ABSTRACT
BACKGROUND: Maternal choline supplementation in rats can ameliorate specific neurological and behavioral abnormalities caused by alcohol exposure during pregnancy. We tested whether choline supplementation ameliorates fetal growth restriction and molecular changes in the placenta associated with periconceptional ethanol exposure (PCE) in the rat. METHODS: Sprague Dawley dams were given either 12.5% ethanol (PCE) or 0% ethanol (Con) in a liquid diet from 4 days prior to 4 days after conception. At day 5 of pregnancy, dams were either placed on a standard chow (1.6 g choline/kg chow) or an intermediate chow (2.6 g choline/kg chow). On day 10 of pregnancy, a subset of the intermediate dams were placed on a chow further supplemented with choline (7.2 g choline/kg chow), resulting in 6 groups. Fetuses and placentas were collected on day 20 of pregnancy for analysis. RESULTS: Choline supplementation resulted in increased fetal weight at late gestation, ameliorating the deficits due to PCE. This was most pronounced in litters on a standard chow during pregnancy. Choline also increased fetal liver weight and decreased fetal brain:liver ratio, independent of alcohol exposure. Placental weight was reduced as choline levels in the chow increased, particularly in female placentas. This resulted in a greater ratio of fetal:placental weight, suggesting increased placental efficiency. Global DNA methylation in the placenta was altered in a sex-specific manner by both PCE and choline. However, the increased glycogen deposition in female placentas, previously reported in this PCE model, was not prevented by choline supplementation. CONCLUSIONS: Our results suggest that choline has the potential to ameliorate fetal growth restriction associated with PCE and improve placental efficiency following prenatal alcohol exposure. Our study highlights the importance of maternal nutrition in moderating the severity of adverse fetal and placental outcomes that may arise from prenatal alcohol exposure around the time of conception.
Subject(s)
Choline/administration & dosage , Ethanol/adverse effects , Fertilization , Fetal Growth Retardation/prevention & control , Fetus/drug effects , Placenta/drug effects , Animals , Brain/embryology , Choline/blood , DNA Methylation , Dietary Supplements , Female , Fetal Development/drug effects , Fetal Growth Retardation/chemically induced , Glycogen/analysis , Liver/embryology , Organ Size/drug effects , Placenta/chemistry , Placenta/metabolism , Pregnancy , Rats , Rats, Sprague-DawleyABSTRACT
There is an urgent need to develop sensitive, non-invasive biomarkers that can track airway inflammatory activity for patients with cystic fibrosis (CF). Urinary glutathione sulfonamide (GSA) levels correlate well with GSA levels in BAL samples and other markers of neutrophilic inflammation, suggesting that this biomarker may be suitable for tracking disease activity in this population. We recruited 102 children (median 11.5 years-old) and 64 adults (median 32.5 years-old) who were admitted to hospital for management of an acute pulmonary exacerbation and/or eradication of infectious agents such as Pseudomonas aeruginosa or Staphylococcus aureus. Our aim was to explore how urinary GSA levels changed across admission timepoints. Urine samples were collected at admission and discharge, and GSA measured by liquid chromatography with mass spectrometry. Paired admission-discharge results were compared using Wilcoxon signed-rank test. Paired admission-discharge samples were available for 53 children and 60 adults. A statistically significant difference was observed between admission-discharge for children and adults. Spearman's correlation analysis identified a correlation between urinary GSA levels and sex and S. aureus infection for children only. Our preliminary findings suggest that urinary GSA is responsive to the resolution of an acute pulmonary exacerbation and therefore warrants further studies in this population.
ABSTRACT
BACKGROUND: Exaggerated neutrophil-dominated inflammation underlies progressive cystic fibrosis (CF) lung disease. Older studies reported a defective respiratory burst in CF, but more recent studies suggest neutrophil function is normal. METHODS: We measured the amount and rate of reactive oxygen species (ROS) during PMA-stimulated respiratory burst activity in children [70 CF, 13 disease controls, 19 health controls] and adults [31 CF, 14 health controls] in neutrophils harvested from peripheral blood. Blood was collected from participants with CF when clinically stable (60 children, 9 adults) and on hospital admission (38 children, 24 adults) and discharge (18 children, 21 adults) for acute pulmonary exacerbations. RESULTS: When clinically stable, children with CF had lower ROS production [median 318,633, 25% 136,810 - 75% 569,523 RLU] than disease controls [median 599,459, 25% 425,566 - 75% 730,527 RLU] and healthy controls [median 534,073, 25% 334,057 - 75% 738,593 RLU] (p = 0.008). The rate of ROS production was also lower (p = 0.029). In neither children nor adults with CF did ROS production increase on hospital admission for acute pulmonary exacerbation, nor fall prior to discharge. There were no associations between ROS production and high-sensitivity C-reactive protein (indicating systemic inflammation) in either children or adults with CF. CONCLUSIONS: Our data do not support a role for exaggerated respiratory burst activity contributing to the exaggerated neutrophil-dominated inflammation seen with CF lung disease.
Subject(s)
Cystic Fibrosis , Adult , Child , Humans , Inflammation/metabolism , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Respiratory BurstABSTRACT
BACKGROUND: Lenabasum is an oral synthetic cannabinoid receptor type 2 agonist previously shown to reduce the production of key airway pro-inflammatory cytokines known to play a role in cystic fibrosis (CF). In a double-blinded, randomized, placebo-control phase 2 study, lenabasum lowered the rate of pulmonary exacerbation among patients with CF. The present study was undertaken to investigate anti-inflammatory mechanisms of lenabasum exhibits in CF macrophages. METHODS: We used monocyte-derived macrophages (MDMs) from healthy donors (n = 15), MDMs with CFTR inhibited with C-172 (n = 5) and MDMs from patients with CF (n = 4). Monocytes were differentiated to macrophages and polarized into classically activated (M1) macrophages by LPS or alternatively activated (M2) macrophages by IL-13 in presence or absence of lenabasum. RESULTS: Lenabasum had no effect on differentiation, polarization and function of macrophages from healthy individuals. However, in CF macrophages lenabasum downregulated macrophage polarization into the pro-inflammatory M1 phenotype and secretion of the pro-inflammatory cytokines IL-8 and TNF-α in a dose-dependent manner. An improvement in phagocytic activity was also observed following lenabasum treatment. Although lenabasum did not restore the impaired polarization of anti-inflammatory M2 macrophage, it reduced the levels of IL-13 and enhanced the endocytic function of CF MDMs. The effects of lenabasum on MDMs with CFTR inhibited by C-172 were not as obvious. CONCLUSION: In CF macrophages lenabasum modulates macrophage polarization and function in vitro in a way that would reduce inflammation in vivo. Further studies are warranted to determine the link between activating the CBR2 receptor and CFTR.