Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Brain Behav Evol ; 89(1): 1-14, 2017.
Article in English | MEDLINE | ID: mdl-28214875

ABSTRACT

The output of the cerebellar cortex is mainly released via cerebellar nuclei which vary in number and complexity among gnathostomes, extant vertebrates with a cerebellum. Cartilaginous fishes, a basal gnathostome lineage, show a conspicuous, well-organized cerebellar nucleus, unlike ray-finned fishes. To gain insight into the evolution and development of the cerebellar nucleus, we analyzed in the shark Scyliorhinus canicula (a chondrichthyan model species) the developmental expression of several genes coding for transcription factors (ScLhx5,ScLhx9,ScTbr1, and ScEn2) and the distribution of the protein calbindin, since all appear to be involved in cerebellar nuclei patterning in other gnathostomes. Three regions (subventricular, medial or central, and lateral or superficial) became recognizable in the cerebellar nucleus of this shark during development. Present genoarchitectonic and neurochemical data in embryos provide insight into the origin of the cerebellar nucleus in chondrichthyans and support a tripartite mediolateral organization of the cerebellar nucleus, as previously described in adult sharks. Furthermore, the expression pattern of ScLhx5,ScLhx9, and ScTbr1 in this shark, together with that of markers of proliferation, migration, and early differentiation of neurons, is compatible with the hypothesis that, as in mammals, different subsets of cerebellar nucleus neurons are originated from progenitors of 2 different sources: the ventricular zone of the cerebellar plate and the rhombic lip. We also present suggestive evidence that Lhx9 expression is involved in cerebellar nuclei patterning early on in gnathostome evolution, rather than representing an evolutionary innovation of the dentate nucleus in mammals, as previously hypothesized.


Subject(s)
Biological Evolution , Calbindins/metabolism , Cerebellar Nuclei , Dogfish , Fish Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Animals , Calbindins/genetics , Cerebellar Nuclei/embryology , Cerebellar Nuclei/metabolism , Dogfish/embryology , Dogfish/genetics , Dogfish/metabolism , Fish Proteins/genetics
2.
Exp Eye Res ; 135: 81-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25925848

ABSTRACT

The dual development of the retina of lampreys is exceptional among vertebrates and offers an interesting EvoDevo (evolutionary developmental biology) model for understanding the origin and evolution of the vertebrate retina. Only a single type of photoreceptor, ganglion cell and bipolar cell are present in the early-differentiated central retina of lamprey prolarvae. A lateral retina appears later in medium-sized larvae (about 3 years after hatching in the sea lamprey), growing and remaining largely neuroblastic until metamorphosis. In this lateral retina, only ganglion cells and optic fibers differentiate in larvae, whereas differentiation of amacrine, horizontal, photoreceptor and bipolar cells mainly takes place during metamorphosis, which gives rise to the adult retina. Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter found in the retina of vertebrates whose synthesis is mediated by the rate-limiting enzyme tryptophan hydroxylase (TPH). TPH is also the first enzyme in the biosynthetic pathways of melatonin in photoreceptor cells. The serotonin 1A receptor (5-HT1A) is a major determinant of the activity of both serotonergic cells and their targets due to its pre- and post-synaptic location. Here, we report the developmental pattern of expression of tph and 5-ht1a transcripts in the sea lamprey retina by means of in situ hybridization. In larvae, strong tph mRNA signal was observed in photoreceptors and putative ganglion cells of the central retina, and in some neuroblasts of the lateral retina. In adults, strong tph expression was observed in bipolar, amacrine and ganglion cells and in photoreceptors. In the prolarval (central) retina, all the differentiated retinal cells expressed 5-ht1a transcripts, which were not observed in undifferentiated cells. In larvae, photoreceptors, bipolar cells and ganglion cells in the central retina, and neuroblasts in the lateral retina, showed 5-ht1a expression. In the adult retina, expression of 5-ht1a transcript was mainly observed in the myoid region of both short and long photoreceptors, and was also observed in bipolar, amacrine and ganglion cells. Some 5-HT-immunoreactive amacrine cells have already been reported in the adult lamprey retina. Our study supports the serotonergic phenotype of these amacrine cells of lampreys and also suggests that other retinal neurons could synthesize serotonin at levels not detectable by immunohistochemistry. The expression of the tph transcript in retinal photoreceptors of lampreys strongly suggests that they synthesize melatonin and that this pathway appeared early and has been conserved throughout evolution in vertebrates. The expression of tph and 5-ht1a in neuroblasts also indicates that serotonin might be playing developmental roles in the larval lamprey retina.


Subject(s)
Petromyzon/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Retina/metabolism , Tryptophan Hydroxylase/metabolism , Amacrine Cells/metabolism , Animals , Immunohistochemistry , In Situ Hybridization , Larva/metabolism , Neural Stem Cells/metabolism , Photoreceptor Cells, Vertebrate , RNA, Messenger/metabolism , Retina/growth & development , Retinal Ganglion Cells/metabolism
3.
Brain Behav Evol ; 84(4): 277-87, 2014.
Article in English | MEDLINE | ID: mdl-25402659

ABSTRACT

The nervus terminalis (or terminal nerve) system was discovered in an elasmobranch species more than a century ago. Over the past century, it has also been recognized in other vertebrate groups, from agnathans to mammals. However, its origin, functions or relationship with the olfactory system are still under debate. Despite the abundant literature about the nervus terminalis system in adult elasmobranchs, its development has been overlooked. Studies in other vertebrates have reported newly differentiated neurons of the terminal nerve system migrating from the olfactory epithelium to the telencephalon as part of a 'migratory mass' of cells associated with the olfactory nerve. Whether the same occurs in developing elasmobranchs (adults showing anatomically separated nervus terminalis and olfactory systems) has not yet been determined. In this work we characterized for the first time the development of the terminal nerve and ganglia in an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula), by means of tract-tracing techniques combined with immunohistochemical markers for the terminal nerve (such as FMRF-amide peptide), for the developing components of the olfactory system (Gα0 protein, GFAP, Pax6), and markers for early postmitotic neurons (HuC/D) and migrating immature neurons (DCX). We discriminated between embryonic olfactory and terminal nerve systems and determined that both components may share a common origin in the migratory mass. We also localized the exact point where they split off near the olfactory nerve-olfactory bulb junction. The study of the development of the terminal nerve system in a basal gnathostome contributes to the knowledge of the ancestral features of this system in vertebrates, shedding light on its evolution and highlighting the importance of elasmobranchs for developmental and evolutionary studies.


Subject(s)
Neurons/cytology , Olfactory Nerve/embryology , Olfactory Pathways/embryology , Sharks/embryology , Telencephalon/embryology , Animals , Olfactory Nerve/cytology , Olfactory Pathways/cytology , Telencephalon/cytology
4.
J Comp Neurol ; 532(1): e25586, 2024 01.
Article in English | MEDLINE | ID: mdl-38289191

ABSTRACT

The torus semicircularis (TS) of teleosts is a key midbrain center of the lateral line and acoustic sensory systems. To characterize the TS in adult zebrafish, we studied their connections using the carbocyanine tracers applied to the TS and to other related nuclei and tracts. Two main TS nuclei, central and ventrolateral, were differentiable by their afferent connections. From central TS, (TSc) numerous toropetal cells were labeled bilaterally in several primary octaval nuclei (anterior, magnocellular, descending, and posterior octaval nuclei), in the secondary octaval nucleus, in the caudal octavolateralis nucleus, and in the perilemniscular region. In the midbrain, numerous toropetal cells were labeled in the contralateral TSc. In the diencephalon, toropetal cells labeled from the TSc were observed ipsilaterally in the medial prethalamic nucleus and the periventricular posterior tubercle nucleus. TSc toropetal neurons were also labeled bilaterally in the hypothalamic anterior tuberal nucleus (ATN) and ipsilaterally in the parvicellular preoptic nucleus but not in the telencephalon. Tracer application to the medial octavolateralis nucleus revealed contralateral projections to the ventrolateral TS (TSvl), whereas tracer application to the secondary octaval nucleus labeled fibers bilaterally in TSc and neurons in rostral TSc. The TSc sends ascending fibers to the ipsilateral lateral preglomerular region that, in turn, projects to the pallium. Application of DiI to the optic tectum labeled cells and fibers in the TSvl, whereas application of DiI to the ATN labeled cells and fibers in the TSc. These results reveal that the TSvl and TSc are mainly related with the mechanosensory lateral line and acoustic centers, respectively, and that they show different higher order connections.


Subject(s)
Neurons , Zebrafish , Animals , Acoustics , Arcuate Nucleus of Hypothalamus , Superior Colliculi
5.
J Comp Neurol ; 532(2): e25590, 2024 02.
Article in English | MEDLINE | ID: mdl-38335045

