Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 629(8011): 393-401, 2024 May.
Article in English | MEDLINE | ID: mdl-38632400

ABSTRACT

Retaining information in working memory is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference1,2. However, how cognitive control regulates working memory storage is unclear. Here we show that interactions of frontal control and hippocampal persistent activity are coordinated by theta-gamma phase-amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in their working memory. In the hippocampus, TG-PAC was indicative of working memory load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. The spike timing of these PAC neurons was coordinated with frontal theta activity when cognitive control demand was high. By introducing noise correlations with persistently active neurons in the hippocampus, PAC neurons shaped the geometry of the population code. This led to higher-fidelity representations of working memory content that were associated with improved behaviour. Our results support a multicomponent architecture of working memory1,2, with frontal control managing maintenance of working memory content in storage-related areas3-5. Within this framework, hippocampal TG-PAC integrates cognitive control and working memory storage across brain areas, thereby suggesting a potential mechanism for top-down control over sensory-driven processes.


Subject(s)
Hippocampus , Memory, Short-Term , Neurons , Adult , Female , Humans , Male , Action Potentials , Cognition/physiology , Frontal Lobe/physiology , Frontal Lobe/cytology , Gamma Rhythm/physiology , Hippocampus/physiology , Hippocampus/cytology , Memory, Short-Term/physiology , Neurons/physiology , Temporal Lobe/physiology , Temporal Lobe/cytology , Theta Rhythm/physiology , Middle Aged
2.
Epilepsia ; 64(3): 654-666, 2023 03.
Article in English | MEDLINE | ID: mdl-36196769

ABSTRACT

OBJECTIVE: Laser interstitial thermal therapy (LiTT) is a minimally invasive surgical procedure for intractable mesial temporal epilepsy (mTLE). LiTT is safe and effective, but seizure outcomes are highly variable due to patient variability, suboptimal targeting, and incomplete ablation of the epileptogenic zone. Apparent diffusion coefficient (ADC) is a magnetic resonance imaging (MRI) sequence that can identify potential epileptogenic foci in the mesial temporal lobe to improve ablation and seizure outcomes. The objective of this study was to investigate whether ablation of tissue clusters with high ADC values in the mesial temporal structures is associated with seizure outcome in mTLE after LiTT. METHODS: Twenty-seven patients with mTLE who underwent LiTT at our institution were analyzed. One-year seizure outcome was categorized as complete seizure freedom (International League Against Epilepsy [ILAE] Class I) and residual seizures (ILAE Class II-VI). Volumes of hippocampus and amygdala were segmented from the preoperative T1 MRI sequence. Spatially distinct hyperintensity clusters were identified in the preoperative ADC map. Proportion of cluster volume and number ablated were associated with seizure outcomes. RESULTS: The mean age at surgery was 37.5 years and the mean follow-up duration was 1.9 years. Proportions of hippocampal cluster volume (p = .013) and number (p = .03) ablated were significantly higher in patients with seizure freedom. For amygdala clusters, the proportion of cluster number ablated was significantly associated with seizure outcome (p = .026). In the combined amygdalohippocampal complex, ablation of amygdalohippocampal clusters reliably predicted seizure outcome by their volume ablated (area under the curve [AUC] = 0.7670, p = .02). SIGNIFICANCE: Seizure outcome after LiTT in patients with mTLE was associated significantly with the extent of cluster ablation in the amygdalohippocampal complex. The results suggest that preoperative ADC analysis may help identify high-yield pathological tissue clusters that represent epileptogenic foci. ADC-based cluster analysis can potentially assist ablation targeting and improve seizure outcome after LiTT in mTLE.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Generalized , Epilepsy, Temporal Lobe , Laser Therapy , Humans , Epilepsy, Temporal Lobe/surgery , Laser Therapy/methods , Seizures/pathology , Temporal Lobe/surgery , Hippocampus/pathology , Drug Resistant Epilepsy/surgery , Magnetic Resonance Imaging/methods , Epilepsy, Generalized/pathology , Lasers , Treatment Outcome
3.
Brain ; 144(9): 2837-2851, 2021 10 22.
Article in English | MEDLINE | ID: mdl-33905474

ABSTRACT

Because of its involvement in a wide variety of cardiovascular, metabolic and behavioural functions, the hypothalamus constitutes a potential target for neuromodulation in a number of treatment-refractory conditions. The precise neural substrates and circuitry subserving these responses, however, are poorly characterized to date. We sought to retrospectively explore the acute sequelae of hypothalamic region deep brain stimulation and characterize their neuroanatomical correlates. To this end we studied-at multiple international centres-58 patients (mean age: 68.5 ± 7.9 years, 26 females) suffering from mild Alzheimer's disease who underwent stimulation of the fornix region between 2007 and 2019. We catalogued the diverse spectrum of acutely induced clinical responses during electrical stimulation and interrogated their neural substrates using volume of tissue activated modelling, voxel-wise mapping, and supervised machine learning techniques. In total 627 acute clinical responses to stimulation-including tachycardia, hypertension, flushing, sweating, warmth, coldness, nausea, phosphenes, and fear-were recorded and catalogued across patients using standard descriptive methods. The most common manifestations during hypothalamic region stimulation were tachycardia (30.9%) and warmth (24.6%) followed by flushing (9.1%) and hypertension (6.9%). Voxel-wise mapping identified distinct, locally separable clusters for all sequelae that could be mapped to specific hypothalamic and extrahypothalamic grey and white matter structures. K-nearest neighbour classification further validated the clinico-anatomical correlates emphasizing the functional importance of identified neural substrates with area under the receiving operating characteristic curves between 0.67 and 0.91. Overall, we were able to localize acute effects of hypothalamic region stimulation to distinct tracts and nuclei within the hypothalamus and the wider diencephalon providing clinico-anatomical insights that may help to guide future neuromodulation work.


Subject(s)
Affect/physiology , Autonomic Nervous System/diagnostic imaging , Brain Mapping/methods , Cognition/physiology , Deep Brain Stimulation/methods , Hypothalamus/diagnostic imaging , Aged , Autonomic Nervous System/physiology , Body Temperature/physiology , Electrodes, Implanted , Female , Humans , Hypothalamus/physiology , Hypothalamus/surgery , Male , Middle Aged , Prospective Studies , Tachycardia/diagnostic imaging , Tachycardia/physiopathology
4.
Epilepsia ; 62(5): 1085-1091, 2021 05.
Article in English | MEDLINE | ID: mdl-33713425

ABSTRACT

OBJECTIVE: This study was undertaken to identify clinical factors associated with seizure freedom after magnetic resonance-guided laser interstitial thermal therapy (MRgLiTT) in temporal lobe epilepsy patients with unilateral mesial temporal sclerosis (MTS). METHODS: We identified 56 patients with magnetic resonance imaging-defined MTS who underwent MRgLiTT with at least 1 year of follow-up. Primary outcome was seizure freedom at 1 year. We examined the association of seizure freedom and the following clinical factors: age at surgery, gender, history of febrile seizures, history of focal to bilateral tonic-clonic seizures, duration of epilepsy at the time of surgery, frequency of interictal epileptiform discharges (IEDs), seizure frequency, and presence of bilateral IEDs. RESULTS: Thirty-five (62.5%) patients were seizure-free at 1 year. The presence of bilateral IEDs and age at surgery were associated with 1-year seizure freedom after MRgLiTT. The presence of bilateral IEDS was associated with lower odds of seizure freedom (odds ratio [OR] = .05, 95% confidence interval [CI] = .01-.46, p = .008), whereas increasing age at surgery was associated with increased odds of seizure freedom (OR = 1.10, 95% CI = 1.03-1.19, p = .009). SIGNIFICANCE: This study demonstrates associations between presence of bilateral IEDs and age at surgery and seizure freedom at 1 year after MRgLiTT.


Subject(s)
Epilepsy, Temporal Lobe/therapy , Laser Therapy/methods , Treatment Outcome , Adult , Drug Resistant Epilepsy/therapy , Female , Humans , Hyperthermia, Induced/methods , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies , Seizures/prevention & control
5.
Br J Neurosurg ; 35(3): 301-305, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32648480

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) lead revision due to suboptimal therapy is common but there is no standardised protocol. We describe a novel technique using iMRI to perform concurrent new Globus Pallidus Internus (GPi) DBS lead implantation and old lead removal in a dystonia patient.Case-description: A 60-year-old woman with medication and neurotoxin-refractory isolated cervical dystonia underwent awake bilateral GPi DBS surgery with MER-guided lead implantation. She initially had a favourable response but later reported suboptimal benefit despite reprogramming. MRI demonstrated suboptimal lead placement and MRI-guided revision surgery under general anesthesia was planned. The goal was to place new leads superior and medial to the existing leads. Using a 1.5 T iMRI and the ClearPoint® NeuroNavigation system, new leads were placed through the existing burr holes, into the new targets with radial errors < 0.08mm bilaterally without crossing the old leads. The old leads were then removed and the new leads connected to the existing pulse generator. The patient tolerated the procedure well and had improved side-effect profile at all contacts at 1-month follow-up. CONCLUSIONS: Non-staged iMRI-guided DBS revision surgery under general anesthesia is technically feasible and is an alternative strategy to a staged iMRI-guided revision surgery or an awake MER-guided revision surgery in select patients.


Subject(s)
Deep Brain Stimulation , Dystonia , Female , Globus Pallidus/surgery , Humans , Magnetic Resonance Imaging , Middle Aged , Treatment Outcome
6.
Curr Neurol Neurosci Rep ; 20(12): 65, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33169232

ABSTRACT

PURPOSE OF REVIEW: Olfactory testing is a potentially safe, cost-effective, bedside evaluation tool for diagnosis, monitoring, and risk assessment for surgery in temporal lobe epilepsy (TLE) patients, but testing methods and relevant olfactory domains are not standardized. We conducted a systematic review to evaluate olfactory tests in TLE and summarize the results of the literature. RECENT FINDINGS: Olfactory tests varied significantly in odorant administration tools and devices, target odorants, evaluation timing, and grading scales. The Smell Threshold Test and University of Pennsylvania Smell Identification Test were the most validated single-domain tests for odor detection and odor identification, respectively. For multi-domain tests, Odor Memory/Discrimination Test and the Sniffin' Sticks test were the most validated. Results of olfactory tests in TLE are presented by domain. Rigorous validation, standardization, and comparative analysis of existing olfactory tests by domain is urgently needed to establish the utility and efficacy of olfactory testing in TLE.


Subject(s)
Epilepsy, Temporal Lobe , Olfaction Disorders , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/diagnosis , Humans , Memory , Odorants , Olfaction Disorders/diagnosis , Olfaction Disorders/etiology , Smell
7.
Cereb Cortex ; 29(2): 777-787, 2019 02 01.
Article in English | MEDLINE | ID: mdl-29373641

ABSTRACT

Any given area in human cortex may receive input from multiple, functionally heterogeneous areas, potentially representing different processing threads. Alpha (8-13 Hz) and beta oscillations (13-20 Hz) have been hypothesized by other investigators to gate local cortical processing, but their influence on cortical responses to input from other cortical areas is unknown. To study this, we measured the effect of local oscillatory power and phase on cortical responses elicited by single-pulse electrical stimulation (SPES) at distant cortical sites, in awake human subjects implanted with intracranial electrodes for epilepsy surgery. In 4 out of 5 subjects, the amplitudes of corticocortical evoked potentials (CCEPs) elicited by distant SPES were reproducibly modulated by the power, but not the phase, of local oscillations in alpha and beta frequencies. Specifically, CCEP amplitudes were higher when average oscillatory power just before distant SPES (-110 to -10 ms) was high. This effect was observed in only a subset (0-33%) of sites with CCEPs and, like the CCEPs themselves, varied with stimulation at different distant sites. Our results suggest that although alpha and beta oscillations may gate local processing, they may also enhance the responsiveness of cortex to input from distant cortical sites.


