Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Acta Oncol ; 62(11): 1574-1580, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37703217

ABSTRACT

BACKGROUND: The purpose of this study was to investigate acute normal tissue responses in the head and neck region following proton- or X-irradiation of a murine model. MATERIALS AND METHODS: Female C57BL/6J mice were irradiated with protons (25 or 60 MeV) or X-rays (100 kV). The radiation field covered the oral cavity and the major salivary glands. For protons, two different treatment plans were used, either with the Bragg Peak in the middle of the mouse (BP) or outside the mouse (transmission mode; TM). Delivered physical doses were 41, 45, and 65 Gy given in 6, 7, and 10 fractions for BP, TM, and X-rays, respectively. Alanine dosimetry was used to assess delivered doses. Oral mucositis and dermatitis were scored using CTC v.2.0-based tables. Saliva was collected at baseline, right after end of irradiation, and at day 35. RESULTS: The measured dose distribution for protons (TM) and X-rays was very similar. Oral mucositis appeared earlier, had a higher score and was found in a higher percentage of mice after proton irradiation compared to X-irradiation. Dermatitis, on the other hand, had a similar appearance after protons and X-rays. Compared to controls, saliva production was lower right after termination of proton- and X-irradiation. The BP group demonstrated saliva recovery compared to the TM and X-ray group at day 35. CONCLUSION: With lower delivered doses, proton irradiation resulted in similar skin reactions and increased oral mucositis compared to X-irradiation. This indicates that the relative biological effectiveness of protons for acute tissue responses in the mouse head and neck is greater than the clinical standard of 1.1. Thus, there is a need for further investigations of the biological effect of protons in normal tissues.


Subject(s)
Dermatitis , Stomatitis , Female , Mice , Animals , Protons , X-Rays , Disease Models, Animal , Mice, Inbred C57BL
2.
Phys Med ; 123: 103406, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38875931

ABSTRACT

PURPOSE: Ionisation chamber based reference dosimetry in magnetic resonance linear accelerators (MRL) aimed for radiotherapy requires correction for recombination losses. Published studies have found that such corrections can be carried out using the two-voltage method. These studies have, however, not included comparison with recombination corrections based on the Niatel method, which can be seen as a robust reference method due to its clear separation of initial and volume recombination and its explicit account of the pulsed nature of the dose delivery. The primary objective of this work therefore was to carry out such a comparison. MATERIALS AND METHODS: Four Farmer-type chambers (PTW-30006 and PTW-30013) were placed in a water phantom in 1.5 T Elekta Unity MRL. The chambers were oriented antiparallel or perpendicular to the static magnetic field B0 and irradiated at a source-to-surface distance of 133.5 cm with a 10 × 10 cm2 field size. RESULTS: The two-voltage method gave results in agreement (within 0.1%) with the recombination corrections derived from the Niatel method. The recombination corrections from three Niatel parameter sets (one based on a Varian Truebeam and two obtained directly in the MRL) deviated less than 0.1% from each other. A systematic shift in the recombination correction of less than 0.05% was observed if polarity corrections were not applied. CONCLUSIONS: The study supports the use of the two-voltage method in MRLs based on its excellent agreement with the Niatel method. This work, therefore, complements existing knowledge as previous studies have not included a comparison with the Niatel method.

3.
Article in English | MEDLINE | ID: mdl-38750904

ABSTRACT

PURPOSE: Preclinical studies have shown a preferential normal tissue sparing effect of FLASH radiation therapy with ultra-high dose rates. The aim of the present study was to use a murine model of acute skin toxicity to investigate the biologic effect of varying dose rates, time structure, and introducing pauses in the dose delivery. METHODS AND MATERIALS: The right hind limbs of nonanaesthetized mice were irradiated in the entrance plateau of a pencil beam scanning proton beam with 39.3 Gy. Experiment 1 was with varying field dose rates (0.7-80 Gy/s) without repainting, experiment 2 was with varying field dose rates (0.37-80 Gy/s) with repainting, and in experiment 3, the dose was split into 2, 3, 4, or 6 identical deliveries with 2-minute pauses. In total, 320 mice were included, with 6 to 25 mice per group. The endpoints were skin toxicity of different levels up to 25 days after irradiation. RESULTS: The dose rate50, which is the dose rate to induce a response in 50% of the animals, depended on the level of skin toxicity, with the higher toxicity levels displaying a FLASH effect at 0.7-2 Gy/s. Repainting resulted in higher toxicity for the same field dose rate. Splitting the dose into 2 deliveries reduced the FLASH effect, and for 3 or more deliveries, the FLASH effect was almost abolished for lower grades of toxicity. CONCLUSIONS: The dose rate that induced a FLASH effect varied for different skin toxicity levels, which are characterized by a differing degree of sensitivity to radiation dosage. Conclusions on a threshold for the dose rate needed to obtain a FLASH effect can therefore be influenced by the dose sensitivity of the used endpoint. Splitting the total dose into more deliveries compromised the FLASH effect. This can have an impact for fractionation as well as for regions where 2 or more FLASH fields overlap within the same treatment session.

4.
Biomed Phys Eng Express ; 10(1)2023 12 19.
Article in English | MEDLINE | ID: mdl-38064731

ABSTRACT

Organic plastic scintillators are of interest for ionizing radiation dosimetry in megavoltage photon beams because plastic scintillators have a mass density very similar to that of water. This leads to insignificant perturbation of the electron fluence at the point of measurement in a water phantom. This feature is a benefit for dosimetry in strong magnetic fields (e.g., 1.5 T) as found in linacs with magnetic resonance imaging. The objective of this work was to quantify if the light yield per dose for the scintillating fiber BCF-60 material from Saint-Gobain Ceramics and Plastics Inc. is constant regardless of the magnetic flux density. This question is of importance for establishing traceable measurement in MR linacs using this detector type. Experiments were carried out using an accelerator combined with an electromagnet (max 0.7 T). Scintillator probes were read out using chromatic stem-removal techniques based on two optical channels or full spectral information. Reference dosimetry was carried out with PTW31010 and PTW31021 ionization chambers. TOPAS/GEANT4 was used for modelling. The light yield per dose for the BCF-60 was found to be strongly influenced by the magnitude of the magnetic field from about 1 mT to 0.7 T. The light yield per dose increased (1.3 ± 0.2)% (k = 1) from 1 mT to 10 mT and it increased (4.5 ± 0.9)% (k = 1) from 0 T to 0.7 T. Previous studies of the influence of magnetic fields on medical scintillator dosimetry have been unable to clearly identify if observed changes in scintillator response with magnetic field strength were related to changes in dose, stem signal removal, or scintillator light yield. In the current study of BCF-60, we see a clear change in light yield with magnetic field, and none of the other effects.


Subject(s)
Radiometry , Scintillation Counting , Electrons , Photons , Water
5.
Radiat Prot Dosimetry ; 199(14): 1605-1610, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721066

ABSTRACT

Determination of beam quality correction factors is crucial for performing accurate alanine pellet dosimetry in non-reference fields. For some complex irradiation geometries, interpolation from literature data is more convenient than an experimental approach to establish these factors. Here we investigate the validity of extracting quality correction factors from literature data based on information on beam qualifiers such as half-value layer (HVL) or effective energy ${E}_{\text{eff}}$. A combination of Monte Carlo calculated dose ratios and a microdosimetric assessment of the relative efficiency allows for numerical evaluation of quality correction factors for a wide array of X-ray qualities. The computational analysis demonstrates that the average energy of the X-ray beam is optimal for characterizing the relative response. Special care should be taken when using the common X-ray beam qualifiers HVL or ${E}_{\text{eff}}$ to determine quality correction factors from literature data.


Subject(s)
Alanine , X-Rays , Radiography , Monte Carlo Method , Relative Biological Effectiveness
6.
Environ Res ; 118: 130-6, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22749110

ABSTRACT

High-level occupational radon exposure is an established risk factor for lung cancer. We assessed the long-term association between residential radon and lung cancer risk using a prospective Danish cohort using 57,053 persons recruited during 1993-1997. We followed each cohort member for cancer occurrence until 27 June 2006, identifying 589 lung cancer cases. We traced residential addresses from 1 January 1971 until 27 June 2006 and calculated radon at each of these addresses using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate ratios (IRR) and 95% confidence intervals (CI) for lung cancer risk associated with residential radon exposure with and without adjustment for sex, smoking variables, education, socio-economic status, occupation, body mass index, air pollution and consumption of fruit and alcohol. Potential effect modification by sex, traffic-related air pollution and environmental tobacco smoke was assessed. Median estimated radon was 35.8 Bq/m(3). The adjusted IRR for lung cancer was 1.04 (95% CI: 0.69-1.56) in association with a 100 Bq/m(3) higher radon concentration and 1.67 (95% CI: 0.69-4.04) among non-smokers. We found no evidence of effect modification. We find a positive association between radon and lung cancer risk consistent with previous studies but the role of chance cannot be excluded as these associations were not statistically significant. Our results provide valuable information at the low-level radon dose range.


Subject(s)
Lung Neoplasms/epidemiology , Neoplasms, Radiation-Induced/epidemiology , Radon/adverse effects , Cohort Studies , Denmark/epidemiology , Humans , Incidence , Lung Neoplasms/etiology
7.
Radiother Oncol ; 175: 178-184, 2022 10.
Article in English | MEDLINE | ID: mdl-35595175

ABSTRACT

PURPOSE: Preclinical studies indicate a normal tissue sparing effect when ultra-high dose rate (FLASH) radiation is used, while tumor response is maintained. This differential response has promising perspectives for improved clinical outcome. This study investigates tumor control and normal tissue toxicity of pencil beam scanning (PBS) proton FLASH in a mouse model. METHODS AND MATERIALS: Tumor bearing hind limbs of non-anaesthetized CDF1 mice were irradiated in a single fraction with a PBS proton beam using either conventional (CONV) dose rate (0.33-0.63 Gy/s field dose rate, 244 MeV) or FLASH (71-89 Gy/s field dose rate, 250 MeV). 162 mice with a C3H mouse mammary carcinoma subcutaneously implanted in the foot were irradiated with physical doses of 40-60 Gy (8-14 mice per dose point). The endpoints were tumor control (TC) assessed as no recurrent tumor at 90 days after treatment, the level of acute moist desquamation (MD) to the skin of the foot within 25 days post irradiation, and radiation induced fibrosis (RIF) within 24 weeks post irradiation. RESULTS: TCD50 (dose for 50% tumor control) was similar for CONV and FLASH with values (and 95% confidence intervals) of 49.1 (47.0-51.4) Gy for CONV and 51.3 (48.6-54.2) Gy for FLASH. RIF analysis was restricted to mice with tumor control. Both endpoints showed distinct normal tissue sparing effect of proton FLASH with MDD50 (dose for 50% of mice displaying moist desquamation) of <40.1 Gy for CONV and 52.3 (50.0-54.6) Gy for FLASH, (dose modifying factor at least 1.3) and FD50 (dose for 50% of mice displaying fibrosis) of 48.6 (43.2-50.8) Gy for CONV and 55.6 (52.5-60.1) Gy for FLASH (dose modifying factor of 1.14). CONCLUSIONS: FLASH had the same tumor control as CONV, but reduced normal tissue damage assessed as acute skin damage and radiation induced fibrosis.


Subject(s)
Proton Therapy , Protons , Mice , Animals , Mice, Inbred C3H , Neoplasm Recurrence, Local , Proton Therapy/adverse effects , Proton Therapy/methods , Skin/radiation effects , Radiotherapy Dosage
8.
Radiother Oncol ; 167: 109-115, 2022 02.
Article in English | MEDLINE | ID: mdl-34953933

ABSTRACT

BACKGROUND AND PURPOSE: Preclinical studies indicate a normal tissue sparing effect using ultra-high dose rate (FLASH) radiation with comparable tumor response. Most data so far are based on electron beams with limited utility for human treatments. This study validates the effect of proton FLASH delivered with pencil beam scanning (PBS) in a mouse leg model of acute skin damage and quantifies the normal tissue sparing factor, the FLASH factor, through full dose response curves. MATERIALS AND METHODS: The right hind limb of CDF1 mice was irradiated with a single fraction of proton PBS in the entrance plateau of either a 244 MeV conventional dose rate field or a 250 MeV FLASH field. In total, 301 mice were irradiated in four separate experiments, with 7-21 mice per dose point. The endpoints were the level of acute moist desquamation to the skin of the foot within 25 days post irradiation. RESULTS: The field duration and field dose rate were 61-107 s and 0.35-0.40 Gy/s for conventional dose rate and 0.35-0.73 s and 65-92 Gy/s for FLASH. Full dose response curves for five levels of acute skin damage for both conventional and FLASH dose rate revealed a distinct normal tissue sparing effect with FLASH: across all scoring levels, a 44-58% higher dose was required to give the same biological response with FLASH as compared to the conventional dose rate. CONCLUSIONS: The normal tissue sparing effect of PBS proton FLASH was validated. The FLASH factor was quantified through full dose response curves.


Subject(s)
Proton Therapy , Protons , Animals , Humans , Mice , Radiotherapy Dosage , Thromboplastin
9.
Cancer Causes Control ; 21(11): 1961-4, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20607382

ABSTRACT

BACKGROUND: In a recent population-based case-control study using 2,400 cases of childhood cancer, we found a statistically significant association between residential radon and acute lymphoblastic leukemia risk. HYPOTHESIS: Traffic exhaust in the air enhances the risk association between radon and childhood leukemia. METHODS: We included 985 cases of childhood leukemia and 1,969 control children. We used validated models to calculate residential radon and street NO(x) concentrations for each home. Conditional logistic regression analyses were used to analyze the effect of radon on childhood leukemia risk within different strata of air pollution and traffic density. RESULTS: The relative risk for childhood leukemia in association with a 10(3) Bq/m(3)-years increase in radon was 1.77 (1.11, 2.82) among those exposed to high levels of NO(x) and 1.23 (0.79, 1.91) for those exposed to low levels of NO(x) (p(interaction,) 0.17). Analyses for different morphological subtypes of leukemia and within different strata of traffic density showed a non-significant pattern of stronger associations between radon and childhood leukemia within strata of higher traffic density at the street address. INTERPRETATION: Air pollution from traffic may enhance the effect of radon on the risk of childhood leukemia. The observed tendency may also be attributed to chance.


Subject(s)
Air Pollution , Leukemia/epidemiology , Radon/analysis , Radon/toxicity , Vehicle Emissions/toxicity , Case-Control Studies , Child , Denmark/epidemiology , Housing , Humans , Leukemia/etiology , Logistic Models , Neoplasms/epidemiology , Neoplasms/etiology , Risk
10.
Phys Med Biol ; 65(21): 215023, 2020 11 06.
Article in English | MEDLINE | ID: mdl-32526719

ABSTRACT

Organic plastic scintillation detectors (PSDs) are known to produce less light per absorbed dose in highly dense radiations in comparison with e.g. 60Co gamma beams. This so-called ionization density quenching can be experimentally determined by comparison of the scintillator output with the absorbed dose established with a reference detector. The hypothesis of this work was that a newly developed small-core graphite calorimeter (core size: ø5mm × 7mm) can be used as reference for such measurements. The potential benefit of a calorimetric reference would be to have a robust and accurate reference with well-understood dosimetry properties even in high-intensity FLASH beams. As a first step, the hypothesis was tested by comparing previously established quenching parameter estimates for the BCF-60 scintillating material with data obtained with the new instrument at different depths along the central axis of a 170 MeV scanned proton beam. After the calorimetric measurements, scintillator measurements were acquired under equivalent conditions by positioning the PSD in a replica graphite core nominally identical to the core used for calorimetry. To experimentally document details of the irradiations, the spot width was mapped along the central beam axis using a new technique based on a PSD and a time-to-distance conversion procedure. Analysing the proton data in the framework of the Birks model, the graphite calorimeter gave a [Formula: see text] quenching parameter for BCF-60 in agreement with literature values. The consistency between the calorimetric results and the other sources of information supports the validity of the new method, and we therefore aim to apply it for characterization of other detectors in more intense beams where ionometry cannot serve as reference.


Subject(s)
Calorimetry/instrumentation , Graphite , Proton Therapy , Radiometry/instrumentation , Scintillation Counting/instrumentation , Monte Carlo Method , Plastics
11.
Med Phys ; 36(11): 5033-43, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19994514

ABSTRACT

PURPOSE: The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. METHODS: Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. RESULTS: For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time-resolved dose verification. The likelihood of detecting a +/-15 mm displacement error increased by a factor of 1.5 or more. CONCLUSIONS: In vivo fiber-coupled RL/OSL dosimetry based on detectors placed in standard brachytherapy needles was demonstrated. The time-resolved dose-rate measurements were found to provide a good way to visualize the progression and stability of PDR brachytherapy dose delivery, and time-resolved dose-rate measurements provided an increased sensitivity for detection of dose-delivery errors compared with time-integrated dosimetry.


Subject(s)
Brachytherapy/methods , Luminescence , Radiometry/instrumentation , Radiometry/methods , Computer Simulation , Feasibility Studies , Female , Fiber Optic Technology/instrumentation , Fiber Optic Technology/methods , Humans , Iridium Radioisotopes/therapeutic use , Needles , Practice Guidelines as Topic , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Sensitivity and Specificity , Stainless Steel , Time Factors , Titanium , Uncertainty , Uterine Cervical Neoplasms/radiotherapy
12.
Med Phys ; 36(3): 708-18, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19378731

ABSTRACT

A prototype of a new dose-verification system has been developed to facilitate prevention and identification of dose delivery errors in remotely afterloaded brachytherapy. The system allows for automatic online in vivo dosimetry directly in the tumor region using small passive detector probes that fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus 192Ir PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source-to-probe distances in the range of 2-50 mm. Under certain conditions, the RL signal could be greatly disturbed by the so-called stem signal (i.e., unwanted light generated in the fiber cable upon irradiation). The OSL signal is not subject to this source of error. The tested system appears to be adequate for in vivo brachytherapy dosimetry.


Subject(s)
Brachytherapy/methods , Iridium Radioisotopes/therapeutic use , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/instrumentation , Aluminum Oxide , Biophysical Phenomena , Brachytherapy/statistics & numerical data , Humans , Iridium Radioisotopes/administration & dosage , Luminescent Measurements , Monte Carlo Method , Neoplasms/radiotherapy , Online Systems , Optical Fibers , Phantoms, Imaging , Radiometry/methods , Radiometry/statistics & numerical data , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/statistics & numerical data , Reproducibility of Results
13.
Phys Med Biol ; 64(9): 095018, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30909170

ABSTRACT

Ionization quenching in ion beam dosimetry is often related to the fluence- or dose-averaged linear energy transfer (LET). Both quantities are however averaged over a wide LET range and a mixed field of primary and secondary ions. We propose a novel method to correct the quenched luminescence in scintillators exposed to ion beams. The method uses the energy spectrum of the primaries and accounts for the varying quenched luminescence in heavy, secondary ion tracks through amorphous track structure theory. The new method is assessed against more traditional approaches by correcting the quenched luminescence response from the BCF-12, BCF-60, and 81-0084 plastic scintillators exposed to a 100 MeV pristine proton beam in order to compare the effects of the averaged LET quantities and the secondary ions. Calculations and measurements show that primary protons constitute more than 92% of the energy deposition but account for more than 95% of the luminescence signal in the scintillators. The quenching corrected luminescence signal is in better agreement with the dose measurement when the secondary particles are taken into account. The Birks model provided the overall best quenching corrections, when the quenching corrected signal is adjusted for the number of free model parameters. The quenching parameter kB for the BCF-12 and BCF-60 scintillators is in agreement with literature values and was found to be [Formula: see text] [Formula: see text]m keV-1 for the 81-0084 scintillator. Finally, a fluence threshold for the 100 MeV proton beam was calculated to be of the order of 1010 cm-2, corresponding to 110 Gy, above which the quenching increases non-linearly and the Birks model no longer is applicable.


Subject(s)
Linear Energy Transfer , Protons , Scintillation Counting/instrumentation , Luminescence , Plastics/chemistry , Scintillation Counting/methods , Scintillation Counting/standards , Sensitivity and Specificity
14.
Epidemiology ; 19(4): 536-43, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18552587

ABSTRACT

BACKGROUND: Higher incidence rates of childhood cancer and particularly leukemia have been observed in regions with higher radon levels, but case-control studies have given inconsistent results. We tested the hypothesis that domestic radon exposure increases the risk for childhood cancer. METHODS: We identified 2400 incident cases of leukemia, central nervous system tumor, and malignant lymphoma diagnosed in children between 1968 and 1994 in the Danish Cancer Registry. Control children (n = 6697) were selected from the Danish Central Population Registry. Radon levels in residences of children and the cumulated exposure of each child were calculated as the product of exposure level and time, for each address occupied during childhood. RESULTS: Cumulative radon exposure was associated with risk for acute lymphoblastic leukemia (ALL), with rate ratios of 1.21 (95% confidence interval = 0.98-1.49) for levels of 0.26 to 0.89 x 10(3) Bq/m3-years and 1.63 (1.05-2.53) for exposure to >0.89 x 10(3) Bq/m3-years, when compared with <0.26 x 10(3) Bq/m3-years. A linear dose-response analysis showed a 56% increase in the rate of ALL per 10(3) Bq/m3-years increase in exposure. The association with ALL persisted in sensitivity analyses and after adjustment for potential confounders. No association was found with the other types of childhood cancer. CONCLUSIONS: This study suggests that domestic radon exposure increases the risk for ALL during childhood but not for other childhood cancers.


Subject(s)
Housing , Neoplasms/epidemiology , Radon/adverse effects , Adolescent , Child , Denmark/epidemiology , Dose-Response Relationship, Radiation , Humans , Radon/analysis , Registries , Risk Assessment
15.
Phys Med Biol ; 63(19): 195010, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30183687

ABSTRACT

Ionization quenching in organic scintillators is usually corrected with methods that require careful assessment of the response relative to that of an ionization chamber. Here, we present a framework to compute ionization quenching correction factors (QCFs) from first principles for organic plastic scintillators exposed to ions. The tool solves the kinetic Blanc equation, of which the Birks model is a simplified solution, based on amorphous track structures models. As a consequence, ionization quenching correction factors can be calculated relying only on standard, tabulated scintillator material properties such as the density, light yield, and decay time. The tool is validated against experimentally obtained QCFs for two different organic plastic scintillators irradiated with protons with linear energy transfers (LETs) between 5-[Formula: see text]. The QCFs computed from amorphous track structure models and the BC-400 scintillator properties deviate less than 3% from the Birks model for LETs below [Formula: see text] and less than 5% for higher LETs. The agreement between experiments and the software for the BCF-12 scintillator is within 2% for LETs below [Formula: see text] and within 10% for LETs above, comparable to the experimental uncertainties. The framework is compiled into the open source software [Formula: see text] available for download. [Formula: see text] enables computations of QCFs in organic plastic scintillators exposed to ions independently of experimentally based quenching parameters in contrast to the Birks model. [Formula: see text] can improve the accuracy of correction factors and understanding of ionization quenching in scintillator dosimetry.


Subject(s)
Plastics , Protons , Scintillation Counting/instrumentation , Linear Energy Transfer , Monte Carlo Method , Radiometry , Software
16.
Phys Med Biol ; 63(6): 065001, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29446760

ABSTRACT

The origin of photons emitted in optical fibres under proton irradiation has been attributed to either entirely Cerenkov radiation or light consisting of fluorescence with a substantial amount of Cerenkov radiation. The source of the light emission is assessed in order to understand why the signal from optical fibres irradiated with protons is reportedly quenching-free. The present study uses the directional emittance of Cerenkov photons in 12 MeV and 20 MeV electron beams to validate a Monte Carlo model for simulating the emittance and transmission of Cerenkov radiation in optical fibres. We show that fewer than 0.01 Cerenkov photons are emitted and guided per 225 MeV proton penetrating the optical fibre, and that the Cerenkov signal in the optical fibre is completely negligible at the Bragg peak. Furthermore, on taking the emittance and guidance of both fluorescence and Cerenkov photons into account, it becomes evident that the reported quenching-free signal in PMMA-based optical fibres during proton irradiation is due to fluorescence.


Subject(s)
Fluorescence , Monte Carlo Method , Phantoms, Imaging , Plastics/chemistry , Protons , Radiometry/instrumentation , Humans , Optical Fibers
17.
Radiat Prot Dosimetry ; 123(1): 83-94, 2007.
Article in English | MEDLINE | ID: mdl-16868014

ABSTRACT

A linear regression model has been developed for the prediction of indoor (222)Rn in Danish houses. The model provides proxy radon concentrations for about 21,000 houses in a Danish case-control study on the possible association between residential radon and childhood cancer (primarily leukaemia). The model was calibrated against radon measurements in 3116 houses. An independent dataset with 788 house measurements was used for model performance assessment. The model includes nine explanatory variables, of which the most important ones are house type and geology. All explanatory variables are available from central databases. The model was fitted to log-transformed radon concentrations and it has an R(2) of 40%. The uncertainty associated with individual predictions of (untransformed) radon concentrations is about a factor of 2.0 (one standard deviation). The comparison with the independent test data shows that the model makes sound predictions and that errors of radon predictions are only weakly correlated with the estimates themselves (R(2) = 10%).


Subject(s)
Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Housing , Radon/analysis , Analysis of Variance , Case-Control Studies , Child , Denmark/epidemiology , Geological Phenomena , Geology , Humans , Leukemia/epidemiology , Leukemia/etiology , Models, Theoretical , Neoplasms, Radiation-Induced/prevention & control , Radiation Dosage
18.
Radiat Prot Dosimetry ; 120(1-4): 28-32, 2006.
Article in English | MEDLINE | ID: mdl-16762966

ABSTRACT

Optical fibre dosemeter systems based on radioluminescence and optically stimulated luminescence (OSL) from carbon-doped aluminium oxide (Al(2)O(3):C) crystals were developed for in vivo real-time dose rate and absorbed dose measurements in radiotherapy and mammography. A technique was also developed for making ultra-small dosemeter probes that can easily be placed inside patients in radiation treatment. These probes have shown excellent properties in both head and neck intensity-modulated radiation therapy treatment and in mammography. The dose-response of the OSL signal for the new optical fibre dosemeter system showed a repeatability within 0.15% at a dose level of 60 mGy when integrated over 100 s. The temperature dependence in the range 0-45 degrees C showed a reproducibility within 1.3% when the OSL signal was integrated over 100 s.


Subject(s)
Aluminum Oxide/chemistry , Aluminum Oxide/radiation effects , Fiber Optic Technology/instrumentation , Thermoluminescent Dosimetry/instrumentation , Carbon/chemistry , Carbon/radiation effects , Equipment Design , Equipment Failure Analysis , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity , Thermoluminescent Dosimetry/methods
19.
Radiat Prot Dosimetry ; 119(1-4): 363-7, 2006.
Article in English | MEDLINE | ID: mdl-16762967

ABSTRACT

This paper analyses the influence of the Cerenkov radiation and other noise sources, the so-called stem effect, on radioluminescence (RL) signals generated in optical fibre Al2O3:C dosemeters used in medical dosimetry. The optical fibre dosemeter consists of a sensitive Al2O3:C crystal coupled to an optical fibre cable that carries the RL and optically stimulated luminescence (OSL) signals generated in the Al2O3:C crystal. During irradiation of the dosemeter, the real-time dose rate can be determined from the RL signal and after irradiation the total dose absorbed is determined from the OSL signal stimulated using a focused green solid-state laser. In particular, the components of the stem effect generated in the fibres were analysed to determine their impact on the RL signal.


Subject(s)
Aluminum Oxide/chemistry , Aluminum Oxide/radiation effects , Artifacts , Models, Chemical , Radiation Protection/instrumentation , Thermoluminescent Dosimetry/instrumentation , Computer Simulation , Dose-Response Relationship, Radiation , Equipment Design , Equipment Failure Analysis , Materials Testing , Radiation Dosage , Radiation Protection/methods , Reproducibility of Results , Sensitivity and Specificity , Thermoluminescent Dosimetry/methods
20.
Phys Med Biol ; 49(9): 1655-69, 2004 May 07.
Article in English | MEDLINE | ID: mdl-15152922

ABSTRACT

A new optical-fibre radiation dosimeter system, based on radioluminescence and optically stimulated luminescence from carbon-doped aluminium oxide, was developed and tested in clinical photon beams. This prototype offers several features, such as a small detector (1 x 1 x 2 mm3), high sensitivity, real-time read-out and the ability to measure both dose rate and absorbed dose. The measurements describing reproducibility and output dependence on dose rate, field size and energy all had standard deviations smaller than 1%. The signal variation with the angle of incidence was smaller than 2% (1 SD). Measurements performed in clinical situations suggest the potential of using this real-time system for in vivo dosimetry in radiotherapy.


Subject(s)
Aluminum Oxide/chemistry , Fiber Optic Technology , Photons , Thermoluminescent Dosimetry/methods , Aluminum Oxide/radiation effects , Carbon/chemistry , Phantoms, Imaging , Radiotherapy Dosage , Reproducibility of Results , Thermoluminescent Dosimetry/instrumentation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL