Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Language
Publication year range
1.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-424149

ABSTRACT

SARS-CoV-2 is the causative agent of COVID-19. The dimeric form of the viral main protease is responsible for the cleavage of the viral polyprotein in 11 sites, including its own N and C-terminus. Although several mechanisms of self-cleavage had been proposed for SARS-CoV, the lack of structural information for each step is a setback to the understanding of this process. Herein, we used X-ray crystallography to characterize an immature form of the main protease, which revealed major conformational changes in the positioning of domain-three over the active site, hampering the dimerization and diminishing its activity. We propose that this form preludes the cis-cleavage of N-terminal residues within the dimer, leading to the mature active site. Using fragment screening, we probe new cavities in this form which can be used to guide therapeutic development. Furthermore, we characterized a serine site-directed mutant of the main protease bound to its endogenous N and C-terminal residues during the formation of the tetramer. This quaternary form is also present in solution, suggesting a transitional state during the C-terminal trans-cleavage. This data sheds light in the structural modifications of the SARS-CoV-2 main protease during maturation, which can guide the development of new inhibitors targeting its intermediary states.

2.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-462449

ABSTRACT

There are currently relatively few small-molecule antiviral drugs that are either approved or emergency approved for use against SARS-CoV-2. One of these is remdesivir, which was originally repurposed from its use against Ebola and functions by causing early RNA chain termination. We used this as justification to evaluate three molecules we had previously identified computationally with antiviral activity against Ebola and Marburg. Out of these we previously identified pyronaridine, which inhibited the SARS-CoV-2 replication in A549-ACE2 cells. Herein, the in vivo efficacy of pyronaridine has now been assessed in a K18-hACE transgenic mouse model of COVID-19. Pyronaridine treatment demonstrated a statistically significant reduction of viral load in the lungs of SARS CoV-2 infected mice. Furthermore, the pyronaridine treated group reduced lung pathology, which was also associated with significant reduction in the levels of pro-inflammatory cytokines/chemokine and cell infiltration. Notably, pyronaridine inhibited the viral PLpro activity in vitro (IC50 of 1.8 {micro}M) without any effect on Mpro, indicating a possible molecular mechanism involved in its ability to inhibit SARS-CoV-2 replication. Interestingly, pyronaridine also selectively inhibits the host kinase CAMK1 (IC50 of 2.4 {micro}M). We have also generated several pyronaridine analogs to assist in understanding the structure activity relationship for PLpro inhibition. Our results indicate that pyronaridine is a potential therapeutic candidate for COVID-19. One sentence summaryThere is currently intense interest in discovering small molecules with direct antiviral activity against the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Pyronaridine, an antiviral drug with in vitro activity against Ebola, Marburg and SARS-CoV-2 has now statistically significantly reduced the viral load in mice along with IL-6, TNF-, and IFN-{beta} ultimately demonstrating a protective effect against lung damage by infection to provide a new potential treatment for testing clinically.

SELECTION OF CITATIONS
SEARCH DETAIL