Subject(s)
Alpha Rhythm/physiology , Beta Rhythm/physiology , Cerebral Cortex/physiology , Drug Resistant Epilepsy/physiopathology , Electrocorticography/methods , Electrodes, Implanted , Adolescent , Adult , Drug Resistant Epilepsy/diagnosis , Female , Humans , Male
8.
Cereb Cortex ; 29(11): 4551-4567, 2019 12 17.
Article in English | MEDLINE | ID: mdl-30590542

ABSTRACT

Rapid and flexible learning during behavioral choices is critical to our daily endeavors and constitutes a hallmark of dynamic reasoning. An important paradigm to examine flexible behavior involves learning new arbitrary associations mapping visual inputs to motor outputs. We conjectured that visuomotor rules are instantiated by translating visual signals into actions through dynamic interactions between visual, frontal and motor cortex. We evaluated the neural representation of such visuomotor rules by performing intracranial field potential recordings in epilepsy subjects during a rule-learning delayed match-to-behavior task. Learning new visuomotor mappings led to the emergence of specific responses associating visual signals with motor outputs in 3 anatomical clusters in frontal, anteroventral temporal and posterior parietal cortex. After learning, mapping selective signals during the delay period showed interactions with visual and motor signals. These observations provide initial steps towards elucidating the dynamic circuits underlying flexible behavior and how communication between subregions of frontal, temporal, and parietal cortex leads to rapid learning of task-relevant choices.


Subject(s)
Association Learning/physiology , Brain/physiology , Neurons/physiology , Psychomotor Performance/physiology , Adolescent , Adult , Child , Female , Frontal Lobe/physiology , Humans , Male , Middle Aged , Motor Activity , Neural Pathways/physiology , Parietal Lobe/physiology , Photic Stimulation , Temporal Lobe/physiology , Visual Perception/physiology , Young Adult
9.
J Neurol Neurosurg Psychiatry ; 89(7): 777-787, 2018 07.
Article in English | MEDLINE | ID: mdl-29242310

ABSTRACT

Based on the success of deep brain stimulation (DBS) for treating movement disorders, there is growing interest in using DBS to treat schizophrenia (SZ). We review the unmet needs of patients with SZ and the scientific rationale behind the DBS targets proposed in the literature in order to guide future development of DBS to treat this vulnerable patient population. SZ remains a devastating disorder despite treatment. Relapse, untreated psychosis, intolerable side effects and the lack of effective treatment for negative and cognitive symptoms contribute to poor outcome. Novel therapeutic interventions are needed to treat SZ and DBS is emerging as a potential intervention. Convergent genetic, pharmacological and neuroimaging evidence implicating neuropathology associated with psychosis is consistent with SZ being a circuit disorder amenable to striatal modulation with DBS. Many of the DBS targets proposed in the literature may modulate striatal dysregulation. Additional targets are considered for treating tardive dyskinesia and negative and cognitive symptoms. A need is identified for the concurrent development of neurophysiological biomarkers relevant to SZ pathology in order to inform DBS targeting. Finally, we discuss the current clinical trials of DBS for SZ, and their ethical considerations. We conclude that patients with severe symptoms despite treatment must have the capacity to consent for a DBS clinical trial in which risks can be estimated, but benefit is not known. In addition, psychiatric populations should have access to the potential benefits of neurosurgical advances.


Subject(s)
Deep Brain Stimulation/methods , Schizophrenia/therapy , Humans
10.
J Comput Neurosci ; 45(3): 193-206, 2018 12.
Article in English | MEDLINE | ID: mdl-30443813

ABSTRACT

Electrical stimulation of nerve fibers is used as a therapeutic tool to treat neurophysiological disorders. Despite efforts to model the effects of stimulation, its underlying mechanisms remain unclear. Current mechanistic models quantify the effects that the electrical field produces near the fiber but do not capture interactions between action potentials (APs) initiated by stimulus and APs initiated by underlying physiological activity. In this study, we aim to quantify the effects of stimulation frequency and fiber diameter on AP interactions involving collisions and loss of excitability. We constructed a mechanistic model of a myelinated nerve fiber receiving two inputs: the underlying physiological activity at the terminal end of the fiber, and an external stimulus applied to the middle of the fiber. We define conduction reliability as the percentage of physiological APs that make it to the somatic end of the nerve fiber. At low input frequencies, conduction reliability is greater than 95% and decreases with increasing frequency due to an increase in AP interactions. Conduction reliability is less sensitive to fiber diameter and only decreases slightly with increasing fiber diameter. Finally, both the number and type of AP interactions significantly vary with both input frequencies and fiber diameter. Modeling the interactions between APs initiated by stimulus and APs initiated by underlying physiological activity in a nerve fiber opens opportunities towards understanding mechanisms of electrical stimulation therapies.


Subject(s)
Action Potentials/physiology , Electric Stimulation , Models, Neurological , Nerve Fibers, Myelinated/physiology , Neural Conduction/physiology , Animals , Computer Simulation , Humans , Reproducibility of Results
11.
Yale J Biol Med ; 91(3): 323-331, 2018 09.
Article in English | MEDLINE | ID: mdl-30258319

ABSTRACT

Failed back surgery syndrome (FBBS) is characterized by chronic pain that persists following spine surgery. In this review, we discuss the use of spinal cord stimulation (SCS) for FBBS treatment and how the clinical use of SCS may be influenced by private manufacturers. While SCS therapy can be promising for the appropriate patient, there remain knowledge gaps in understanding the full potential of SCS technology for delivering optimal therapeutic benefit. We caution that the use of SCS without a complete understanding of the technology may create exploitative situations that private manufacturers can capitalize on while subjecting patients to potentially unnecessary health and financial burdens.


Subject(s)
Failed Back Surgery Syndrome/surgery , Failed Back Surgery Syndrome/therapy , Humans , Neurosurgery , Spinal Cord Stimulation
12.
Proc Natl Acad Sci U S A ; 111(49): E5321-30, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25404339

ABSTRACT

The human brain is a dynamic networked system. Patients with partial epileptic seizures have focal regions that periodically diverge from normal brain network dynamics during seizures. We studied the evolution of brain connectivity before, during, and after seizures with graph-theoretic techniques on continuous electrocorticographic (ECoG) recordings (5.4 ± 1.7 d per patient, mean ± SD) from 12 patients with temporal, occipital, or frontal lobe partial onset seizures. Each electrode was considered a node in a graph, and edges between pairs of nodes were weighted by their coherence within a frequency band. The leading eigenvector of the connectivity matrix, which captures network structure, was tracked over time and clustered to uncover a finite set of brain network states. Across patients, we found that (i) the network connectivity is structured and defines a finite set of brain states, (ii) seizures are characterized by a consistent sequence of states, (iii) a subset of nodes is isolated from the network at seizure onset and becomes more connected with the network toward seizure termination, and (iv) the isolated nodes may identify the seizure onset zone with high specificity and sensitivity. To localize a seizure, clinicians visually inspect seizures recorded from multiple intracranial electrode contacts, a time-consuming process that may not always result in definitive localization. We show that network metrics computed from all ECoG channels capture the dynamics of the seizure onset zone as it diverges from normal overall network structure. This suggests that a state space model can be used to help localize the seizure onset zone in ECoG recordings.


Subject(s)
Brain Mapping/methods , Brain/physiopathology , Epilepsy/physiopathology , Adolescent , Adult , Area Under Curve , Child, Preschool , Electrodes , Electroencephalography/methods , Female , Humans , Male , Middle Aged , Models, Statistical , Reproducibility of Results , Signal Processing, Computer-Assisted , Time Factors , Young Adult
13.
Am J Geriatr Psychiatry ; 24(12): 1171-1180, 2016 12.
Article in English | MEDLINE | ID: mdl-27746069

ABSTRACT

Although Parkinson disease (PD) is defined clinically by its motor symptoms, it is increasingly recognized that much of the disability and worsened quality of life experienced by patients with PD is attributable to psychiatric symptoms. The authors describe a model of multidisciplinary care that enables these symptoms to be effectively managed. They describe neuropsychiatric complications of PD itself and pharmacologic and neurostimulation treatments for parkinsonian motor symptoms and discuss the management of these complications. Specifically, they describe the clinical associations between motor fluctuations and anxiety and depressive symptoms, the compulsive overuse of dopaminergic medications prescribed for motor symptoms (the dopamine dysregulation syndrome), and neuropsychiatric complications of these medications, including impulse control disorders, psychosis, and manic syndromes. Optimal management of these problems requires close collaboration across disciplines because of the potential for interactions among the pathophysiologic process of PD, motor symptoms, dopaminergic drugs, and psychiatric symptoms. The authors emphasize how their model of multidisciplinary care facilitates close collaboration among psychiatrists, other mental health professionals, neurologists, and functional neurosurgeons and how this facilitates effective care for patients who develop the specific neuropsychiatric complications discussed.


Subject(s)
Antiparkinson Agents/adverse effects , Interdisciplinary Communication , Mental Disorders/etiology , Parkinson Disease/complications , Antiparkinson Agents/therapeutic use , Anxiety/chemically induced , Anxiety/etiology , Depression/chemically induced , Depression/etiology , Disease Progression , Dopamine Agents/adverse effects , Dopamine Agents/therapeutic use , Humans , Mental Disorders/chemically induced , Models, Theoretical , Motor Neuron Disease/chemically induced , Motor Neuron Disease/etiology , Motor Neuron Disease/psychology , Parkinson Disease/drug therapy , Parkinson Disease/psychology , Patient Care Team
14.
J Neurophysiol ; 113(5): 1656-69, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25429116

ABSTRACT

Visual recognition takes a small fraction of a second and relies on the cascade of signals along the ventral visual stream. Given the rapid path through multiple processing steps between photoreceptors and higher visual areas, information must progress from stage to stage very quickly. This rapid progression of information suggests that fine temporal details of the neural response may be important to the brain's encoding of visual signals. We investigated how changes in the relative timing of incoming visual stimulation affect the representation of object information by recording intracranial field potentials along the human ventral visual stream while subjects recognized objects whose parts were presented with varying asynchrony. Visual responses along the ventral stream were sensitive to timing differences as small as 17 ms between parts. In particular, there was a strong dependency on the temporal order of stimulus presentation, even at short asynchronies. From these observations we infer that the neural representation of complex information in visual cortex can be modulated by rapid dynamics on scales of tens of milliseconds.


Subject(s)
Evoked Potentials, Visual , Pattern Recognition, Visual , Reaction Time , Visual Cortex/physiology , Female , Humans , Male
15.
Proc Natl Acad Sci U S A ; 109(5): 1731-6, 2012 Jan 31.
Article in English | MEDLINE | ID: mdl-22307639

ABSTRACT

Intracranial recording is an important diagnostic method routinely used in a number of neurological monitoring scenarios. In recent years, advancements in such recordings have been extended to include unit activity of an ensemble of neurons. However, a detailed functional characterization of excitatory and inhibitory cells has not been attempted in human neocortex, particularly during the sleep state. Here, we report that such feature discrimination is possible from high-density recordings in the neocortex by using 2D multielectrode arrays. Successful separation of regular-spiking neurons (or bursting cells) from fast-spiking cells resulted in well-defined clusters that each showed unique intrinsic firing properties. The high density of the array, which allowed recording from a large number of cells (up to 90), helped us to identify apparent monosynaptic connections, confirming the excitatory and inhibitory nature of regular-spiking and fast-spiking cells, thus categorized as putative pyramidal cells and interneurons, respectively. Finally, we investigated the dynamics of correlations within each class. A marked exponential decay with distance was observed in the case of excitatory but not for inhibitory cells. Although the amplitude of that decline depended on the timescale at which the correlations were computed, the spatial constant did not. Furthermore, this spatial constant is compatible with the typical size of human columnar organization. These findings provide a detailed characterization of neuronal activity, functional connectivity at the microcircuit level, and the interplay of excitation and inhibition in the human neocortex.


Subject(s)
Neocortex/physiology , Sleep , Action Potentials , Electroencephalography , Humans , Neurons/physiology
16.
Proc Natl Acad Sci U S A ; 109(49): E3377-86, 2012 Dec 04.
Article in English | MEDLINE | ID: mdl-23129622

ABSTRACT

The neurophysiological mechanisms by which anesthetic drugs cause loss of consciousness are poorly understood. Anesthetic actions at the molecular, cellular, and systems levels have been studied in detail at steady states of deep general anesthesia. However, little is known about how anesthetics alter neural activity during the transition into unconsciousness. We recorded simultaneous multiscale neural activity from human cortex, including ensembles of single neurons, local field potentials, and intracranial electrocorticograms, during induction of general anesthesia. We analyzed local and global neuronal network changes that occurred simultaneously with loss of consciousness. We show that propofol-induced unconsciousness occurs within seconds of the abrupt onset of a slow (<1 Hz) oscillation in the local field potential. This oscillation marks a state in which cortical neurons maintain local patterns of network activity, but this activity is fragmented across both time and space. Local (<4 mm) neuronal populations maintain the millisecond-scale connectivity patterns observed in the awake state, and spike rates fluctuate and can reach baseline levels. However, neuronal spiking occurs only within a limited slow oscillation-phase window and is silent otherwise, fragmenting the time course of neural activity. Unexpectedly, we found that these slow oscillations occur asynchronously across cortex, disrupting functional connectivity between cortical areas. We conclude that the onset of slow oscillations is a neural correlate of propofol-induced loss of consciousness, marking a shift to cortical dynamics in which local neuronal networks remain intact but become functionally isolated in time and space.


Subject(s)
Action Potentials/drug effects , Anesthetics, Intravenous/pharmacology , Cerebral Cortex/drug effects , Epilepsy/physiopathology , Nerve Net/drug effects , Propofol/pharmacology , Unconsciousness/physiopathology , Action Potentials/physiology , Anesthesia, General , Cerebral Cortex/physiology , Humans , Linear Models , Time Factors , Unconsciousness/chemically induced
17.
Neurosurg Focus ; 38(6): E5, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26030705

ABSTRACT

OBJECT: Cases of postoperative psychosis in Parkinson's disease patients receiving deep brain stimulation (DBS) treatment have previously been published. However, the magnitude of symptom incidence and the clinical risk factors are currently unknown. This retrospective study sheds light on these issues by investigating psychosis in a group of 128 Parkinson's disease patients who received DBS implants. METHODS: A retrospective chart review was performed to obtain surgery dates, follow-up clinic visit dates, and associated stimulation parameter settings (contacts in use and the polarity of each along with stimulation voltage, frequency, and pulse width) for each patient. Unified Parkinson's Disease Rating Scale II Thought Disorder scores, used as a clinical assessment tool to evaluate the presence of psychosis at each visit, were also collected. The data were compiled into a database and analyzed. RESULTS: The lifetime incidence of psychosis in this cohort of patients was 28.1%. The data suggest that risk of psychosis remains fairly constant throughout the first 5 years after implantation of a DBS system and that patients older at the time of receiving the first DBS implant are not only more likely to develop psychosis, but also to develop symptoms sooner than their younger counterparts. Further analysis provides evidence that psychosis is largely independent of the clinically used electrode contact and of stimulation parameters prior to psychosis onset. CONCLUSIONS: Although symptoms of psychosis are widely seen in patients with Parkinson's disease in the years following stimulator placement, results of the present suggest that most psychoses occurring postoperatively are likely independent of implantation and stimulation settings.


Subject(s)
Deep Brain Stimulation/adverse effects , Globus Pallidus/physiology , Parkinson Disease/therapy , Postoperative Complications/etiology , Psychotic Disorders/etiology , Age Factors , Aged , Female , Follow-Up Studies , Humans , Incidence , Kaplan-Meier Estimate , Male , Middle Aged , Parkinson Disease/epidemiology , Psychiatric Status Rating Scales , Psychotic Disorders/epidemiology , Retrospective Studies , Severity of Illness Index
18.
Neuromodulation ; 18(7): 552-64 ; discussion 564-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26245183

ABSTRACT

OBJECTIVE: Computational modeling studies were performed to identify presynaptic elements of cortical neurons that are activated by subdural electrical stimulation. MATERIALS AND METHODS: The computer model consists of layers of multicompartmental neurons arranged in 3D space in an anatomically realistic fashion inside a 4.8 × 4.8 × 3.4 mm volume of gray matter modeled as a homogenous and isotropic medium. The model was subjected to an electric field generated by a circular disk electrode. RESULTS: The initiation of presynaptic action potentials (PAPs) in neurons takes place predominantly in the axon initial segment (AIS) or ectopically in axonal branch terminals. PAPs that were initiated in only one axonal terminal were typically followed by a second PAP (spike duplet) resulting from the activation of the AIS by the antidromically propagating initial PAP. There were significant time delays (up to 0.5 ms) in the propagation of these ectopically initiated PAPs along the axons to nonactivated axonal branches and, associated with these delays, latencies in the occurrence of spike duplets in different axonal terminals. The effect of the dendritic arbor 3D structure on the AIS activation threshold was contingent on whether the net axonal and somato-dendritic current flows made an antagonistic or synergetic contribution. CONCLUSIONS: This study examines the effects of subdural electrical stimulation on a high-density network consisting of several populations of multicompartment cell types. The effect of dendritic arbor structure on the axonal activation threshold is prominent in the case of multipolar neurons with large-diameter symmetric dendrites (basal/apical) that are oriented parallel to the electric field lines. The timing of presynaptic terminal activation after stimulation is not determined solely by the axonal delay (orthodromic propagation) but depends on the details of the applied stimulation field and axonal branching structure, which may be important factors in characterizing the effects of electrical stimulation in neuromodulation systems.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/physiology , Computer Simulation , Deep Brain Stimulation/methods , Models, Neurological , Neurons/physiology , Animals , Biophysics , Humans , Spatio-Temporal Analysis
19.
J Neurophysiol ; 112(9): 2147-63, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25122702

ABSTRACT

This study investigates adaptation of high-frequency cortical responses [>60 Hz; high-gamma (HG)] to simple and complex sounds in human nonprimary auditory cortex. We used intracranial electrocorticographic recordings to measure event-related changes in HG power as a function of stimulus probability. Tone and speech stimuli were presented in a series of traditional oddball and control paradigms. We hypothesized that HG power attenuates with stimulus repetition over multiple concurrent time scales in auditory association cortex. Time-frequency analyses were performed to identify auditory-responsive sites. Single-trial analyses and quantitative modeling were then used to measure trial-to-trial changes in HG power for high (frequent), low (infrequent), and equal (control) stimulus probabilities. Results show strong reduction of HG responses to frequently repeated tones and speech, with no differences in responses to infrequent and equal-probability stimuli. Adaptation of the HG frequent response, and not stimulus-acoustic differences or deviance-detection enhancement effects, accounted for the differential responses observed for frequent and infrequent sounds. Adaptation of HG responses showed a rapid onset (less than two trials) with slower adaptation between consecutive, repeated trials (2-10 s) and across trials in a stimulus block (∼7 min). The auditory-evoked N100 response also showed repetition-related adaptation, consistent with previous human scalp and animal single-unit recordings. These findings indicate that HG responses are highly sensitive to the regularities of simple and complex auditory events and show adaptation on multiple concurrent time scales in human auditory association cortex.


Subject(s)
Adaptation, Physiological , Auditory Cortex/physiology , Evoked Potentials, Auditory , Gamma Rhythm , Adolescent , Adult , Auditory Cortex/physiopathology , Epilepsy/physiopathology , Female , Humans , Male
20.
bioRxiv ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39071325

ABSTRACT

Working Memory (WM) and Long-Term Memory (LTM) are often viewed as separate cognitive systems. Little is known about how these systems interact when forming memories. We recorded single neurons in the human medial temporal lobe while patients maintained novel items in WM and a subsequent recognition memory test for the same items. In the hippocampus but not the amygdala, the level of WM content-selective persist activity during WM maintenance was predictive of whether the item was later recognized with high confidence or forgotten. In contrast, visually evoked activity in the same cells was not predictive of LTM formation. During LTM retrieval, memory-selective neurons responded more strongly to familiar stimuli for which persistent activity was high while they were maintained in WM. Our study suggests that hippocampal persistent activity of the same cell supports both WM maintenance and LTM encoding, thereby revealing a common single-neuron component of these two memory systems.

SELECTION OF CITATIONS
SEARCH DETAIL