Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Infect Immun ; 90(3): e0047021, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35130452

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes nosocomial pneumonia, urinary tract infections, and bacteremia. A hallmark of P. aeruginosa pathogenesis is disruption of host cell function by the type III secretion system (T3SS) and its cognate exoenzyme effectors. The T3SS effector ExoU is phospholipase A2 (PLA2) that targets the host cell plasmalemmal membrane to induce cytolysis and is an important virulence factor that mediates immune avoidance. In addition, ExoU has been shown to subvert the host inflammatory response in a noncytolytic manner. In primary bone marrow-derived macrophages (BMDMs), P. aeruginosa infection is sensed by the nucleotide-binding domain containing leucine-rich repeats-like receptor 4 (NLRC4) inflammasome, which triggers caspase-1 activation and inflammation. ExoU transiently inhibits NLRC4 inflammasome-mediated activation of caspase-1 and its downstream target, interleukin 1ß (IL-1ß), to suppress activation of inflammation. In the present study, we sought to identify additional noncytolytic virulence functions for ExoU and discovered an unexpected association between ExoU, host mitochondria, and NLRC4. We show that infection of BMDMs with P. aeruginosa strains expressing ExoU elicited mitochondrial oxidative stress. In addition, mitochondria and mitochondrion-associated membrane fractions enriched from infected cells exhibited evidence of autophagy activation, indicative of damage. The observation that ExoU elicited mitochondrial stress and damage suggested that ExoU may also associate with mitochondria during infection. Indeed, ExoU phospholipase A2 enzymatic activity was present in enriched mitochondria and mitochondrion-associated membrane fractions isolated from P. aeruginosa-infected BMDMs. Intriguingly, enriched mitochondria and mitochondrion-associated membrane fractions isolated from infected Nlrc4 homozygous knockout BMDMs displayed significantly lower levels of ExoU enzyme activity, suggesting that NLRC4 plays a role in the ExoU-mitochondrion association. These observations prompted us to assay enriched mitochondria and mitochondrion-associated membrane fractions for NLRC4, caspase-1, and IL-1ß. NLRC4 and pro-caspase-1 were detected in enriched mitochondria and mitochondrion-associated membrane fractions isolated from noninfected BMDMs, and active caspase-1 and active IL-1ß were detected in response to P. aeruginosa infection. Interestingly, ExoU inhibited mitochondrion-associated caspase-1 and IL-1ß activation. The implications of ExoU-mediated effects on mitochondria and the NLRC4 inflammasome during P. aeruginosa infection are discussed.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Caspase 1/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Macrophages/metabolism , Mice , Phospholipases/metabolism , Pseudomonas aeruginosa/physiology , Type III Secretion Systems/metabolism
2.
Br J Cancer ; 126(8): 1205-1214, 2022 05.
Article in English | MEDLINE | ID: mdl-34837075

ABSTRACT

BACKGROUND: Aberrant activation of androgen receptor signalling following castration therapy is a common clinical observation in prostate cancer (PCa). Earlier, we demonstrated the role of MYB overexpression in androgen-depletion resistance and PCa aggressiveness. Here, we investigated MYB-androgen receptor (AR) crosstalk and its functional significance. METHODS: Interaction and co-localization of MYB and AR were examined by co-immunoprecipitation and immunofluorescence analyses, respectively. Protein levels were measured by immunoblot analysis and enzyme-linked immunosorbent assay. The role of MYB in ligand-independent AR transcriptional activity and combinatorial gene regulation was studied by promoter-reporter and chromatin immunoprecipitation assays. The functional significance of MYB in castration resistance was determined using an orthotopic mouse model. RESULTS: MYB and AR interact and co-localize in the PCa cells. MYB-overexpressing PCa cells retain AR in the nucleus even when cultured under androgen-deprived conditions. AR transcriptional activity is also sustained in MYB-overexpressing cells in the absence of androgens. MYB binds and promotes AR occupancy to the KLK3 promoter. MYB-overexpressing PCa cells exhibit greater tumorigenicity when implanted orthotopically and quickly regain growth following castration leading to shorter mice survival, compared to those carrying low-MYB-expressing prostate tumours. CONCLUSIONS: Our findings reveal a novel MYB-AR crosstalk in PCa and establish its role in castration resistance.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Proto-Oncogene Proteins c-myb , Receptors, Androgen , Androgens/metabolism , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Ligands , Male , Mice , Orchiectomy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Proto-Oncogene Proteins c-myb/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
3.
Nucleic Acids Res ; 47(12): 6269-6286, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31287140

ABSTRACT

Protein-protein interactions regulate many essential enzymatic processes in the cell. Somatic mutations outside of an enzyme active site can therefore impact cellular function by disruption of critical protein-protein interactions. In our investigation of the cellular impact of the T304I cancer mutation of DNA Polymerase ß (Polß), we find that mutation of this surface threonine residue impacts critical Polß protein-protein interactions. We show that proteasome-mediated degradation of Polß is regulated by both ubiquitin-dependent and ubiquitin-independent processes via unique protein-protein interactions. The ubiquitin-independent proteasome pathway regulates the stability of Polß in the cytosol via interaction between Polß and NAD(P)H quinone dehydrogenase 1 (NQO1) in an NADH-dependent manner. Conversely, the interaction of Polß with the scaffold protein X-ray repair cross complementing 1 (XRCC1) plays a role in the localization of Polß to the nuclear compartment and regulates the stability of Polß via a ubiquitin-dependent pathway. Further, we find that oxidative stress promotes the dissociation of the Polß/NQO1 complex, enhancing the interaction of Polß with XRCC1. Our results reveal that somatic mutations such as T304I in Polß impact critical protein-protein interactions, altering the stability and sub-cellular localization of Polß and providing mechanistic insight into how key protein-protein interactions regulate cellular responses to stress.


Subject(s)
DNA Polymerase beta/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , Oxidative Stress , X-ray Repair Cross Complementing Protein 1/metabolism , Cell Line, Tumor , Chromatin/enzymology , Colonic Neoplasms/genetics , DNA Polymerase beta/chemistry , DNA Polymerase beta/genetics , Enzyme Stability , Humans , Mutation , NAD/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitination
4.
Chem Res Toxicol ; 32(8): 1722-1731, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31328504

ABSTRACT

Dihydroxyacetone phosphate (DHAP) is the endogenous byproduct of fructose metabolism. Excess DHAP in cells can induce advanced glycation end products and oxidative stress. Dihydroxyacetone (DHA) is the triose precursor to DHAP. DHA is used as the active ingredient in sunless tanning products, including aerosolized spray tans, and is formed by the combustion of solvents found in electronic cigarettes. Human exposure to DHA has been increasing as the popularity of sunless tanning products and electronic cigarettes has grown. Topically applied DHA is absorbed through the viable layers of the skin and into the bloodstream. Exogenous exposure to DHA is cytotoxic in immortalized keratinocytes and melanoma cells with cell cycle arrest induced within 24 h and cell death occurring by apoptosis at consumer-relevant concentrations of DHA within 72 h. Less is known about systemic exposures to DHA that occur following absorption through skin, and now through inhalation of the aerosolized DHA used in spray tanning. In the present study, HEK293T cells were exposed to consumer-relevant concentrations of DHA to examine the cytotoxicity of systemic exposures. HEK293T cells were sensitive to consumer-relevant doses of DHA with an IC50 value of 2.4 ± 0.3 mM. However, cell cycle arrest did not begin until 48 h after DHA exposure. DHA-exposed cells showed altered metabolic activity with decreased mitochondrial function and decreased lactate and ATP production observed within 24 h of exposure. Autofluorescent imaging and NAD+ sensors also revealed an imbalance in the redox cofactors NAD+/NADH within 24 h of exposure. Cell death occurred by autophagy indicated by increases in LC3B and SIRT1. Despite DHA's ability to be converted to DHAP and integrated into metabolic pathways, the metabolic dysfunction and starvation responses observed in the HEK293T cells indicate that DHA does not readily contribute to the energetic pool in these cells.


Subject(s)
Autophagy/drug effects , Dihydroxyacetone/pharmacology , Mitochondria/drug effects , Mitochondria/pathology , NAD/chemistry , NAD/metabolism , Cell Cycle Checkpoints/drug effects , Dose-Response Relationship, Drug , Glutathione/analysis , HEK293 Cells , Humans , Mitochondria/metabolism , NAD/analysis , Structure-Activity Relationship , Tumor Cells, Cultured
5.
J Biol Chem ; 292(6): 2470-2484, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28003368

ABSTRACT

Recent genome-wide studies found that patients with hypotonia, developmental delay, intellectual disability, congenital anomalies, characteristic facial dysmorphic features, and low cholesterol levels suffer from Kaufman oculocerebrofacial syndrome (KOS, also reported as blepharophimosis-ptosis-intellectual disability syndrome). The primary cause of KOS is autosomal recessive mutations in the gene UBE3B However, to date, there are no studies that have determined the cellular or enzymatic function of UBE3B. Here, we report that UBE3B is a mitochondrion-associated protein with homologous to the E6-AP Cterminus (HECT) E3 ubiquitin ligase activity. Mutating the catalytic cysteine (C1036A) or deleting the entire HECT domain (amino acids 758-1068) results in loss of UBE3B's ubiquitylation activity. Knockdown of UBE3B in human cells induces changes in mitochondrial morphology and physiology, a decrease in mitochondrial volume, and a severe suppression of cellular proliferation. We also discovered that UBE3B interacts with calmodulin via its N-terminal isoleucine-glutamine (IQ) motif. Deletion of the IQ motif (amino acids 29-58) results in loss of calmodulin binding and a significant increase in the in vitro ubiquitylation activity of UBE3B. In addition, we found that changes in calcium levels in vitro disrupt the calmodulin-UBE3B interaction. These studies demonstrate that UBE3B is an E3 ubiquitin ligase and reveal that the enzyme is regulated by calmodulin. Furthermore, the modulation of UBE3B via calmodulin and calcium implicates a role for calcium signaling in mitochondrial protein ubiquitylation, protein turnover, and disease.


Subject(s)
Calmodulin/metabolism , Mitochondria/enzymology , Ubiquitin-Protein Ligases/metabolism , Amino Acid Sequence , Cell Line, Tumor , Cell Proliferation , Gene Knockdown Techniques , Humans , Sequence Homology, Amino Acid , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics
6.
Chem Res Toxicol ; 31(6): 510-519, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29799191

ABSTRACT

Bisphenol A (BPA) is used heavily in the production of polycarbonate plastics, thermal receipt paper, and epoxies. Ubiquitous exposure to BPA has been linked to obesity, diabetes, and breast and reproductive system cancers. Resistance to chemotherapeutic agents has also been shown in cancer cell models. Here, we investigated BPA's ability to confer resistance to camptothecin (CPT) in mouse embryonic fibroblasts (MEFs). MEFs are sensitive to CPT; however, co-exposure of BPA with CPT improved cell survival. Co-exposure significantly reduced Top1-DNA adducts, decreasing chromosomal aberrations and DNA strand break formation. This decrease occurs despite BPA treatment increasing the protein levels of Top1. By examining chromatin structure after BPA exposure, we determined that widespread compaction and loss of nuclear volume occurs. Therefore, BPA reduced CPT activity by reducing the accessibility of DNA to Top1, inhibiting DNA adduct formation, the generation of toxic DNA strand breaks, and improving cell survival.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Benzhydryl Compounds/pharmacology , Camptothecin/pharmacology , Fibroblasts/drug effects , Phenols/pharmacology , Topoisomerase I Inhibitors/pharmacology , Animals , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Survival/drug effects , DNA/metabolism , DNA Adducts/drug effects , DNA Breaks, Double-Stranded/drug effects , DNA Topoisomerases, Type I/metabolism , Drug Resistance, Neoplasm/drug effects , Fibroblasts/cytology , Genomic Instability , Mice
7.
Br J Cancer ; 113(4): 660-8, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26247574

ABSTRACT

BACKGROUND: Previously, miR-345 was identified as one of the most significantly downregulated microRNAs in pancreatic cancer (PC); however, its functional significance remained unexplored. METHODS: miR-345 was overexpressed in PC cells by stable transfection, and its effect on growth, apoptosis and mitochondrial-membrane potential was examined by WST-1, Hoechst-33342/Annexin-V, and JC-1 staining, respectively. Gene expression was examined by quantitative reverse-transcription-PCR and/or immunoblotting, and subcellular fractions prepared and caspase-3/7 activity determined by commercially available kits. miR-345 target validation was performed by mutational analysis and luciferase-reporter assay. RESULTS: miR-345 is significantly downregulated in PC tissues and cell lines relative to normal pancreatic cells, and its expression decreases gradually in PC progression model cell lines. Forced expression of miR-345 results in reduced growth of PC cells because of the induction of apoptosis, accompanied by a loss in mitochondrial membrane potential, cytochrome-c release, caspases-3/7 activation, and PARP-1 cleavage, as well as mitochondrial-to-nuclear translocation of apoptosis-inducing factor. These effects could be reversed by the treatment of miR-345-overexpressing PC cells with anti-miR-345 oligonucleotides. BCL2 was characterised as a novel target of miR-345 and its forced-expression abrogated the effects of miR-345 in PC cells. CONCLUSIONS: miR-345 downregulation confers apoptosis resistance to PC cells, and its restoration could be exploited for therapeutic benefit.


Subject(s)
Apoptosis/genetics , Caspase 3/genetics , Caspase 7/genetics , MicroRNAs/genetics , Pancreatic Neoplasms/genetics , Signal Transduction/genetics , Cell Line, Tumor , Cell Nucleus/genetics , Cytochromes c/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Membrane Potential, Mitochondrial/genetics , Mitochondria/genetics , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases , bcl-2-Associated X Protein/genetics
8.
Crit Care Med ; 43(8): 1638-45, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25853590

ABSTRACT

OBJECTIVES: Although highly active antiretroviral therapy has led to improved survival in HIV-infected individuals, outcomes for HIV-infected patients with sepsis in the post-highly active antiretroviral therapy era are conflicting. Access to highly active antiretroviral therapy and healthcare disparities continue to affect outcomes. We hypothesized that HIV-infected patients with severe sepsis would have worse outcomes compared with their HIV-uninfected counterparts in a large safety-net hospital where access to healthcare is low and delivery of critical care is delayed. DESIGN: Secondary analysis of an ongoing prospective observational study between 2006 and 2010. SETTING: Three adult ICUs (medical ICU, surgical ICU, and neurologic ICU) at Grady Memorial Hospital, Atlanta, GA. PATIENTS: Adult patients with severe sepsis in the ICU. INTERVENTIONS: Baseline patient characteristics and clinical outcomes were collected. HIV-infected and HIV-uninfected patients with sepsis were compared using t tests, chi-square tests, and logistic regression; p values less than 0.05 indicated significance. MEASUREMENTS AND MAIN RESULTS: Of 1,095 patients with severe sepsis enrolled, 165 (15%) were positive for HIV, with a median CD4 count of 41 (8-167). Twenty-two percent of HIV-infected patients were on highly active antiretroviral therapy prior to admission, and 80% had a CD4 count less than 200. HIV-infected patients had a greater hospital mortality (50% vs 38%; p < 0.01). HIV infection (odds ratio = 1.78; p = 0.005) was an independent predictor of mortality by multivariate regression modeling after adjusting for age, history of pneumonia, history of hospital-acquired infection, and history of sepsis. CONCLUSIONS: HIV-infected patients with severe sepsis continue to suffer worse outcomes compared with HIV-uninfected patients in a large urban safety-net hospital caring for patients with limited access to medical care. Further studies need to be done to investigate the effect of socioeconomic status and mitigate healthcare disparities among critically ill HIV-infected patients.


Subject(s)
HIV Infections/complications , Sepsis/complications , APACHE , Adult , Age Factors , Antiretroviral Therapy, Highly Active , CD4 Lymphocyte Count , Cross Infection/complications , Female , HIV Infections/drug therapy , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Outcome Assessment, Health Care , Pneumonia/complications , Prospective Studies , Sepsis/mortality , Socioeconomic Factors
9.
Res Sq ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559048

ABSTRACT

The goal of any vaccine is to induce long-lived plasma cells (LLPC) to provide life-long protection. Natural infection by influenza, measles, or mumps viruses generates bone marrow (BM) LLPC similar to tetanus vaccination which affords safeguards for decades. Although the SARS-CoV-2 mRNA vaccines protect from severe disease, the serologic half-life is short-lived even though SARS-CoV-2-specific plasma cells can be found in the BM. To better understand this paradox, we enrolled 19 healthy adults at 1.5-33 months after SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus-, or SARS-CoV-2-specific antibody secreting cells (ASC) in LLPC (CD19-) and non-LLPC (CD19+) subsets within the BM. All individuals had IgG ASC specific for influenza, tetanus, and SARS-CoV-2 in at least one BM ASC compartment. However, only influenza- and tetanus-specific ASC were readily detected in the LLPC whereas SARS-CoV-2 specificities were mostly excluded. The ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.61, 0.44, and 29.07, respectively. Even in five patients with known PCR-proven history of infection and vaccination, SARS-CoV-2-specific ASC were mostly excluded from the LLPC. These specificities were further validated by using multiplex bead binding assays of secreted antibodies in the supernatants of cultured ASC. Similarly, the IgG ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.66, 0.44, and 23.26, respectively. In all, our studies demonstrate that rapid waning of serum antibodies is accounted for by the inability of mRNA vaccines to induce BM LLPC.

10.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38645048

ABSTRACT

The multitude of DNA lesion types, and the nuclear dynamic context in which they occur, present a challenge for genome integrity maintenance as this requires the engagement of different DNA repair pathways. Specific 'repair controllers' that facilitate DNA repair pathway crosstalk between double strand break (DSB) repair and base excision repair (BER), and regulate BER protein trafficking at lesion sites, have yet to be identified. We find that DNA polymerase ß (Polß), crucial for BER, is ubiquitylated in a BER complex-dependent manner by TRIP12, an E3 ligase that partners with UBR5 and restrains DSB repair signaling. Here we find that, TRIP12, but not UBR5, controls cellular levels and chromatin loading of Polß. Required for Polß foci formation, TRIP12 regulates Polß involvement after DNA damage. Notably, excessive TRIP12-mediated shuttling of Polß affects DSB formation and radiation sensitivity, underscoring its precedence for BER. We conclude that the herein discovered trafficking function at the nexus of DNA repair signaling pathways, towards Polß-directed BER, optimizes DNA repair pathway choice at complex lesion sites.

11.
Sci Rep ; 14(1): 3616, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38350990

ABSTRACT

Following infection or vaccination, early-minted antibody secreting cells (ASC) or plasmablasts appear in circulation transiently, and a small fraction migrates to the spleen or bone marrow (BM) to mature into long-lived plasma cells (LLPC). While LLPC, by definition, are quiescent or non-dividing, the majority of blood ASC are thought to be "blasting" or proliferative. In this study, we find > 95% nascent blood ASC in culture express Ki-67 but only 6-12% incorporate BrdU after 4 h or 24 h labeling. In contrast, < 5% BM LLPC in culture are Ki-67+ with no BrdU uptake. Due to limitations of traditional flow cytometry, we utilized a novel optofluidic technology to evaluate cell division with simultaneous functional IgG secretion. We find 11% early-minted blood ASC undergo division, and none of the terminally differentiated BM LLPC (CD19-CD38hiCD138+) divide during the 7-21 days in culture. While BM LLPC undergo complete cell cycle arrest, the process of differentiation into an ASC or plasmablasts also discourages entry into S phase. Since the majority of Ki-67+ nascent blood ASC have exited cell cycle and are no longer actively "blasting", the term "plasmablast", which traditionally refers to an ASC that still has the capacity to divide, may probably be a misnomer.


Subject(s)
Bone Marrow , Plasma Cells , Humans , Plasma Cells/metabolism , Ki-67 Antigen , Bone Marrow/metabolism , Immunoglobulin G , Antigens, CD19/metabolism
12.
DNA Repair (Amst) ; 140: 103700, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38897003

ABSTRACT

Mutations in isocitrate dehydrogenase isoform 1 (IDH1) are primarily found in secondary glioblastoma (GBM) and low-grade glioma but are rare in primary GBM. The standard treatment for GBM includes radiation combined with temozolomide, an alkylating agent. Fortunately, IDH1 mutant gliomas are sensitive to this treatment, resulting in a more favorable prognosis. However, it's estimated that up to 75 % of IDH1 mutant gliomas will progress to WHO grade IV over time and develop resistance to alkylating agents. Therefore, understanding the mechanism(s) by which IDH1 mutant gliomas confer sensitivity to alkylating agents is crucial for developing targeted chemotherapeutic approaches. The base excision repair (BER) pathway is responsible for repairing most base damage induced by alkylating agents. Defects in this pathway can lead to hypersensitivity to these agents due to unresolved DNA damage. The coordinated assembly and disassembly of BER protein complexes are essential for cell survival and for maintaining genomic integrity following alkylating agent exposure. These complexes rely on poly-ADP-ribose formation, an NAD+-dependent post-translational modification synthesized by PARP1 and PARP2 during the BER process. At the lesion site, poly-ADP-ribose facilitates the recruitment of XRCC1. This scaffold protein helps assemble BER proteins like DNA polymerase beta (Polß), a bifunctional DNA polymerase containing both DNA synthesis and 5'-deoxyribose-phosphate lyase (5'dRP lyase) activity. Here, we confirm that IDH1 mutant glioma cells have defective NAD+ metabolism, but still produce sufficient nuclear NAD+ for robust PARP1 activation and BER complex formation in response to DNA damage. However, the overproduction of 2-hydroxyglutarate, an oncometabolite produced by the IDH1 R132H mutant protein, suppresses BER capacity by reducing Polß protein levels. This defines a novel mechanism by which the IDH1 mutation in gliomas confers cellular sensitivity to alkylating agents and to inhibitors of the poly-ADP-ribose glycohydrolase, PARG.

13.
medRxiv ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38496525

ABSTRACT

The goal of any vaccine is to induce long-lived plasma cells (LLPC) to provide life-long protection. Natural infection by influenza, measles, or mumps viruses generates bone marrow (BM) LLPC similar to tetanus vaccination which affords safeguards for decades. Although the SARS-CoV-2 mRNA vaccines protect from severe disease, the serologic half-life is short-lived even though SARS-CoV-2-specific plasma cells can be found in the BM. To better understand this paradox, we enrolled 19 healthy adults at 1.5-33 months after SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus-, or SARS-CoV-2-specific antibody secreting cells (ASC) in LLPC (CD19 - ) and non-LLPC (CD19 + ) subsets within the BM. All individuals had IgG ASC specific for influenza, tetanus, and SARS-CoV-2 in at least one BM ASC compartment. However, only influenza- and tetanus-specific ASC were readily detected in the LLPC whereas SARS-CoV-2 specificities were mostly excluded. The ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.61, 0.44, and 29.07, respectively. Even in five patients with known PCR-proven history of infection and vaccination, SARS-CoV-2-specific ASC were mostly excluded from the LLPC. These specificities were further validated by using multiplex bead binding assays of secreted antibodies in the supernatants of cultured ASC. Similarly, the IgG ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.66, 0.44, and 23.26, respectively. In all, our studies demonstrate that rapid waning of serum antibodies is accounted for by the inability of mRNA vaccines to induce BM LLPC.

14.
Cell Microbiol ; 14(6): 882-901, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22309152

ABSTRACT

Argonaute (Ago) plays a central role in RNA interference in metazoans, but its status in lower organisms remains ill-defined. We report on the Ago complex of the unicellular protozoan, Toxoplasma gondii (Tg), an obligatory pathogen of mammalian hosts. The PIWI-like domain of TgAgo lacked the canonical DDE/H catalytic triad, explaining its weak target RNA cleavage activity. However, TgAgo associated with a stronger RNA slicer, a Tudor staphylococcal nuclease (TSN), and with a protein Arg methyl transferase, PRMT1. Mutational analysis suggested that the N-terminal RGG-repeat domain of TgAgo was methylated by PRMT1, correlating with the recruitment of TSN. The slicer activity of TgAgo was Mg(2+)-dependent and required perfect complementarity between the guide RNA and the target. In contrast, the TSN activity was Ca(2+) -dependent and required an imperfectly paired guide RNA. Ago knockout parasites showed essentially normal growth, but in contrast, the PRMT1 knockouts grew abnormally. Chemical inhibition of Arg-methylation also had an anti-parasitic effect. These results suggest that the parasitic PRMT1 plays multiple roles, and its loss affects the recruitment of a more potent second slicer to the parasitic RNA silencing complex, the exact mechanism of which remains to be determined.


Subject(s)
Argonaute Proteins/metabolism , Endoribonucleases/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Protozoan Proteins/metabolism , RNA Cleavage , Toxoplasma/metabolism , Amino Acid Sequence , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Base Pairing , Base Sequence , Cell Division , Cells, Cultured , Endoribonucleases/chemistry , Endoribonucleases/genetics , Gene Knockout Techniques , Humans , Methylation , Molecular Sequence Data , Protein Binding , Protein Processing, Post-Translational , Protein Structure, Tertiary , Protein Subunits/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , RNA/chemistry , RNA Interference , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion , Sequence Homology, Amino Acid , Toxoplasma/genetics , Toxoplasma/growth & development
15.
Exp Cell Res ; 318(10): 1086-93, 2012 Jun 10.
Article in English | MEDLINE | ID: mdl-22504047

ABSTRACT

HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).


Subject(s)
Active Transport, Cell Nucleus , HSP40 Heat-Shock Proteins/metabolism , Heat-Shock Response , Molecular Chaperones/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Localization Signals/metabolism , Animals , COS Cells , Cell Hypoxia , Cell Movement , Cell Nucleus/metabolism , Cell Proliferation , Chlorocebus aethiops , HSP40 Heat-Shock Proteins/chemistry , Humans , Molecular Chaperones/chemistry , Nerve Tissue Proteins/chemistry , Nuclear Localization Signals/chemistry , Protein Isoforms/metabolism , Protein Structure, Tertiary
16.
Methods Mol Biol ; 2609: 43-59, 2023.
Article in English | MEDLINE | ID: mdl-36515828

ABSTRACT

Poly(ADP-ribose) (PAR), catalyzed by members of the poly(ADP-ribose) polymerase family of enzymes, is a posttranslational modification with a critical role in most mechanisms of DNA repair. Upon activation of poly(ADP-ribose) polymerase isoforms 1 and 2 (PARP-1 and PARP-2), the proteins of the base excision repair (BER) and single-strand break repair (SSBR) pathways form DNA lesion-dependent, transient complexes to facilitate repair. PAR is central to the temporal dynamics of BER/SSBR complex assembly and disassembly. To enhance cellular PAR analysis, we developed LivePAR, a fluorescently tagged PAR-binding fusion protein and genetically encoded imaging probe for live cell, quantitative analysis of PAR in mammalian cells. LivePAR has the advantage that it enables real-time imaging of PAR formation in cells and significantly overcomes limitations of immunocytochemistry for PAR analysis. This chapter describes the protocols needed to develop cells expressing LivePAR or EGFP-tagged BER proteins and to evaluate laser-induced formation of PAR and comparison to the assembly of the BER proteins XRCC1 and DNA polymerase-ß.


Subject(s)
Poly Adenosine Diphosphate Ribose , Poly(ADP-ribose) Polymerases , Animals , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , DNA Damage , DNA Repair , Lasers , Mammals/metabolism
17.
bioRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37745615

ABSTRACT

Following infection or vaccination, early-minted antibody secreting cells (ASC) or plasmablasts appear in circulation transiently, and a small fraction migrates to the spleen or bone marrow (BM) to mature into long-lived plasma cells (LLPC). While LLPC, by definition, are quiescent or non-dividing, the majority of blood ASC are thought to be "blasting" or proliferative. In this study, we find >95% nascent blood ASC in culture express Ki-67 but only 6-12% incorporate BrdU after 4h or 24h labeling. In contrast, <5% BM LLPC in culture are Ki-67 + with no BrdU uptake. Due to limitations of traditional flow cytometry, we utilized a novel optofluidic technology to evaluate cell division with simultaneous functional Ig secretion. We find 11% early-minted blood ASC undergo division, and none of the terminally differentiated BM LLPC (CD19 - CD38 hi CD138 + ) divide during the 7-21 days in culture. While BM LLPC undergo complete cell cycle arrest, the process of differentiation into an ASC of plasmablasts discourages entry into S phase. Since the majority of Ki-67 + nascent blood ASC have exited cell cycle and are no longer actively "blasting", the term "plasmablast", which traditionally refers to an ASC that still has the capacity to divide, may probably be a misnomer.

18.
bioRxiv ; 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38234836

ABSTRACT

Protein poly-ADP-ribosylation (PARylation) is a post-translational modification formed by transfer of successive units of ADP-ribose to target proteins to form poly-ADP-ribose (PAR) chains. PAR plays a critical role in the DNA damage response (DDR) by acting as a signaling platform to promote the recruitment of DNA repair factors to the sites of DNA damage that bind via their PAR-binding domains (PBDs). Several classes of PBD families have been recognized, which identify distinct parts of the PAR chain. Proteins encoding PBDs play an essential role in conveying the PAR-mediated signal through their interaction with PAR chains, which mediates many cellular functions, including the DDR. The WWE domain identifies the iso-ADP-ribose moiety of the PAR chain. We recently described the WWE domain of RNF146 as a robust genetically encoded probe, when fused to EGFP, for detection of PAR in live cells. Here, we evaluated other PBD candidates as molecular PAR probes in live cells, including several other WWE domains and an engineered macrodomain. In addition, we demonstrate unique PAR dynamics when tracked by different PAR binding domains, a finding that that can be exploited for modulation of the PAR-dependent DNA damage response.

19.
PLoS One ; 18(5): e0284394, 2023.
Article in English | MEDLINE | ID: mdl-37167308

ABSTRACT

Physiological function is regulated through cellular communication that is facilitated by multiple signaling molecules such as second messengers. Analysis of signal dynamics obtained from cell and tissue imaging is difficult because of intricate spatially and temporally distinct signals. Signal analysis tools based on static region of interest analysis may under- or overestimate signals in relation to region of interest size and location. Therefore, we developed an algorithm for biological signal detection and analysis based on dynamic regions of interest, where time-dependent polygonal regions of interest are automatically assigned to the changing perimeter of detected and segmented signals. This approach allows signal profiles to be rigorously and precisely tracked over time, eliminating the signal distortion observed with static methods. Integration of our approach with state-of-the-art image processing and particle tracking pipelines enabled the isolation of dynamic cellular signaling events and characterization of biological signaling patterns with distinct combinations of parameters including amplitude, duration, and spatial spread. Our algorithm was validated using synthetically generated datasets and compared with other available methods. Application of the algorithm to volumetric time-lapse hyperspectral images of cyclic adenosine monophosphate measurements in rat microvascular endothelial cells revealed distinct signal heterogeneity with respect to cell depth, confirming the utility of our approach for analysis of 5-dimensional data. In human tibial arteries, our approach allowed the identification of distinct calcium signal patterns associated with atherosclerosis. Our algorithm for automated detection and analysis of second messenger signals enables the decoding of signaling patterns in diverse tissues and identification of pathologic cellular responses.


Subject(s)
Algorithms , Endothelial Cells , Rats , Humans , Animals , Second Messenger Systems , Image Processing, Computer-Assisted/methods , Signal Transduction
20.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711623

ABSTRACT

Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASC) to long-lived plasma cells (LLPC). We provide single cell transcriptional resolution of 17,347 BM ASC from 5 healthy adults. Fifteen clusters were identified ranging from newly minted ASC (cluster 1) expressing MKI67 and high MHC Class II that progressed to late clusters 5-8 through intermediate clusters 2-4. Additional clusters included early and late IgM-predominant ASC of likely extra-follicular origin; IFN-responsive; and high mitochondrial activity ASC. Late ASCs were distinguished by differences in G2M checkpoints, MTOR signaling, distinct metabolic pathways, CD38 expression, and utilization of TNF-receptor superfamily members. They mature through two distinct paths differentiated by the degree of TNF signaling through NFKB. This study provides the first single cell resolution atlas and molecular roadmap of LLPC maturation, thereby providing insight into differentiation trajectories and molecular regulation of these essential processes in the human BM microniche. This information enables investigation of the origin of protective and pathogenic antibodies in multiple diseases and development of new strategies targeted to the enhancement or depletion of the corresponding ASC. One Sentence Summary: The single cell transcriptomic atlas of human bone marrow plasma cell heterogeneity shows maturation of class-switched early and late subsets, specific IgM and Interferon-driven clusters, and unique heterogeneity of the late subsets which encompass the long-lived plasma cells.

SELECTION OF CITATIONS
SEARCH DETAIL