). Hundreds of differentially expressed (DE) lncRNAs were identified in Hu sheep with different fecundity by RNA sequencing (RNA-seq), and their targets were enriched in some signaling pathways involved in endometrial functions, such as the estrogen signaling pathway, nuclear factor kappa B (NF-κB) signaling pathway, oxytocin signaling pathway, and Wnt signaling pathway. Furthermore, the underlying mechanisms of competitive endogenous RNA (ceRNA) of lncRNA366.2-miR-1576- WNT6 were determined by bioinformatics analysis. Functionally, our results indicated that lncRNA366.2 promoted endometrial epithelial cell (EEC) proliferation, migration, and growth factor expression by sponging miR-1576 to upregulate WNT6 expression and activate the Wnt/ß-catenin pathway. Taken together, our research indicated the regulatory mechanism of the lncRNA366.2-miR-1576-WNT6 in EEC proliferation and migration. Furthermore, this study provides a new theoretical reference for the identification of candidate genes related to fecundity.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Mucous Membrane/metabolism , RNA Interference , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Uterus/metabolism , Animals , Biomarkers , Cell Proliferation , Computational Biology/methods , Female , Gene Expression Profiling , Gene Regulatory Networks , Sheep
11.
Anim Reprod Sci ; 215: 106328, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32216937

ABSTRACT

Yes-associated protein 1 (YAP1) transcription regulator of the Hippo protein kinase pathway, serves as a key regulator of tissue growth and organ size by regulating cell proliferation and apoptosis. Effects of YAP1 on proliferation and apoptosis of sheep endometrial epithelial cells (EEC) as a result of estradiol-17ß (E2) treatment, however, remain unclear. In the present study, the abundance of YAP1 protein in the uterine horn was greater than that in the uterine body or cervix. The YAP1 protein was primarily localized in the endometrial luminal and glandular epithelial cells of the uterine horn of ewes on day 2 of the estrous cycle. Compared with control samples, there was a lesser abundance of YAP1 mRNA transcript that was associated with a lesser proliferation and greater apoptosis of EEC. There were also lesser concentrations of epidermal growth factor and insulin-like growth factor 1 in the spent culture medium when there was a lesser abundance of YAP1 mRNA in EEC compared with those in the control group. When there was a greater abundance of YAP1 mRNA transcript, there were greater concentrations of epidermal growth factor and insulin-like growth factor 1 in the spent media. Furthermore, with estradiol-17ß treatment the abundance of YAP1 mRNA transcript was similar to that of the control samples. Taken together, estradiol-17ß may function as an essential regulator of EEC proliferation and apoptosis by modulation of concentrations of YAP1 protein in the sheep uterus. These results indicate there are molecular mechanisms of estradiol-17ß and YAP1 in EEC proliferation and apoptosis of ewes.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Proliferation/drug effects , Endometrium/cytology , Epithelial Cells/drug effects , Estradiol/pharmacology , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis/drug effects , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Sheep , Transcription Factors/genetics , Up-Regulation , Uterus/metabolism
12.
Meat Sci ; 164: 108094, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32146297

ABSTRACT

The aim of this study was to investigate the effect of spirulina supplementation in a high-energy (HE) diet on lipid metabolism, oxidative status and immunity in Hu lambs. The lambs were assigned to two groups receiving either a standard diet (ST) or a HE diet. Each group was divided into three subgroups: no spirulina supplementation (control), 1% spirulina supplementation, or 3% spirulina supplementation. The body fat, serum cholesterol, triacylglycerol and oxidative stress increased in lambs fed the HE diet. However, 3% spirulina supplementation in the HE diet reduced above parameters and enhanced antioxidant capacity, including increased SOD activity and T-AOC content in serum and Longissimus thoracis et lumborum (LTL). Additionally, lambs receiving 3% spirulina supplementation showed an improvement in immunity-related parameters, including increased IgG concentration in serum and red and white blood cell counts. In conclusion, 3% spirulina supplementation in HE diet ameliorated lipid metabolic disorder and oxidative stress caused by a HE diet.


Subject(s)
Diet/veterinary , Lipid Metabolism Disorders/veterinary , Sheep, Domestic/metabolism , Spirulina , Animal Feed/analysis , Animals , Blood Cell Count/veterinary , Cholesterol/blood , Diet/adverse effects , Immunoglobulin G/blood , Lipid Metabolism Disorders/diet therapy , Lipid Metabolism Disorders/radiotherapy , Muscle, Skeletal , Oxidative Stress , Random Allocation , Sheep, Domestic/immunology , Triglycerides/blood
13.
Gene ; 710: 131-139, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31158446

ABSTRACT

As a fundamental regulator of mitochondrial function, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) acts as a powerful coactivator of many transcriptional factors that relate to steroidogenesis, while the regulatory mechanism remains unclear. In the present study, testosterone secretion of goat Leydig cells (LCs) mediated by miR-1197-3p via PPARGC1A was investigated. We found PPARGC1A protein was diversely localized in testis, and the expression of PPARGC1A in testis of 9-month-old goat was significantly higher than that in 3-month-old goat. In addition, suppression of PPARGC1A significantly decreased the testosterone secretion in goat LCs, as well as reduced the expressions of key steroidogenesis related genes [steroidogenic acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), and 3 beta-hydroxysteroid dehydrogenase (3BHSD)], and overexpression of PPARGC1A showed the opposite effects. Moreover, we observed suppression of miR-1197-3p increased the synthesis of testosterone and promoted the expressions of PPARGC1A, StAR, CYP11A1, and 3BHSD by directly targeting PPARGC1A in the LCs. Furthermore, overexpression of PPARGC1A could alleviate miR-1197-3p induced aberrant steroidogenesis related gene expressions and testosterone synthesis. Taken together, miR-1197-3p could act as an essential regulator of LC testosterone secretion in goat testis by targeting PPARGC1A. These results provide a novel view of the regulatory mechanisms involved in male sexual maturation and help us to understand the molecular role of PPARGC1A in testosterone synthesis.


Subject(s)
Leydig Cells/metabolism , MicroRNAs/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Testosterone/metabolism , Animals , Cells, Cultured , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Gene Expression Regulation, Developmental , Goats , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Real-Time Polymerase Chain Reaction
14.
Theriogenology ; 132: 72-82, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31003067

ABSTRACT

Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A) acts as a powerful coactivator of many transcriptional factors that relate to granulosa cell (GC) apoptosis. In this study, the miRNAs mediating goat follicular atresia and luteinized granulosa cell (LGC) apoptosis induced by hydrogen peroxide (H2O2) via PPARGC1A were investigated. Our results showed that miR-1197-3p targeted PPARGC1A was predicted by bioinformatics algorithm and verified by luciferase reporter assay. In addition, miR-1197-3p promoted goat LGC apoptosis via PPARGC1A through mitochondrial-dependent apoptosis pathway, and these effects could be restored by PPARGC1A overexpression. Moreover, H2O2-induced LGC apoptosis significantly upregulated miR-1197-3p expression and downregulated PPARGC1A level. Pretreatment of miR-1197-3p inhibitor alleviated LGC apoptosis induced by 400 µM H2O2 for 12 h, and preserved the mitochondrial membrane potential by increasing PPARGC1A expression. In conclusion, miR-1197-3p might act as an essential regulator of goat LGC apoptosis potentially via the mitochondrial-dependent apoptosis pathway by targeting PPARGC1A.


Subject(s)
Apoptosis/drug effects , Goats , Granulosa Cells/drug effects , Hydrogen Peroxide/pharmacology , MicroRNAs/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Animals , Cell Survival , Female , Gene Expression Regulation/drug effects , Granulosa Cells/physiology , MicroRNAs/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
15.
Theriogenology ; 126: 239-248, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30590245

ABSTRACT

Hippo signaling pathway is essential for tissue development and homeostasis, while its specific role in male reproductive tract development is still unclear. The objective of this study is to elucidate the localization and expressions of key Hippo pathway components (MST1/2, LATS1/2 and YAP1) in male reproductive tract (testis, epididymis, and ductus deferens) of prepubertal (3-month-old) and postpubertal (9-month-old) Hu sheep, as well as in the cauda epididymal and ejaculated spermatozoa. Results showed that the Hippo pathway proteins were diversely localized in male reproductive tract portions, and most of their expression levels increased during sheep testicular maturation. In addition, these Hippo components were mainly localized and highly expressed in ejaculated spermatozoa compared with cauda epididymal spermatozoa. In ejaculated spermatozoa, LATS1 was localized in the acrosomal head region, and LATS2 and YAP1 were expressed in the midpiece part. Taken together, the presence of Hippo signaling cascade in the pubertal development of male reproductive tract and spermatogenesis of Hu sheep, provides new insights on the function of these components in the process of male sexual maturation, capacitation and fertilization.


Subject(s)
Genitalia, Male/metabolism , Protein Serine-Threonine Kinases/physiology , Sheep/metabolism , Spermatozoa/metabolism , Animals , Gene Expression Regulation, Developmental , Immunohistochemistry , Male , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sexual Maturation , Sheep/growth & development , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL