Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Genet Med ; 26(2): 101012, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37924259

ABSTRACT

PURPOSE: To evaluate the diagnostic utility of publicly funded clinical exome sequencing (ES) for patients with suspected rare genetic diseases. METHODS: We prospectively enrolled 297 probands who met eligibility criteria and received ES across 5 sites in Ontario, Canada, and extracted data from medical records and clinician surveys. Using the Fryback and Thornbury Efficacy Framework, we assessed diagnostic accuracy by examining laboratory interpretation of results and assessed diagnostic thinking by examining the clinical interpretation of results and whether clinical-molecular diagnoses would have been achieved via alternative hypothetical molecular tests. RESULTS: Laboratories reported 105 molecular diagnoses and 165 uncertain results in known and novel genes. Of these, clinicians interpreted 102 of 105 (97%) molecular diagnoses and 6 of 165 (4%) uncertain results as clinical-molecular diagnoses. The 108 clinical-molecular diagnoses were in 104 families (35% diagnostic yield). Each eligibility criteria resulted in diagnostic yields of 30% to 40%, and higher yields were achieved when >2 eligibility criteria were met (up to 45%). Hypothetical tests would have identified 61% of clinical-molecular diagnoses. CONCLUSION: We demonstrate robustness in eligibility criteria and high clinical validity of laboratory results from ES testing. The importance of ES was highlighted by the potential 40% of patients that would have gone undiagnosed without this test.


Subject(s)
Exome , Rare Diseases , Humans , Prospective Studies , Exome Sequencing , Rare Diseases/diagnosis , Rare Diseases/genetics , Genetic Testing/methods , Ontario
2.
Front Oncol ; 12: 863848, 2022.
Article in English | MEDLINE | ID: mdl-35494042

ABSTRACT

Advances in imaging have changed prostate radiotherapy through improved biochemical control from focal boost and improved detection of recurrence. These advances are reviewed in the context of prostate stereotactic body radiation therapy (SBRT) and the ARGOS/CLIMBER trial protocol. ARGOS/CLIMBER will evaluate 1) the safety and feasibility of SBRT with focal boost guided by multiparametric MRI (mpMRI) and 18F-PSMA-1007 PET and 2) imaging and laboratory biomarkers for response to SBRT. To date, response to prostate SBRT is most commonly evaluated using the Phoenix Criteria for biochemical failure. The drawbacks of this approach include lack of lesion identification, a high false-positive rate, and delay in identifying treatment failure. Patients in ARGOS/CLIMBER will receive dynamic 18F-PSMA-1007 PET and mpMRI prior to SBRT for treatment planning and at 6 and 24 months after SBRT to assess response. Imaging findings will be correlated with prostate-specific antigen (PSA) and biopsy results, with the goal of early, non-invasive, and accurate identification of treatment failure.

3.
Breast Cancer Res ; 13(1): 201, 2011 Jan 24.
Article in English | MEDLINE | ID: mdl-21345283

ABSTRACT

Breast cancer is a heterogeneous disease. Patient outcome varies significantly, depending on prognostic features of patients and their tumors, including patient age, menopausal status, tumor size and histology, nodal status, and so on. Response to treatment also depends on a series of predictive factors, such as hormone receptor and HER2 status. Current treatment guidelines use these features to determine treatment. However, these guidelines are imperfect, and do not always predict response to treatment or survival. Evolving technologies are permitting increasingly large amounts of molecular data to be obtained from tumors, which may enable more personalized treatment decisions to be made. The challenge is to learn what information leads to improved prognostic accuracy and treatment outcome for individual patients.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease Progression , Female , Gene Expression Profiling , Humans , Neoplasm Metastasis , Prognosis
4.
Lab Invest ; 90(8): 1247-58, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20458274

ABSTRACT

Early breast cancer progression involves advancement through specific morphological stages including atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive mammary carcinoma (IMC), although not necessarily always in a linear fashion. Observational studies have examined genetic, epigenetic and gene expression differences in breast tissues representing these stages of progression, but model systems which would allow for experimental testing of specific factors influencing transition through these stages are scarce. The 21T series cell lines, all originally derived from the same patient with metastatic breast cancer, have been proposed to represent a mammary tumor progression series. We report here that three of the 21T cell lines indeed mimic specific stages of human breast cancer progression (21PT-derived cells, ADH; 21NT-derived cells, DCIS; 21MT-1 cells, IMC) when grown in the mammary fat pad of nude mice, albeit after a year. To develop a more rapid, readily manipulatable in vitro assay for examining the biological differences between these cell lines, we have used a 3D Matrigel system. When the three cell lines were grown in 3D Matrigel, they showed characteristic morphologies, in which quantifiable aspects of stage-specific in vivo behaviors (ie, differences in acinar structure formation, cell polarization, colony morphology, cell proliferation, cell invasion) were recapitulated in a reproducible fashion. Gene expression profiling revealed a characteristic pattern for each of the three cell lines. Interestingly, Wnt pathway alterations are particularly predominant in the early transition from 21PTci (ADH) to 21NTci (DCIS), whereas alterations in expression of genes associated with control of cell motility and invasion phenomena are more prominent in the later transition of 21NTci (DCIS) to 21MT-1 (IMC). This system thus reveals potential therapeutic targets and will provide a means of testing the influences of identified genes on transitions between these stages of pre-malignant to malignant growth.


Subject(s)
Breast Neoplasms , Breast/metabolism , Carcinoma in Situ/pathology , Carcinoma, Ductal/pathology , Carcinoma/pathology , Animals , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma/genetics , Carcinoma/metabolism , Carcinoma in Situ/genetics , Carcinoma in Situ/metabolism , Carcinoma, Ductal/genetics , Carcinoma, Ductal/metabolism , Collagen , Disease Progression , Drug Combinations , Female , Gene Expression , Gene Expression Profiling , Humans , Hyperplasia/metabolism , Hyperplasia/pathology , Laminin , Mice , Mice, Nude , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Processes , Proteoglycans
5.
Endocrinology ; 146(10): 4514-23, 2005 Oct.
Article in English | MEDLINE | ID: mdl-15994347

ABSTRACT

We have investigated the effects of chronically elevated glucose concentrations on the pancreatic alpha-cell line alphaTC1-6. We show that basal glucagon secretion and proglucagon gene expression were increased in response to high glucose levels. The extent of acute stimulated secretion of glucagon was also increased in response to high glucose, as was the transcription of the prohormone processing enzymes PC1/3 and PC2. The secretion of GLP-1, a proglucagon-derived peptide produced by cleavage of proglucagon by PC1/3, was also increased in response to high glucose. Gene expression profiling experiments showed that a number of components of the regulated secretory pathway were up-regulated at high glucose concentrations, including processing enzymes and exocytotic proteins. Immunoblot analysis showed that the expression of the exocytotic SNARE proteins, as well as that of PC1/3, chromogranin A, and 7B2, were all increased after chronic exposure to high glucose levels. Immunocytochemistry showed no changes in the expression of the mature alpha-cell markers glucagon and brn-4 and no induction of the immature alpha-cell marker pdx-1. We conclude that chronically elevated glucose concentrations up-regulate the regulated secretory response of the alpha-cell.


Subject(s)
Glucagon/metabolism , Glucose/pharmacology , Islets of Langerhans/metabolism , Protein Precursors/metabolism , Animals , Cell Division/drug effects , Cell Line , Glucagon-Like Peptide 1 , Islets of Langerhans/drug effects , Kinetics , Peptide Fragments/metabolism , Proglucagon , Rats , Reverse Transcriptase Polymerase Chain Reaction
6.
J Lipid Res ; 48(3): 699-708, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17130282

ABSTRACT

The combination of ezetimibe, an inhibitor of Niemann-Pick C1-like 1 protein (NPC1L1), and an HMG-CoA reductase inhibitor decreases cholesterol absorption and synthesis. In clinical trials, ezetimibe plus simvastatin produces greater LDL-cholesterol reductions than does monotherapy. The molecular mechanism for this enhanced efficacy has not been defined. Apolipoprotein B-100 (apoB-100) kinetics were determined in miniature pigs treated with ezetimibe (0.1 mg/kg/day), ezetimibe plus simvastatin (10 mg/kg/day), or placebo (n = 7/group). Ezetimibe decreased cholesterol absorption (-79%) and plasma phytosterols (-91%), which were not affected further by simvastatin. Ezetimibe increased plasma lathosterol (+65%), which was prevented by addition of simvastatin. The combination decreased total cholesterol (-35%) and LDL-cholesterol (-47%). VLDL apoB pool size decreased 26%, due to a 35% decrease in VLDL apoB production. LDL apoB pool size decreased 34% due to an 81% increase in the fractional catabolic rate, both of which were significantly greater than monotherapy. Combination treatment decreased hepatic microsomal cholesterol (-29%) and cholesteryl ester (-65%) and increased LDL receptor (LDLR) expression by 240%. The combination increased NPC1L1 expression in liver and intestine, consistent with increased SREBP2 expression. Ezetimibe plus simvastatin decreases VLDL and LDL apoB-100 concentrations through reduced VLDL production and upregulation of LDLR-mediated LDL clearance.


Subject(s)
Apolipoprotein B-100/blood , Azetidines/pharmacology , Simvastatin/pharmacology , ATP-Binding Cassette Transporters/genetics , Animals , Anticholesteremic Agents/pharmacology , Cholesterol/metabolism , Ezetimibe , Female , Intestinal Mucosa/metabolism , Intestines/drug effects , Lipid Metabolism/drug effects , Lipids/blood , Lipoproteins/blood , Lipoproteins, HDL/blood , Lipoproteins, LDL/blood , Lipoproteins, VLDL/blood , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, LDL/genetics , Reverse Transcriptase Polymerase Chain Reaction , Swine
SELECTION OF CITATIONS
SEARCH DETAIL