ABSTRACT
Early biomarkers of cerebral damage are essential for accurate prognosis, timely intervention, and evaluation of new treatment modalities in newborn infants with hypoxia and ischemia at birth. Hyperpolarized 13C magnetic resonance imaging (MRI) is a novel method with which to quantify metabolism in vivo with unprecedented sensitivity. We aimed to investigate the applicability of hyperpolarized 13C MRI in a newborn piglet model and whether this method may identify early changes in cerebral metabolism after a standardized hypoxic-ischemic (HI) insult. Six piglets were anesthetized and subjected to a standardized HI insult. Imaging was performed prior to and 2 h after the insult on a 3-T MR scanner. For 13C studies, [1-13C]pyruvate was hyperpolarized in a commercial polarizer. Following intravenous injection, images were acquired using metabolic-specific imaging. HI resulted in a metabolic shift with a decrease in pyruvate to bicarbonate metabolism and an increase in pyruvate to lactate metabolism (lactate/bicarbonate ratio, mean [SD]; 2.28 [0.36] vs. 3.96 [0.91]). This is the first study to show that hyperpolarized 13C MRI can be used in newborn piglets and applied to evaluate early changes in cerebral metabolism after an HI insult.
Subject(s)
Hypoxia-Ischemia, Brain , Infant, Newborn , Infant , Animals , Humans , Swine , Hypoxia-Ischemia, Brain/diagnostic imaging , Bicarbonates , Magnetic Resonance Imaging/methods , Models, Animal , Hypoxia , Lactic Acid/metabolism , Pyruvic Acid/metabolismABSTRACT
BACKGROUND: We aimed to investigate the effect of epinephrine vs placebo on return of spontaneous circulation (ROSC) and brain magnetic resonance spectroscopy and imaging (MRS/MRI) in newborn piglets with hypoxic cardiac arrest (CA). METHODS: Twenty-five piglets underwent hypoxia induced by endotracheal tube clamping until CA. The animals were randomized to CPR + intravenous epinephrine or CPR + placebo (normal saline). The primary outcome was ROSC, and secondary outcomes included time-to-ROSC, brain MRS/MRI, and composite endpoint of death or severe brain MRS/MRI abnormality. RESULTS: ROSC was more frequent in animals treated with epinephrine than placebo; 10/13 vs 4/12, RR = 2.31 (95% CI: 1.09-5.77). We found no difference in time-to-ROSC (120 (113-211) vs 153 (116-503) seconds, p = 0.7) or 6-h survival (7/13 vs 3/12, p = 0.2). Among survivors, there was no difference between groups in brain MRS/MRI. We found no difference in the composite endpoint of death or severe brain MRS/MRI abnormality; RR = 0.7 (95% CI: 0.37-1.19). CONCLUSIONS: Resuscitation with epinephrine compared to placebo improved ROSC frequency after hypoxic CA in newborn piglets. We found no difference in time-to-ROSC or the composite endpoint of death or severe brain MRS/MRI abnormality. IMPACT: In a newborn piglet model of hypoxic cardiac arrest, resuscitation with epinephrine compared to placebo improved the rate of return of spontaneous circulation and more than doubled the 6-h survival. Brain MRS/MRI biomarkers were used to evaluate the effect of epinephrine vs placebo. We found no difference between groups in the composite endpoint of death or severe brain MRS/MRI abnormality. This study adds to the limited evidence regarding the effect and safety of epinephrine; the lack of high-quality evidence from randomized clinical trials was highlighted in the latest ILCOR 2020 guidelines, and newborn animal studies were specifically requested.
Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Animals , Animals, Newborn , Brain/diagnostic imaging , Cardiopulmonary Resuscitation/methods , Epinephrine/therapeutic use , Epinephrine/pharmacology , Heart Arrest/drug therapy , Hypoxia/drug therapy , Magnetic Resonance Imaging , Return of Spontaneous Circulation , SwineABSTRACT
BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is a major contributor to death and disability worldwide. Remote ischemic postconditioning (RIPC) may offer neuroprotection but has only been tested in preclinical models. Various preclinical models with different assessments of outcomes complicate interpretation. The objective of this systematic review was to determine the neuroprotective effect of RIPC in animal models of HIE. METHODS: The protocol was preregistered at The International Prospective Register of Systematic Reviews (PROSPERO) (CRD42020205944). Literature was searched in PubMed, Embase, and Web of Science (April 2020). A formal meta-analysis was impossible due to heterogeneity and a descriptive synthesis was performed. RESULTS: Thirty-two papers were screened, and five papers were included in the analysis. These included three piglet studies and two rat studies. A broad range of outcome measures was assessed, with inconsistent results. RIPC improved brain lactate/N-acetylaspartate ratios in two piglet studies, suggesting a limited metabolic effect, while most other outcomes assessed were equally likely to improve or not. CONCLUSIONS: There is a lack of evidence to evaluate the neuroprotective effect of RIPC in HIE. Additional studies should aim to standardize methodology and outcome acquisition focusing on clinically relevant outcomes. Future studies should address the optimal timing and duration of RIPC and the combination with therapeutic hypothermia. IMPACT: This systematic review summarizes five preclinical studies that reported inconsistent effects of RIPC as a neuroprotective intervention after hypoxia-ischemia. The heterogeneity of hypoxia-ischemia animal models employed, mode of postconditioning, and diverse outcomes assessed at varying times means the key message is that no clear conclusions on effect can be drawn. This review highlights the need for future studies to be designed with standardized methodology and common clinically relevant outcomes in models with documented translatability to the human condition.
Subject(s)
Hypoxia-Ischemia, Brain , Ischemic Postconditioning , Neuroprotective Agents , Animals , Rats , Ischemia , Ischemic Postconditioning/methods , Neuroprotection , Neuroprotective Agents/therapeutic use , SwineABSTRACT
BACKGROUND: Several studies have investigated heart rate variability (HRV) as a biomarker for acute brain injury in hypoxic ischemic encephalopathy (HIE). However, the current evidence is heterogeneous and needs further reviewing to direct future studies. We aimed to systematically review whether HIE severity is associated with HRV. METHODS: This systematic review was conducted according to the preferred reporting items for systematic review and meta analyses (PRISMA). We included studies comparing neonates with severe or moderate HIE with neonates with mild or no HIE with respect to different HRV measures within 7 days of birth. Article selection and quality assessment was independently performed by two reviewers. Risk of bias and strength of evidence was evaluated by the Newcastle-Ottawa scale (NOS) and the Grading of Recommendations Assessment, Development and Evaluation (GRADE). RESULTS: We screened 1187 studies. From these, four observational studies with 248 neonates were included. For all HRV measures, the strength of evidence was very low. Neonates with severe or moderate HIE showed a reduction in most HRV measures compared to neonates with mild or no HIE with a greater reduction in those with severe HIE. CONCLUSIONS: Moderate and severe HIE was associated with a reduction in most HRV measures. Accordingly, HRV is a potential biomarker for HIE severity during the first week of life. However, the uncertainty calls for more studies.
Subject(s)
Heart Rate/physiology , Hypoxia-Ischemia, Brain/physiopathology , Bias , Biomarkers , Birth Weight , Cohort Studies , Female , Gestational Age , Heart Conduction System/physiopathology , Humans , Hypoxia-Ischemia, Brain/diagnosis , Hypoxia-Ischemia, Brain/epidemiology , Infant, Newborn , Intensive Care Units, Neonatal , Male , Observational Studies as Topic , Severity of Illness Index , Sex DistributionABSTRACT
Short stature or shortening of the limbs can be the result of a variety of genetic variants. Achondroplasia is the most common cause of disproportionate short stature and is caused by pathogenic variants in the fibroblast growth factor receptor 3 gene (FGFR3). Short stature homeobox (SHOX) deficiency is caused by loss or defects of the SHOX gene or its enhancer region. It is associated with a spectrum of phenotypes ranging from normal stature to Léri-Weill dyschondrosteosis characterized by mesomelia and short stature or the more severe Langer mesomelic dysplasia in case of biallelic SHOX deficiency. Little is known about the interactions and phenotypic consequences of achondroplasia in combination with SHOX deficiency, as the literature on this subject is scarce, and no genetically confirmed clinical reports exist. We present the clinical findings in an infant girl with concurrent achondroplasia and SHOX deficiency. We conclude that the clinical findings in infancy are phenotypically compatible with achondroplasia, with no features of the SHOX deficiency evident. This may change over time, as some features of SHOX deficiency only become evident later in life.
Subject(s)
Achondroplasia , Osteochondrodysplasias , Female , Humans , Infant , Achondroplasia/genetics , Denmark , Gene Deletion , Genes, Homeobox , Growth Disorders/genetics , Homeodomain Proteins/genetics , Osteochondrodysplasias/genetics , Short Stature Homeobox Protein/geneticsABSTRACT
Introduction: Hypoxic ischemic encephalopathy (HIE) after a perinatal insult is a dynamic process that evolves over time. Therapeutic hypothermia (TH) is standard treatment for severe to moderate HIE. There is a lack of evidence on the temporal change and interrelation of the underlying mechanisms that constitute HIE under normal and hypothermic conditions. We aimed to describe early changes in intracerebral metabolism after a hypoxic-ischemic insult in piglets treated with and without TH and in controls. Methods: Three devices were installed into the left hemisphere of 24 piglets: a probe measuring intracranial pressure, a probe measuring blood flow and oxygen tension, and a microdialysis catheter measuring lactate, glucose, glycerol, and pyruvate. After a standardized hypoxic ischemic insult, the piglets were randomized to either TH or normothermia. Results: Glycerol, a marker of cell lysis, increased immediately after the insult in both groups. There was a secondary increase in glycerol in normothermic piglets but not in piglets treated with TH. Intracerebral pressure, blood flow, oxygen tension, and extracellular lactate remained stable during the secondary increase in glycerol. Conclusion: This exploratory study depicted the development of the pathophysiological mechanisms in the hours following a perinatal hypoxic-ischemic insult with and without TH and controls.
ABSTRACT
Introduction: Hypoxic ischemic encephalopathy (HIE) is a major cause of death and disability in children worldwide. Apart from supportive care, the only established treatment for HIE is therapeutic hypothermia (TH). As TH is only partly neuroprotective, there is a need for additional therapies. Intermittent periods of limb ischemia, called remote ischemic postconditioning (RIPC), have been shown to be neuroprotective after HIE in rats and piglets. However, it is unknown whether RIPC adds to the effect of TH. We tested the neuroprotective effect of RIPC with TH compared to TH alone using magnetic resonance imaging and spectroscopy (MRI/MRS) in a piglet HIE model. Methods: Thirty-two male and female piglets were subjected to 45-min global hypoxia-ischemia (HI). Twenty-six animals were randomized to TH or RIPC plus TH; six animals received supportive care only. TH was induced through whole-body cooling. RIPC was induced 1 h after HI by four cycles of 5 min of ischemia and 5 min of reperfusion in both hind limbs. Primary outcome was Lac/NAA ratio at 24 h measured by MRS. Secondary outcomes were NAA/Cr, diffusion-weighted imaging (DWI), arterial spin labeling, aEGG score, and blood oxygen dependent (BOLD) signal measured by MRI/MRS at 6, 12, and 24 h after the hypoxic-ischemic insult. Results: All groups were subjected to a comparable but mild insult. No difference was found between the two intervention groups in Lac/NAA ratio, NAA/Cr ratio, DWI, arterial spin labeling, or BOLD signal. NAA/Cr ratio at 24 h was higher in the two intervention groups compared to supportive care only. There was no difference in aEEG score between the three groups. Conclusion: Treatment with RIPC resulted in no additional neuroprotection when combined with TH. However, insult severity was mild and only evaluated at 24 h after HI with a short MRS echo time. In future studies more subtle neurological effects may be detected with increased MRS echo time and post mortem investigations, such as brain histology. Thus, the possible neuroprotective effect of RIPC needs further evaluation.