Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Biol Chem ; 294(42): 15480-15494, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31484725

ABSTRACT

T-cell activation requires stimulation of specific intracellular signaling pathways in which protein-tyrosine kinases, phosphatases, and adapter proteins interact to transmit signals from the T-cell receptor to the nucleus. Interactions of LCK proto-oncogene, SRC family tyrosine kinase (LCK), and the IL-2-inducible T cell kinase (ITK) with the T cell-specific adapter protein (TSAD) promotes LCK-mediated phosphorylation and thereby ITK activation. Both ITK and LCK interact with TSAD's proline-rich region (PRR) through their Src homology 3 (SH3) domains. Whereas LCK may also interact with TSAD through its SH2 domain, ITK interacts with TSAD only through its SH3 domain. To begin to understand on a molecular level how the LCK SH3 and ITK SH3 domains interact with TSAD in human HEK293T cells, here we combined biochemical analyses with NMR spectroscopy. We found that the ITK and LCK SH3 domains potentially have adjacent and overlapping binding sites within the TSAD PRR amino acids (aa) 239-274. Pulldown experiments and NMR spectroscopy revealed that both domains may bind to TSAD aa 239-256 and aa 257-274. Co-immunoprecipitation experiments further revealed that both domains may also bind simultaneously to TSAD aa 242-268. Accordingly, NMR spectroscopy indicated that the SH3 domains may compete for these two adjacent binding sites. We propose that once the associations of ITK and LCK with TSAD promote the ITK and LCK interaction, the interactions among TSAD, ITK, and LCK are dynamically altered by ITK phosphorylation status.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/chemistry , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs , HEK293 Cells , Humans , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Phosphorylation , Protein Binding , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Mas , src Homology Domains
2.
J Biol Chem ; 283(32): 21909-19, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18541536

ABSTRACT

T cell-specific adapter protein (TSAd), encoded by the SH2D2A gene, interacts with Lck through its C terminus and thus modulates Lck activity. Here we mapped Lck phosphorylation and interaction sites on TSAd and evaluated their functional importance. The three C-terminal TSAd tyrosines Tyr(280), Tyr(290), and Tyr(305) were phosphorylated by Lck and functioned as docking sites for the Lck Src homology 2 (SH2) domain. Binding affinities of the TSAd Tyr(P)(280) and Tyr(P)(290) phosphopeptides to the isolated Lck SH2 domain were similar to that observed for the Lck Tyr(P)(505) phosphopeptide, whereas the TSAd Tyr(P)(305) peptide displayed a 10-fold higher affinity. The proline-rich Lck SH3-binding site on TSAd as well as the Lck SH2 domain were required for efficient tyrosine phosphorylation of TSAd by Lck. Interaction sites on TSAd for both Lck SH2 and Lck SH3 were necessary for TSAd-mediated modulation of proximal TCR signaling events. We found that 20-30% of TSAd molecules are phosphorylated in activated T cells and that the proportion of TSAd to Lck molecules in such cells is approximately 1:1. Therefore, in activated T cells, a considerable number of Lck molecules may potentially be engaged by TSAd. In conclusion, Lck binds to TSAd prolines and phosphorylates and interacts with the three C-terminal TSAd tyrosines. We propose that through multivalent interactions with Lck, TSAd diverts Lck from phosphorylating other substrates, thus modulating its functional activity through substrate competition.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , CD4-Positive T-Lymphocytes/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Cell Line , Humans , Jurkat Cells , Ligands , Phosphopeptides/metabolism , Phosphorylation , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Tyrosine/metabolism , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL