Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Proc Natl Acad Sci U S A ; 121(42): e2414449121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39374385

ABSTRACT

The extraction of gold (Au) from electronic waste (e-waste) has both environmental impact and inherent value. Improper e-waste disposal poses environmental and health risks, entailing substantial remediation and healthcare costs. Large efforts are applied for the recovery of Au from e-waste using complex processes which include the dissolution of Au, its adsorption in an ionic state and succeeding reduction to metallic Au. These processes themselves being complex and utilizing harsh chemicals contribute to the environmental impact of e-waste. Here, we present an approach for the simultaneous recovery and reduction of Au3+ and Au+ ions from e-waste to produce solid Au0 forms, thus skipping several technological steps. We develop a nanoscale cross-dimensional composite material via self-assembly of two-dimensional graphene oxide and one-dimensional chitosan macromolecules, capable of acting simultaneously as a scavenger of gold ions and as a reducing agent. Such multidimensional architecture doesn't require to apply any voltage for Au adsorption and reduction and solely relies on the chemisorption kinetics of Au ions in the heterogeneous GO/CS nanoconfinements and their chemical reduction on multiple binding sites. The cooperative phenomena in ionic absorption are responsible for the extremely high efficiency of gold extraction. The extraction capacity reaches 16.8 g/g for Au3+ and 6.2 g/g for Au+, which is ten times larger than any existing gold adsorbents can propose. The efficiency is above 99.5 wt.% (current limit is 75 wt.%) and extraction ability is down to very low concentrations of 3 ppm.

2.
Proc Natl Acad Sci U S A ; 120(35): e2307618120, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37603762

ABSTRACT

Corrosion is one of the major issues for sustainable manufacturing globally. The annual global cost of corrosion is US$2.5 trillion (approximately 3.4% of the world's GDP). The traditional ways of corrosion protection (such as barriers or inhibiting) are either not very effective (in the case of barrier protection) or excessively expensive (inhibiting). Here, we demonstrate a concept of nanoreactors, which are able to controllably release or adsorb protons or hydroxides directly on corrosion sites, hence, selectively regulating the corrosion reactions. A single nanoreactor comprises a nanocompartment wrapped around by a pH-sensing membrane represented, respectively, by a halloysite nanotube and a graphene oxide/polyamine envelope. A nanoreactor response is determined by the change of a signaling pH on a given corrosion site. The nanoreactors are self-assembled and suitable for mass-line production. The concept creates sustainable technology for developing smart anticorrosion coatings, which are nontoxic, selective, and inexpensive.

3.
Org Biomol Chem ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39344399

ABSTRACT

Heterocyclic derivatives of anthraquinone demonstrated a high potential for the development of new antitumor compounds. In this study, we report a scheme for the synthesis of thiazole-fused anthraquinones and the results of their antiproliferative activity. A convenient metal-free method for the thiolation of anthraquinone derivatives has been proposed for the preparation of the key intermediates. C-S bond formation upon nucleophilic substitution of the bromine atom in anthraquinone with 4-methoxybenzyl mercaptan readily occurs under mild conditions using t-BuOK as a base. This process was used for the preparation of anthra[2,3-d]thiazoles with various substituents at position 2, in particular the alkoxycarbonyl group. Study of the chemical properties resulted in the transformation of anthra[2,3-d]thiazole-2-carboxylic acid into a series of carboxamides. Screening the antiproliferative effect revealed moderate activity of compounds 12b and 12d against human cancer cells, showing weaker activity than anthra[2,3-d]thiophene analogs and indicating a crucial role of the heterocyclic nucleus in the antitumor potency of heteroareneanthraquinones.

4.
Macromol Rapid Commun ; : e2400518, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101702

ABSTRACT

Hydrogel devices with mechanical toughness and tunable functionalities are highly desirable for practical long-term applications such as sensing and actuation elements for soft robotics. However, existing hydrogels have poor mechanical properties, slow rates of response, and low functionality. In this work, two-dimensional hydrogel actuators are proposed and formed on the self-assembly of graphene oxide (GO) and deoxynucleic acid (DNA). The self-assembly process is driven by the GO-induced transition of double stranded DNA (dsDNA) into single stranded DNA (ssDNA). Thus, the hydrogel's structural unit consists of two layers of GO covered by ssDNA and a layer of dsDNA in between. Such heterogeneous architectures stabilized by multiple hydrogen bondings have Young's modulus of up to 10 GPa and rapid swelling rates of 4.0 × 10-3 to 1.1 × 10-2 s-1, which surpasses most types of conventional hydrogels. It is demonstrated that the GO/DNA hydrogel actuators leverage the unique properties of these two materials, making them excellent candidates for various applications requiring sensing and actuation functions, such as artificial skin, wearable electronics, bioelectronics, and drug delivery systems.

5.
Bioorg Chem ; 127: 105925, 2022 10.
Article in English | MEDLINE | ID: mdl-35728293

ABSTRACT

Chemical modifications of anthraquiones are aimed at novel derivatives with improved antitumor properties. Emergence of multidrug resistance (MDR) due to overexpression of transmembrane ATP binding cassette transporters, in particular, MDR1/P-glycoprotein (Pgp), can limit the use of anthraquinone based drugs. Previously we have demonstrated that annelation of modified five-membered heterocyclic rings with the anthraquinone core yielded a series of compounds with optimized antitumor properties. In the present study we synthesized a series of anthraquinone derivatives with six-membered heterocycles. Selected new compounds showed the ability to kill parental and MDR tumor cell lines at low micromolar concentrations. Molecular docking into the human Pgp model revealed a stronger interaction of 2-methylnaphtho[2,3-g]quinoline-3-carboxamide 17 compared to naphtho[2,3-f]indole-3-carboxamide 3. The time course of intracellular accumulation of compound 17 in parental K562 leukemia cells and in Pgp-positive K562/4 subline was similar. In contrast, compound 3 was readily effluxed from K562/4 cells and was significantly less potent for this subline than for K562 cells. Together with reported strategies of drug optimization of the anthracycline core, these results add ring expansion to the list of perspective modifications of heteroarene-fused anthraquinones.


Subject(s)
Antineoplastic Agents , Anthraquinones/chemistry , Anthraquinones/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans , Molecular Docking Simulation
6.
Adv Funct Mater ; 31(52): 2107407, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34899114

ABSTRACT

The COVID-19 pandemic highlighted the need for rapid tools and technologies to combat highly infectious viruses. The excellent electrical, mechanical and other functional properties of graphene and graphene-like 2D materials (2DM) can be utilized to develop novel and innovative devices to tackle COVID-19 and future pandemics. Here, the authors outline how graphene and other 2DM-based technologies can be used for the detection, protection, and continuous monitoring of infectious diseases including COVID-19. The authors highlight the potential of 2DM-based biosensors in rapid testing and tracing of viruses to enable isolation of infected patients, and stop the spread of viruses. The possibilities of graphene-based wearable devices are discussed for continuous monitoring of COVID-19 symptoms. The authors also provide an overview of the personal protective equipment, and potential filtration mechanisms to separate, destroy or degrade highly infectious viruses, and the potential of graphene and other 2DM to increase their efficiency, and enhance functional and mechanical properties. Graphene and other 2DM could not only play a vital role for tackling the ongoing COVID-19 pandemic but also provide technology platforms and tools for the protection, detection and monitoring of future viral diseases.

7.
Angew Chem Int Ed Engl ; 60(23): 12737-12741, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33949056

ABSTRACT

We suggest a new strategy for creating stimuli-responsive bio-integrated optical nanostructures based on Mie-resonant silicon nanoparticles covered by an ensemble of similarity negatively charged polyelectrolytes (heparin and sodium polystyrene sulfonate). The dynamic tuning of the nanostructures' optical response is due to light-induced heating of the nanoparticles and swelling of the polyelectrolyte shell. The resulting hydrophilic/hydrophobic transitions significantly change the shell thickness and reversible shift of the scattering spectra for individual nanoparticles up to 60 nm. Our findings bring novel opportunities for the application of smart nanomaterials in nanomedicine and bio-integrated nanophotonics.


Subject(s)
Molecular Dynamics Simulation , Nanostructures/chemistry , Polymers/chemistry , Temperature , Particle Size , Silicon/chemistry
8.
Langmuir ; 35(26): 8543-8556, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31018639

ABSTRACT

This article summarizes more than 10 years of cooperation with Prof. Helmuth Möhwald. Here we describe how the research moved from light-regulated feedback sustainable systems and control biodevices to the current focus on infochemistry in aqueous solution. An important advanced characteristic of such materials and devices is the pH concentration gradient in aqueous solution. A major part of the article focuses on the use of localized illumination for proton generation as a reliable, minimal-reagent-consuming, stable light-promoted proton pump. The in situ scanning vibration electrode technique (SVET) and scanning ion-selective electrode technique (SIET) are efficient for the spatiotemporal evolution of ions on the surface. pH-sensitive polyelectrolyte (PEs) multilayers with different PE architectures are composed with a feedback loop for bionic devices. We show here that pH-regulated PE multilayers can change their properties-film thickness and stiffness, permeability, hydrophilicity, and/or fluorescence-in response to light or electrochemical or biological processes instead of classical acid/base titration.

9.
Phys Chem Chem Phys ; 19(8): 6286-6291, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28195290

ABSTRACT

An understanding of the nature and conditions of nonlinear processes in open systems is important for modulation of the microstructure of solids at a new level of complexity. We demonstrate that cavitation generated by high intensity ultrasound (HIUS) triggers nonlinear processes in microparticles and layers of titanium. We reveal a non-monotonic dependence of the size of grains in the treated solids on sonication time, and oscillation of titanium grain sizes vs. time of ultrasonic treatment, indicating the influence of two opposing forces: cavitation driven impact of shock heating and shear stress on surfaces. These nonlinear self-organization processes in solids promise new microstructured materials with applications among others in bio- and geosciences.

10.
Small ; 12(18): 2450-8, 2016 05.
Article in English | MEDLINE | ID: mdl-26997362

ABSTRACT

Elucidation of the nature of hydrogen interactions with palladium nanoparticles is expected to play an important role in the development of new catalysts and hydrogen-storage nanomaterials. A facile scaled-up synthesis of uniformly sized single-crystalline palladium nanoparticles with various shapes, including regular nanocubes, nanocubes with protruded edges, rhombic dodecahedra, and branched nanoparticles, all stabilized with a mesoporous silica shell is developed. Interaction of hydrogen with these nanoparticles is studied by using temperature-programmed desorption technique and by performing density functional theory modeling. It is found that due to favorable arrangement of Pd atoms on their surface, rhombic dodecahedral palladium nanoparticles enclosed by {110} planes release a larger volume of hydrogen and have a lower desorption energy than palladium nanocubes and branched nanoparticles. These results underline the important role of {110} surfaces in palladium nanoparticles in their interaction with hydrogen. This work provides insight into the mechanism of catalysis of hydrogenation/dehydrogenation reactions by palladium nanoparticles with different shapes.

11.
Langmuir ; 32(43): 11072-11085, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27485504

ABSTRACT

This review examines the concepts how cavitation bubble collapse affects crystalline structure, the crystallization of newly formed structures, and recrystallization. Although this subject can be discussed in a broad sense across the area of metastable crystallization, our main focus is discussing specific examples of the inorganic solids: metal, intermetallics, metal oxides, and silicon. First, the temperature up to which ultrasound heats solids is discussed. Cavitation-induced changes in the crystal size of intermetallic phases in binary AlNi (50 wt % of Ni) alloys allow an estimation of local temperatures on surfaces and in bulk material. The interplay between atomic solid-state diffusion and recrystallization during bubble collapses in heterogeneous systems is revealed. Furthermore, cavitation triggered red/ox processes at solid/liquid interfaces and their influence on recrystallization are discussed for copper aluminum nanocomposites, zinc, titanium, magnesium-based materials, and silicon. Cavitation-driven highly nonequilibrium conditions can affect the thermodynamics and kinetics of mesoscopic phase formation in heterogeneous systems and in many cases boost the macroscopic performance of composite materials, notably in catalytic alloy and photocatalytic semiconductor oxide properties, corrosion resistance, nanostructured surface biocompatibility, and optical properties.

12.
Angew Chem Int Ed Engl ; 55(42): 13001-13004, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27439779

ABSTRACT

We introduce a simple concept of a light induced pH change, followed by high amplitude manipulation of the mechanical properties of an adjacent polymer film. Irradiation of a titania surface is known to cause water splitting, and this can be used to reduce the environmental pH to pH 4. The mechanical modulus of an adjacent pH sensitive polymer film can thus be changed by more than an order of magnitude. The changes can be localized, maintained for hours and repeated without material destruction.

13.
Adv Mater ; : e2410512, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39344867

ABSTRACT

Environmentally-benign materials play a pivotal role in advancing the scalability of energy storage devices. In particular, conjugated polymers constitute a potentially greener alternative to inorganic- and carbon-based materials. One challenge to wider implementation is the scarcity of n-doped conducting polymers to achieve full cells with high-rate performance. Herein, this work demonstrates the use of a self-doped n-doped conjugated polymer, namely poly(benzodifurandione) (PBDF), for fabricating aqueous supercapacitors. PBDF demonstrates a specific capacitance of 202 ± 3 F g-1, retaining 81% of the initial performance over 5000 cycles at 10 A g-1 in 2 m NaCl( aq ). PBDF demonstrates rate performances of up to 100 and 50 A g-1 at 1 and 2 mg cm-2, respectively. Electrochemical impedance analysis reveals a surface-mediated charge storage mechanism. Improvements can be achieved by adding reduced graphene oxide (rGO), thereby obtaining a specific capacitance of 288 ± 8 F g-1 and high-rate operation (270 A g-1). The performance of PBDF is examined in symmetric and asymmetric membrane-less cells, demonstrating high-rate performance, while retaining 83% of the initial capacitance after 100 000 cycles at 10 A g-1. PBDF thus offers new prospects for energy storage applications, showcasing both desirable performance and stability without the need for additives or binders and relying on environmentally friendly solutions.

14.
Eur J Med Chem ; 268: 116222, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38387333

ABSTRACT

G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds. In particular, thiadiazole- and selenadiazole- but not triazole-based ligands inhibit the proliferation of tumor cells (e.g. K562 leukemia) and stabilize primarily telomeric and c-MYC G4s. Anthraselenadiazole derivative 11a showed a good affinity to c-MYC G4 in vitro and down-regulated expression of c-MYC oncogene in cellular conditions. Further studies revealed that anthraselenadiazole 11a provoked cell cycle arrest and apoptosis in a dose- and time-dependent manner inhibiting K562 cells growth. Taken together, this work gives a valuable example that the closely related heterocycles may cause a significant difference in biological properties of G4 ligands.


Subject(s)
Antineoplastic Agents , G-Quadruplexes , Antineoplastic Agents/chemistry , Anthraquinones/chemistry , Triazoles/pharmacology , Cell Proliferation , Cell Cycle Checkpoints , Ligands
15.
Nanoscale Horiz ; 9(5): 863-872, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38533738

ABSTRACT

The behavior of polyelectrolytes in confined spaces has direct relevance to the protein mediated ion transport in living organisms. In this paper, we govern lithium chloride transport by the interface provided by polyelectrolytes, polycation, poly(diallyldimethylammonium chloride) (PDDA) and, polyanion, double stranded deoxyribonucleic acid (dsDNA), in confined graphene oxide (GO) membranes. Polyelectrolyte-GO interfaces demonstrate neuromorphic functions that were successfully applied with nanochannel ion interactions contributed, resulting in ion memory effects. Excitatory and inhibitory post-synaptic currents were tuned continuously as the number of pulses applied increased accordingly, increasing decay times. Furthermore, we demonstrated the short-term memory of a trained vs untrained device in computation. On account of its simple and safe production along with its robustness and stability, we anticipate our device to be a low dimensional building block for arrays to embed artificial neural networks in hardware for neuromorphic computing. Additionally, incorporating such devices with sensing and actuating parts for a complete feedback loop produces robotics with its own ability to learn by modifying actuation based on sensing data.


Subject(s)
DNA , Graphite , Polyethylenes , Quaternary Ammonium Compounds , Graphite/chemistry , DNA/chemistry , Quaternary Ammonium Compounds/chemistry , Polyethylenes/chemistry , Neural Networks, Computer , Membranes, Artificial , Oxides/chemistry
16.
Nanoscale Horiz ; 8(9): 1243-1252, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37461370

ABSTRACT

We present the development of a health-monitoring nanofluidic membrane utilizing biocompatible and biodegradable graphene oxide, chitosan, and graphene quantum dots. The nanoconfinement provided by graphene oxide nanolayers encapsulates chitosan molecules, allowing for their conformational changes and switchable hydrophobic-hydrophilic behavior in response to pH variations. This low-dimensional membrane operates as an array of nanofluidic channels that can release quantum dots upon pH change. The photoluminescence emission from quantum dots enables rapid and reliable optical visualization of pH changes, facilitating efficient human health monitoring. To ensure fouling prevention and enable multiple usages, we adopt a design approach that avoids direct contact between biomarkers and the nanochannels. This design strategy, coupled with good mechanical properties (Young's modulus of 5.5 ± 0.7 GPa), preserves the integrity and functionality of the sensors for repeated sensing cycles. Furthermore, leveraging the memory effect, our sensors can be reloaded with graphene quantum dots multiple times without significant loss of selectivity, achieving reusability. The wide-ranging capabilities of 2D materials and stimuli-responsive polymers empower our sustainable approach to designing low-dimensional, robust, and flexible sensing materials. This approach allows for the integration of various biorecognition elements and signal transduction modes, expanding the versatility and applications of the designed materials.

17.
Adv Mater ; 35(30): e2301506, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37116867

ABSTRACT

Bottom-up electrochemical synthesis of atomically thin materials is desirable yet challenging, especially for non-van der Waals (non-vdW) materials. Thicknesses below a few nanometers have not been reported yet, posing the question how thin can non-vdW materials be electrochemically synthesized. This is important as materials with (sub-)unit-cell thickness often show remarkably different properties compared to their bulk form or thin films of several nanometers thickness. Here, a straightforward electrochemical method utilizing the angstrom-confinement of laminar reduced graphene oxide (rGO) nanochannels is introduced to obtain a centimeter-scale network of atomically thin (<4.3 Å) 2D-transition metal oxides (2D-TMO). The angstrom-confinement provides a thickness limitation, forcing sub-unit-cell growth of 2D-TMO with oxygen and metal vacancies. It is showcased that Cr2 O3 , a material without significant catalytic activity for the oxygen evolution reaction (OER) in bulk form, can be activated as a high-performing catalyst if synthesized in the 2D sub-unit-cell form. This method displays the high activity of sub-unit-cell form while retaining the stability of bulk form, promising to yield unexplored fundamental science and applications. It is shown that while retaining the advantages of bottom-up electrochemical synthesis, like simplicity, high yield, and mild conditions, the thickness of TMO can be limited to sub-unit-cell dimensions.

18.
Langmuir ; 28(24): 9168-73, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22381053

ABSTRACT

Here, a new surface enhanced Raman spectroscopy (SERS) platform suitable for gas phase sensing based on the extended organization of poly-N-isopropylacrylamide (pNIPAM)-coated nanostars over large areas is presented. This system yields high and homogeneous SERS intensities, and simultaneously traps organic chemical agents as pollutants from the gas phase. pNIPAM-coated gold nanostars were organized into parallel linear arrays. The optical properties of the fabricated substrates are investigated, and applicability for advanced sensing is demonstrated through the detection in the gas phase of pyrene traces, a well-known polyaromatic hydrocarbon.


Subject(s)
Acrylic Resins/chemistry , Nanostructures/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Pyrenes/chemistry , Gases/chemistry , Particle Size , Spectrum Analysis, Raman , Surface Properties
19.
Polymers (Basel) ; 15(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36616395

ABSTRACT

Coacervation is a self-assembly strategy based on the complexation of polyelectrolytes, which is utilized in biomedicine and agriculture, as well as automotive and textile industries. In this paper, we developed a new approach to the on-demand periodic formation of polyelectrolyte complexes through a Liesegang-type hierarchical organization. Adjustment of reaction conditions allows us to assemble materials with a tunable spatiotemporal geometry and establish materials' production cycles with a regulated periodicity. The proposed methodology allows the membrane to self-assemble when striving to reach balance and self-heal after exposure to external stimuli, such as potential difference and high pH. Using chronopotentiometry, K+ ion permeability behavior of the PEI-PSS coacervate membranes was demonstrated. The periodically self-assembled polyelectrolyte nanomembranes could further be integrated into novel energy storage devices and intelligent biocompatible membranes for bionics, soft nanorobotics, biosensing, and biocomputing.

20.
Pharmaceutics ; 14(12)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36559322

ABSTRACT

(1) Background: This investigation aimed at developing a series of c-Met-targeting cabozantinib-based PROTACs. (2) Methods: Purification of intermediate and target compounds was performed using column chromatography, in vitro antiproliferation activity was measured using a standard MTT assay and a c-Met degradation assay was performed via the immunoblotting technique. (3) Results: Several compounds exhibited antiproliferative activity towards different cell lines of breast cancer (T47D, MDA-MB-231, SKBR3, HCC1954 and MCF7) at the same level as parent cabozantinib and 7-demethyl cabozantinib. Two target conjugates, bearing a VHL-ligand as an E3-ligase binding moiety and glycol-based linkers, exhibited the effective inhibition of c-Met phosphorylation and an ability to decrease the level of c-Met in HCC1954 cells at micromolar concentrations. (4) Conclusions: Two compounds exhibit c-Met inhibition activity in the nanomolar range and can be considered as PROTAC molecules due to their ability to decrease the total level of c-Met in HCC1954 cells. The structures of the offered compounds can be used as starting points for further evaluation of cabozantinib-based PROTACs.

SELECTION OF CITATIONS
SEARCH DETAIL