ABSTRACT

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates. Immunohistochemical techniques with specific antibodies against GABA or against its synthesizing enzyme, glutamic acid decarboxylase (GAD) allowed characterizing GABAergic neurons and fibers in the CNS. However, studies on the CNS distribution of GABAergic neurons and fibers of bony fishes are scant and were done in teleost species. With the aim of understanding the early evolution of this system in bony vertebrates, we analyzed the distribution of GABA-immunoreactive (-ir) and GAD-ir neurons and fibers in the CNS of a basal ray-finned fish, the Siberian sturgeon (Chondrostei, Acipenseriformes), using immunohistochemical techniques. Our results revealed the presence and distribution of GABA/GAD-ir cells in different regions of the CNS such as olfactory bulbs, pallium and subpallium, hypothalamus, thalamus, pretectum, optic tectum, tegmentum, cerebellum, central grey, octavolateralis area, vagal lobe, rhombencephalic reticular areas, and the spinal cord. Abundant GABAergic innervation was observed in most brain regions, and GABAergic fibers were very abundant in the hypothalamic floor along the hypothalamo-hypophyseal tract and neurohypophysis. In addition, GABA-ir cerebrospinal fluid-contacting cells were observed in the alar and basal hypothalamus, saccus vasculosus, and spinal cord central canal. The distribution of GABAergic systems in the sturgeon brain shows numerous similarities to that observed in lampreys, but also to those of teleosts and tetrapods.


Subject(s)
Brain , Central Nervous System , Animals , Fishes , Spinal Cord , gamma-Aminobutyric Acid
6.
J Comp Neurol ; 531(1): 58-88, 2023 01.
Article in English | MEDLINE | ID: mdl-36150899

ABSTRACT

The expression of the corticotropin-releasing hormone (PmCRH) and the CRH-binding protein (PmCRHBP) mRNAs was studied by in situ hybridization in the brain of prolarvae, larvae, and adults of the sea lamprey Petromyzon marinus. We also generated an antibody against the PmCRH mature peptide to study the distribution of PmCRH-immunoreactive cells and fibers. PmCRH immunohistochemistry was combined with antityrosine hydroxylase immunohistochemistry, PmCRHBP in situ hybridization, or neurobiotin transport from the spinal cord. The most numerous PmCRH-expressing cells were observed in the magnocellular preoptic nucleus-paraventricular nucleus and in the superior and medial rhombencephalic reticular formation. PmCRH expression was more extended in adults than in larvae, and some cell populations were mainly (olfactory bulb) or only (striatum, ventral hypothalamus, prethalamus) observed in adults. The preopto-paraventricular fibers form conspicuous tracts coursing toward the neurohypophysis, but many immunoreactive fibers were also observed coursing in many other brain regions. Brain descending fibers in the spinal cord mainly come from cells located in the isthmus and in the medial rhombencephalic reticular nucleus. The distribution of PmCRHBP-expressing neurons was different from that of PmCRH cells, with cells mainly present in the septum, striatum, preoptic region, tuberal hypothalamus, pretectum, pineal complex, isthmus, reticular formation, and spinal cord. Again, expression in adults was more extended than in larvae. PmCRH- and PmCRHBP-expressing cells are different, excluding colocalization of these substances in the same neuron. Present findings reveal a complex CRH/CRHBP system in the brain of the oldest extant vertebrate group, the agnathans, which shows similarities but important divergences with that of mammals.


Subject(s)
Petromyzon , Animals , Petromyzon/metabolism , Corticotropin-Releasing Hormone/metabolism , Central Nervous System/metabolism , Brain/metabolism , Neurons/metabolism , Mammals
7.
Chem Senses ; 37(4): 357-69, 2012 May.
Article in English | MEDLINE | ID: mdl-22167271

ABSTRACT

The olfactory mucosa of the zebrafish consists of 3 morphological types of olfactory receptor neurons (ORNs): ciliated, microvillous, and crypt cells. Previous studies in the zebrafish have revealed differential projections of ciliated and microvillous ORNs, which project to different glomerular fields. However, the bulbar targets of zebrafish crypt cells were not identified. Here, we analyze the relationship between crypt cells of the olfactory epithelium and dorsal glomerular fields of the zebrafish olfactory bulbs, as wells as the connections between these bulbar regions and forebrain regions. For this purpose, a lipophilic carbocyanine tracer (DiI) was used in fixed tissue. Application of DiI to the dorsomedial glomerular field mainly labeled crypt cells in the zebrafish olfactory epithelium. By contrast, application of DiI to the dorsolateral glomerular fields mainly labeled bipolar ORNs and only occasionally crypt cells. Bulbar efferent cells (mitral cells) contacting these dorsal glomerular fields project to different telencephalic areas, with the posterior zone of the dorsal telencephalic area (Dp) as the common target. However, dorsomedial and dorsolateral glomerular fields projected differentially to the ventral telencephalon, the former projecting to the ventrolateral supracommissural region. Retrograde labeling from the ventrolateral supracommissural region revealed mitral cells associated with 2 large glomeruli in the bulbar dorsomedial region, which putatively receives inputs from the crypt cells, indicating the existence of a crypt cell olfactory subsystem with separate projections, in the zebrafish. The comparative significance of the secondary olfactory pathways of zebrafish that convey information from crypt cells is discussed.


Subject(s)
Olfactory Bulb/anatomy & histology , Olfactory Mucosa/anatomy & histology , Olfactory Perception/physiology , Olfactory Receptor Neurons/anatomy & histology , Zebrafish/anatomy & histology , Animals , Carbocyanines , Female , Fluorescent Dyes , Hydrophobic and Hydrophilic Interactions , Male , Microscopy, Confocal , Olfactory Bulb/physiology , Olfactory Mucosa/physiology , Olfactory Receptor Neurons/physiology , Zebrafish/physiology
8.
J Comp Neurol ; 530(8): 1164-1194, 2022 06.
Article in English | MEDLINE | ID: mdl-34697803

ABSTRACT

We studied the connections (connectome) of the adult zebrafish pallium using carbocyanine dye tracing and ancillary anatomical methods. The everted zebrafish pallium (dorsal telencephalic area, D) is composed of several major zones (medial, lateral, dorsal, central, anterior, and posterior) distinguishable by their topography, cytoarchitecture, immunohistochemistry, and genoarchitecture. Our comprehensive study reveals poor interconnectivity between these pallial areas, especially between medial (Dm), lateral/dorsal (Dl, Dd), and posterior (Dp) regions. This suggests that the zebrafish pallium has dedicated modules for different neural processes. Pallial connections with extrapallial regions also show compartmental organization. Major extratelencephalic afferents come from preglomerular nuclei (to Dl, Dd, and Dm), posterior tuberal nucleus (to Dm), and lateral recess nucleus (to Dl). The subpallial (ventral, V) zones dorsal Vv, Vd, and Vs, considered homologues of the striatum, amygdala, and pallidum, are mainly afferent to Dl/Dd and Dp. Regarding the efferent pathways, they also appear characteristic of each pallial region. Rostral Dm projects to the dorsal entopeduncular nucleus. Dp is interconnected with the olfactory bulbs. The central region (Dc) defined here receives mainly projections from Dl-Dd and projects toward the pretectum and optic tectum, connections, which help to delimiting Dc. The connectome of the adult pallium revealed here complements extant studies on the neuroanatomical organization of the brain, and may be useful for neurogenetic studies performed during early stages of development. The connectome of the zebrafish pallium was also compared with the pallial connections reported in other teleosts, a large group showing high pallial diversity.


Subject(s)
Telencephalon , Zebrafish , Animals , Cerebral Cortex , Efferent Pathways , Olfactory Bulb
9.
Brain Struct Funct ; 227(8): 2593-2607, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36018391

ABSTRACT

Neurogranin (Nrgn) is a neural protein that is enriched in the cerebral cortex and is involved in synaptic plasticity via its interaction with calmodulin. Recently we reported its expression in the brain of the adult zebrafish (Alba-González et al. J Comp Neurol 530:1569-1587, 2022). In this study we analyze the development of Nrgn-like immunoreactivity (Nrgn-like-ir) in the brain and sensory structures of zebrafish embryos and larvae, using whole mounts and sections. First Nrgn-like positive neurons appeared by 2 day post-fertilization (dpf) in restricted areas of the brain, mostly in the pallium, epiphysis and hindbrain. Nrgn-like populations increased noticeably by 3 dpf, reaching an adult-like pattern in 6 dpf. Most Nrgn-like positive neurons were observed in the olfactory organ, retina (most ganglion cells, some amacrine and bipolar cells), pallium, lateral hypothalamus, thalamus, optic tectum, torus semicircularis, octavolateralis area, and viscerosensory column. Immunoreactivity was also observed in axonal tracts originating in Nrgn-like neuronal populations, namely, the projection of Nrgn-like immunopositive primary olfactory fibers to olfactory glomeruli, that of Nrgn-like positive pallial cells to the hypothalamus, the Nrgn-like-ir optic nerve to the pretectum and optic tectum, the Nrgn-like immunolabeled lateral hypothalamus to the contralateral region via the horizontal commissure, the octavolateralis area to the midbrain via the lateral lemniscus, and the viscerosensory column to the dorsal isthmus via the secondary gustatory tract. The late expression of Nrgn in zebrafish neurons is probably related to functional maturation of higher brain centers, as reported in the mammalian telencephalon. The analysis of Nrgn expression in the zebrafish brain suggests that it may be a useful marker for specific neuronal circuitries.


Subject(s)
Neurogranin , Zebrafish , Animals , Neurogranin/metabolism , Brain/metabolism , Neurons/metabolism , Axons/metabolism , Mammals
10.
J Comp Neurol ; 530(10): 1569-1587, 2022 07.
Article in English | MEDLINE | ID: mdl-35015905

ABSTRACT

We studied the expression of neurogranin in the brain and some sensory organs (barbel taste buds, olfactory organs, and retina) of adult zebrafish. Database analysis shows zebrafish has two paralog neurogranin genes (nrgna and nrgnb) that translate into three peptides with a conserved IQ domain, as in mammals. Western blots of zebrafish brain extracts using an anti-neurogranin antiserum revealed three separate bands, confirming the presence of three neurogranin peptides. Immunohistochemistry shows neurogranin-like expression in the brain and sensory organs (taste buds, neuromasts and olfactory epithelium), not being able to discern its three different peptides. In the retina, the most conspicuous positive cells were bipolar neurons. In the brain, immunopositive neurons were observed in all major regions (pallium, subpallium, preoptic area, hypothalamus, diencephalon, mesencephalon and rhombencephalon, including the cerebellum), a more extended distribution than in mammals. Interestingly, dendrites, cell bodies and axon terminals of some neurons were immunopositive, thus zebrafish neurogranins may play presynaptic and postsynaptic roles. Most positive neurons were found in primary sensory centers (viscerosensory column and medial octavolateral nucleus) and integrative centers (pallium, subpallium, optic tectum and cerebellum), which have complex synaptic circuitry. However, we also observed expression in areas not related to sensory or integrative functions, such as in cerebrospinal fluid-contacting cells associated with the hypothalamic recesses, which exhibited high neurogranin-like immunoreactivity. Together, these results reveal important differences with the patterns reported in mammals, suggesting divergent evolution from the common ancestor.


Subject(s)
Neurogranin , Zebrafish , Animals , Brain/metabolism , Diencephalon/metabolism , Mammals , Neurogranin/analysis , Neurogranin/metabolism , Rhombencephalon/chemistry , Zebrafish/metabolism
11.
Front Neuroanat ; 16: 901451, 2022.
Article in English | MEDLINE | ID: mdl-35991967

ABSTRACT

The hypothalamus is a key vertebrate brain region involved in survival and physiological functions. Understanding hypothalamic organization and evolution is important to deciphering many aspects of vertebrate biology. Recent comparative studies based on gene expression patterns have proposed the existence of hypothalamic histogenetic domains (paraventricular, TPa/PPa; subparaventricular, TSPa/PSPa; tuberal, Tu/RTu; perimamillary, PM/PRM; and mamillary, MM/RM), revealing conserved evolutionary trends. To shed light on the functional relevance of these histogenetic domains, this work aims to interpret the location of developed cell groups according to the prosomeric model in the hypothalamus of the catshark Scyliorhinus canicula, a representative of Chondrichthyans (the sister group of Osteichthyes, at the base of the gnathostome lineage). To this end, we review in detail the expression patterns of ScOtp, ScDlx2, and ScPitx2, as well as Pax6-immunoreactivity in embryos at stage 32, when the morphology of the adult catshark hypothalamus is already organized. We also propose homologies with mammals when possible. This study provides a comprehensive tool to better understand previous and novel data on hypothalamic development and evolution.

12.
Evol Dev ; 13(2): 149-58, 2011.
Article in English | MEDLINE | ID: mdl-21410871

ABSTRACT

Studies in lampreys have revealed interesting aspects of the evolution of the trigeminal system and the jaw. In the present study, we found a marker that distinguishes subpopulations of trigeminal motoneurons innervating two different kinds of oropharyngeal muscles. Immunofluorescence with an antibody against doublecortin (DCX; a neuron-specific phosphoprotein) enabled identification of the trigeminal motoneurons that innervate the velar musculature of larval and recently transformed sea lampreys. DCX-immunoreactive (-ir) motoneurons were observed in the rostro-lateral part of the trigeminal motor nucleus of these animals, but not in lampreys 1 month or more after metamorphosis. Combined double DCX/tubulin and serotonin/tubulin immunofluorescence and tract-tracing experiments with neurobiotin (NB) were also performed in larvae for further characterization of this system. Rich innervation by DCX-ir fibers was observed on the muscle fibers of the velum but not on the upper lip or lower lip muscles, which were innervated by tubulin-ir/DCX-negative fibers. No double-labelled DCX-ir motoneurons were observed in experiments in which the tracer NB was applied to the upper lip. Innervation of velar muscles by serotonergic fibers is also reported. The present results indicate that development of the trigeminal motoneurons innervating the velum differs from that of the trigeminal motoneurons innervating the lips, which is probably related to the dramatic regression of the velum during metamorphosis. The absence of data on a similar subsystem in the trigeminal motor nucleus of gnathostomes suggests that they may be lamprey-specific motoneurons. These results provide support for the "heterotopic theory" of jaw evolution and are inconsistent with the theories of a velar origin for the gnathostome jaw.


Subject(s)
Biological Evolution , Lampreys/anatomy & histology , Lampreys/genetics , Microtubule-Associated Proteins/genetics , Neuropeptides/genetics , Animals , Doublecortin Domain Proteins , Jaw , Lampreys/embryology , Lampreys/physiology , Microtubule-Associated Proteins/metabolism , Motor Neurons , Neuropeptides/metabolism , Trigeminal Nuclei/metabolism
13.
Exp Eye Res ; 92(4): 274-81, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21295569

ABSTRACT

The sea lamprey has a complex life cycle with very different larval and adult stages. The eyes of larvae are subcutaneous, lack a differentiated lens and probably work only as an ocellus-like photoreceptor organ, while the well-developed adult eyes are capable of forming images. The larval retina differs greatly from the adult retina and presents a central region with differentiated photoreceptors and a lateral, largely undifferentiated part that grows in the second half of larval life. In the present study, we examined the retinotopy of projections from larval ganglion cells to the optic tectum and pretectum in sea lamprey by using retrograde tract-tracing techniques. In most regions of the tectum, application of the tracer neurobiotin (NB) resulted in labelled ganglion cells in the lateral retina, mostly in the contralateral eye. Ganglion cells of the lateral retina showed a very simple dendritic tree, possibly because of the lack of differentiation of most retinal layers in this region. The retinotectal projection is already retinotopically organized in larvae and follows a pattern similar to that observed in adult lampreys and other vertebrates. Application of NB to the central region of the tectum also led to labelling of a few ganglion cells in the central retina, which were clearly more complex than those in the lateral region, as they had dendrites that branched both in the outer and inner plexiform layers. Application of NB to the medial pretectum led to labelling of ganglion cells in the contralateral central retina. Occasional cells were also labelled in the lateral retina. The differential organization of larval retinal projections to the pretectum and tectum suggests a different role for these projections, which is consistent with the different involvement of these centres in visual behaviour, as determined in adult lampreys. The observations in larvae also reveal very different developmental timetables for these putative functions.


Subject(s)
Petromyzon/anatomy & histology , Retina/anatomy & histology , Superior Colliculi/anatomy & histology , Visual Pathways/anatomy & histology , Animals , Microscopy, Fluorescence , Retinal Ganglion Cells/cytology
14.
Biology (Basel) ; 10(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34681077

ABSTRACT

In this study, we analyzed the organization of urocortin 3 (Ucn3)-expressing neuronal populations in the brain of the adult sea lamprey by means of in situ hybridization. We also studied the brain of larval sea lampreys to establish whether this prosocial neuropeptide is expressed differentially in two widely different phases of the sea lamprey life cycle. In adult sea lampreys, Ucn3 transcript expression was observed in neurons of the striatum, prethalamus, nucleus of the medial longitudinal fascicle, torus semicircularis, isthmic reticular formation, interpeduncular nucleus, posterior rhombencephalic reticular formation and nucleus of the solitary tract. Interestingly, in larval sea lampreys, only three regions showed Ucn3 expression, namely the prethalamus, the nucleus of the medial longitudinal fascicle and the posterior rhombencephalic reticular formation. A comparison with distributions of Ucn3 in other vertebrates revealed poor conservation of Ucn3 expression during vertebrate evolution. The large qualitative differences in Ucn3 expression observed between larval and adult phases suggest that the maturation of neuroregulatory circuits in the striatum, torus semicircularis and hindbrain chemosensory systems is closely related to profound life-style changes occurring after the transformation from larval to adult life.

15.
Brain Behav Evol ; 75(4): 241-50, 2010.
Article in English | MEDLINE | ID: mdl-20664239

ABSTRACT

The present is a review of the gustatory system of lampreys, which are representative of the earliest vertebrates. They are the oldest extant vertebrates that possess taste buds. Because of the phylogenetic position of lampreys, the study of their gustatory system will provide important information to help understand the early evolution of this system in vertebrates. The taste buds of larval lampreys, which are papillae located on the first six pairs of gill arches facing the water current, respond to classical taste substances. They consist of two types of tall differentiated cells, serotonergic biciliated taste receptors ('light' cells) and microvillous sustentacular cells ('dark cells'). The taste buds also contain basal proliferative cells. Afferent gustatory fibers of the glossopharyngeal and vagal nerves innervate the taste buds of lampreys and contact the basal surface of the biciliated cells without entering the bud. Central processes of the glossopharyngeal and vagal cranial nerves terminate in a caudal rhombencephalic region that may correspond to the nucleus of the solitary tract of gnathostomes. To date, most studies in lampreys have focused on characterizing taste buds; future research should focus on the central processing of the gustatory information. Here we will review the current knowledge about the gustatory system of lampreys to provide a basis for establishing the direction of further studies of this chemosensory system.


Subject(s)
Brain/anatomy & histology , Chemoreceptor Cells/physiology , Lampreys/physiology , Taste Buds/physiology , Taste/physiology , Animals , Brain/physiology , Chemoreceptor Cells/cytology , Lampreys/anatomy & histology , Taste Buds/cytology , Taste Buds/ultrastructure , Taste Perception/physiology
16.
J Comp Neurol ; 528(14): 2333-2360, 2020 10.
Article in English | MEDLINE | ID: mdl-32141087

ABSTRACT

Five prosomatostatin genes (PSST1, PSST2, PSST3, PSST5, and PSST6) have been recently identified in elasmobranchs (Tostivint et al., General and Comparative Endocrinology, 2019, 279, 139-147). In order to gain insight into the contribution of each somatostatin to specific nervous systems circuits and behaviors in this important jawed vertebrate group, we studied the distribution of neurons expressing PSST mRNAs in the central nervous system (CNS) of Scyliorhinus canicula using in situ hybridization. Additionally, we combined in situ hybridization with tyrosine hydroxylase (TH) immunochemistry for better characterization of PSST1 and PSST6 expressing populations. We observed differential expression of PSST1 and PSST6, which are the most widely expressed PSST transcripts, in cell populations of many CNS regions, including the pallium, subpallium, hypothalamus, diencephalon, optic tectum, midbrain tegmentum, and rhombencephalon. Interestingly, numerous small pallial neurons express PSST1 and PSST6, although in different populations judging from the colocalization of TH immunoreactivity and PSST6 expression but not with PSST1. We observed expression of PSST1 in cerebrospinal fluid-contacting (CSF-c) neurons of the hypothalamic paraventricular organ and the central canal of the spinal cord. Unlike PSST1 and PSST6, PSST2, and PSST3 are only expressed in cells of the hypothalamus and in some hindbrain lateral reticular neurons, and PSST5 in cells of the region of the entopeduncular nucleus. Comparative data of brain expression of PSST genes indicate that the somatostatinergic system of sharks is the most complex reported in any fish.


Subject(s)
Central Nervous System/metabolism , Neurons/metabolism , Protein Precursors/metabolism , Sharks/metabolism , Somatostatin/metabolism , Transcriptome , Animals
17.
Article in English | MEDLINE | ID: mdl-32231522

ABSTRACT

This study describes the cytoarchitecture of the torus longitudinalis (TL) in adult zebrafish by using light and electron microscopy, as well as its main connections as revealed by DiI tract tracing. In addition, by using high resolution confocal imaging followed by digital tracing, we describe the morphology of tectal pyramidal cells (type I cells) that are GFP positive in the transgenic line Tg(1.4dlx5a-dlx6a:GFP)ot1. The TL consists of numerous small and medium-sized neurons located in a longitudinal eminence attached to the medial optic tectum. A small proportion of these neurons are GABAergic. The neuropil shows three types of synaptic terminals and numerous dendrites. Tracing experiments revealed that the main efference of the TL is formed of parallel-like fibers that course within the marginal layer of the optic tectum. A toral projection to the thalamic nucleus rostrolateralis is also observed. Afferents to the TL come from visual and cerebellum-related nuclei in the pretectum, namely the central, intercalated and the paracommissural pretectal nuclei, as well as from the subvalvular nucleus in the isthmus. Additional afferents to the TL may come from the cerebellum but their origins could not be confirmed. The tectal afferent projection to the TL originates from cells similar to the type X cells described in other cyprinids. Tectal pyramidal neurons show round or piriform cell bodies, with spiny apical dendritic trees in the marginal layer. This anatomical study provides a basis for future functional and developmental studies focused on this cerebellum-like circuit in zebrafish.


Subject(s)
Superior Colliculi/anatomy & histology , Superior Colliculi/ultrastructure , Visual Pathways/anatomy & histology , Visual Pathways/ultrastructure , Zebrafish/anatomy & histology , Age Factors , Animals , Animals, Genetically Modified , Microscopy/methods , Microscopy, Electron/methods , Superior Colliculi/chemistry , Visual Pathways/chemistry
18.
J Anat ; 215(4): 435-43, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19552725

ABSTRACT

Colocalization of the classic neurotransmitters serotonin (5-HT) and gamma-aminobutyric acid (GABA) (or the enzyme that synthesizes the latter, glutamate decarboxylase) has been reported in a few neurons of the rat raphe magnus-obscurus nuclei. However, there are no data on the presence of neurochemically similar neurons in the brain of non-mammalian vertebrates. Lampreys are the oldest extant vertebrates and may provide important data on the phylogeny of neurochemical systems. The colocalization of 5-HT and GABA in neurons of the sea lamprey brain was studied using antibodies directed against 5-HT and GABA and confocal microscopy. Colocalization of the neurotransmitters was observed in the diencephalon and the isthmus. In the diencephalon, about 87% of the serotonergic cells of the rostral tier of the dorsal thalamus (close to the zona limitans) exhibited GABA immunoreactivity. In addition, occasional cells double-labelled for GABA and 5-HT were observed in the hypothalamic tuberal nucleus and the pretectum. Of the three serotonergic isthmic subgroups already recognized in the sea lamprey isthmus (dorsal, medial and ventral), such double-labelled cells were only observed in the ventral subgroup (about 61% of the serotonergic cells in the ventral subgroup exhibited GABA immunoreactivity). An equivalence between these lamprey isthmic cells and the serotonergic/GABAergic raphe cells of mammals is suggested. Present findings suggest that serotonergic/GABAergic neurons are more extensive in lampreys than in the rat and probably appeared before the separation of agnathans and gnathostomes. Cotransmission by release of 5-HT and GABA by the here-described lamprey brain neurons is proposed.


Subject(s)
Brain Chemistry , Neurons/chemistry , Petromyzon/metabolism , Serotonin/analysis , gamma-Aminobutyric Acid/analysis , Animals , Biological Evolution , Brain Chemistry/genetics , Microscopy, Confocal , Petromyzon/genetics , Vertebrates/genetics , Vertebrates/metabolism
19.
J Anat ; 215(6): 601-10, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19840024

ABSTRACT

Since its discovery, the possible corelease of classic neurotransmitters from neurons has received much attention. Colocalization of monoamines and amino acidergic neurotransmitters [mainly glutamate and dopamine (DA) or serotonin] in mammalian neurons has been reported. However, few studies have dealt with the colocalization of DA and gamma-aminobutyric acid (GABA) in neurons. With the aim of providing some insight into the colocalization of neurotransmitters during early vertebrate phylogeny, we studied GABA expression in dopaminergic neurons in the sea lamprey brain by using double-immunofluorescence methods with anti-DA and anti-GABA antibodies. Different degrees of colocalization of DA and GABA were observed in different dopaminergic brain nuclei. A high degree of colocalization (GABA in at least 25% of DA-immunoreactive neurons) was observed in populations of the caudal rhombencephalon, ventral isthmus, postoptic commissure nucleus, preoptic nucleus and in granule-like cells of the olfactory bulb. A new DA-immunoreactive striatal population that showed colocalization with GABA in about a quarter of its neurons was observed. In the periventricular hypothalamus, colocalization was observed in only a few cells, despite the abundance of DA- and GABA-immunoreactive neurons, and no double-labelled cells were observed in the paratubercular nucleus. The frequent colocalization of DA and GABA reveals that the dopaminergic populations of lampreys are more complex than previously reported. Double-labelled fibres or terminals were observed in different brain regions, suggesting possible corelease of DA and GABA by these lamprey neurons. The present results suggest that colocalization of DA and GABA in neurons appeared early in vertebrate evolution.


Subject(s)
Brain Chemistry , Dopamine/analysis , Neurons/chemistry , Petromyzon/metabolism , gamma-Aminobutyric Acid/analysis , Animals , Biological Evolution , Brain Chemistry/genetics , Nerve Fibers/chemistry , Presynaptic Terminals/chemistry
20.
J Chem Neuroanat ; 37(1): 46-54, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18929640

ABSTRACT

Calretinin immunohistochemistry was used to study the organization of some cerebellar structures and lateral line medullary nuclei of an elasmobranch, the lesser-spotted dogfish Scyliorhinus canicula. In the cerebellar molecular layer, stellate cells are strongly calretinin-immunoreactive (CR-ir). Perikarya and dendrites of Purkinje cells are contacted by numerous stellate cell small CR-ir boutons. Some Purkinje cell perikarya are contacted by CR-ir climbing fibers forming complex axo-somatic contacts. In the granular layer, numerous CR-ir mossy fibers exhibited large swellings. Notable differences in density and diameter of mossy fibers are observed between the auricles and cerebellar body. Thin beaded CR-ir fibers are also present in the granular layer of the body. The lateral line nuclei of the octavolateralis region are comprised of a molecular-like cerebellar crest that covers the dorsal (electroreceptive) and the medial octavolateralis nuclei (mechanoreceptive). The cerebellar crest exhibited numerous CR-ir stellate cells. In the dorsal octavolateralis nucleus, the presence of conspicuous CR-ir cells and neuropil closely associated to the region of primary fiber terminals distinguishes it clearly from the medial nucleus, revealing major differences between the electroreceptive and mechanoreceptive primary nuclei of elasmobranchs. Moreover, CR distribution in the dogfish cerebellum showed interesting differences with those reported in cerebella of other vertebrates, indicating a high variability of cerebellar CR expression in phylogeny.


Subject(s)
Cerebellum/metabolism , Dogfish/metabolism , Lateral Line System/physiology , Medulla Oblongata/metabolism , S100 Calcium Binding Protein G/biosynthesis , Animals , Calbindin 2 , Cerebellum/ultrastructure , Dogfish/anatomy & histology , Immunohistochemistry , Medulla Oblongata/ultrastructure , Purkinje Cells/metabolism , Purkinje Cells/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL