Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nature ; 582(7812): 410-415, 2020 06.
Article in English | MEDLINE | ID: mdl-32528178

ABSTRACT

The body plan of the mammalian embryo is shaped through the process of gastrulation, an early developmental event that transforms an isotropic group of cells into an ensemble of tissues that is ordered with reference to three orthogonal axes1. Although model organisms have provided much insight into this process, we know very little about gastrulation in humans, owing to the difficulty of obtaining embryos at such early stages of development and the ethical and technical restrictions that limit the feasibility of observing gastrulation ex vivo2. Here we show that human embryonic stem cells can be used to generate gastruloids-three-dimensional multicellular aggregates that differentiate to form derivatives of the three germ layers organized spatiotemporally, without additional extra-embryonic tissues. Human gastruloids undergo elongation along an anteroposterior axis, and we use spatial transcriptomics to show that they exhibit patterned gene expression. This includes a signature of somitogenesis that suggests that 72-h human gastruloids show some features of Carnegie-stage-9 embryos3. Our study represents an experimentally tractable model system to reveal and examine human-specific regulatory processes that occur during axial organization in early development.


Subject(s)
Body Patterning , Gastrula/cytology , Human Embryonic Stem Cells/cytology , Organoids/cytology , Organoids/embryology , Somites/cytology , Somites/embryology , Body Patterning/genetics , Gastrula/embryology , Gastrula/metabolism , Gene Expression Regulation, Developmental , Humans , In Vitro Techniques , Organoids/metabolism , Signal Transduction , Somites/metabolism , Transcriptome
2.
Development ; 148(18)2021 09 15.
Article in English | MEDLINE | ID: mdl-34494114

ABSTRACT

Recent years have seen a dramatic increase in the application of organoids to developmental biology, biomedical and translational studies. Organoids are large structures with high phenotypic complexity and are imaged on a wide range of platforms, from simple benchtop stereoscopes to high-content confocal-based imaging systems. The large volumes of images, resulting from hundreds of organoids cultured at once, are becoming increasingly difficult to inspect and interpret. Hence, there is a pressing demand for a coding-free, intuitive and scalable solution that analyses such image data in an automated yet rapid manner. Here, we present MOrgAna, a Python-based software that implements machine learning to segment images, quantify and visualize morphological and fluorescence information of organoids across hundreds of images, each with one object, within minutes. Although the MOrgAna interface is developed for users with little to no programming experience, its modular structure makes it a customizable package for advanced users. We showcase the versatility of MOrgAna on several in vitro systems, each imaged with a different microscope, thus demonstrating the wide applicability of the software to diverse organoid types and biomedical studies.


Subject(s)
Image Processing, Computer-Assisted/methods , Organoids/physiology , Fluorescence , Machine Learning , Phenotype , Software
3.
PLoS Comput Biol ; 17(11): e1009503, 2021 11.
Article in English | MEDLINE | ID: mdl-34723958

ABSTRACT

In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create and test hypotheses collaboratively. To address these challenges, we have developed a tool, linus, which makes the process of exploring and sharing 3D trajectories as easy as browsing a website. We provide a python script that reads trajectory data, enriches them with additional features such as edge bundling or custom axes, and generates an interactive web-based visualisation that can be shared online. linus facilitates the collaborative discovery of patterns in complex trajectory data.


Subject(s)
Computational Biology/methods , Information Dissemination/methods , Internet , Programming Languages , User-Computer Interface
4.
Soft Matter ; 18(19): 3771-3780, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35511111

ABSTRACT

Multicellular aggregates are known to exhibit liquid-like properties. The fusion process of two cell aggregates is commonly studied as the coalescence of two viscous drops. However, tissues are complex materials and can exhibit viscoelastic behaviour. It is known that elastic effects can prevent the complete fusion of two drops, a phenomenon known as arrested coalescence. Here we study this phenomenon in stem cell aggregates and provide a theoretical framework which agrees with the experiments. In addition, agent-based simulations show that active cell fluctuations can control a solid-to-fluid phase transition, revealing that arrested coalescence can be found in the vicinity of an unjamming transition. By analysing the dynamics of the fusion process and combining it with nanoindentation measurements, we obtain the effective viscosity, shear modulus and surface tension of the aggregates. More generally, our work provides a simple, fast and inexpensive method to characterize the mechanical properties of viscoelastic materials.


Subject(s)
Viscosity , Surface Tension
5.
Elife ; 102021 08 31.
Article in English | MEDLINE | ID: mdl-34463611

ABSTRACT

The metazoan body plan is established during early embryogenesis via collective cell rearrangements and evolutionarily conserved gene networks, as part of a process commonly referred to as gastrulation. While substantial progress has been achieved in terms of characterizing the embryonic development of several model organisms, underlying principles of many early patterning processes nevertheless remain enigmatic. Despite the diversity of (pre-)gastrulating embryo and adult body shapes across the animal kingdom, the body axes, which are arguably the most fundamental features, generally remain identical between phyla. Recently there has been a renewed appreciation of ex vivo and in vitro embryo-like systems to model early embryonic patterning events. Here, we briefly review key examples and propose that similarities in morphogenesis and associated gene expression dynamics may reveal an evolutionarily conserved developmental mode as well as provide further insights into the role of external or extraembryonic cues in shaping the early embryo. In summary, we argue that embryo-like systems can be employed to inform previously uncharted aspects of animal body plan evolution as well as associated patterning rules.


Subject(s)
Body Patterning/genetics , Evolution, Molecular , Gastrulation/genetics , Gene Expression Regulation, Developmental , Animals , Embryo, Mammalian/physiology , Female , Morphogenesis/genetics , Pregnancy
6.
Methods Mol Biol ; 2258: 131-147, 2021.
Article in English | MEDLINE | ID: mdl-33340359

ABSTRACT

Gastruloids are embryonic organoids made from small, defined numbers of mouse embryonic stem cells (mESCs) aggregated in suspension culture, which over time form 3D structures that mimic many of the features of early mammalian development. Unlike embryoid bodies that are usually disorganized when grown over several days, gastruloids display distinct, well-organized gene expression domains demarcating the emergence of the three body axes, anteroposterior axial elongation, and implementation of collinear Hox transcriptional patterns over 5-7 days of culture. As such gastruloids represent a useful experimental system that is complementary to in vivo approaches in studying early developmental patterning mechanisms regulating the acquisition of cell fates. In this protocol, we describe the most recent method for generating gastruloids with high reproducibility, and provide a comprehensive list of possible challenges as well as steps for protocol optimization.


Subject(s)
Body Patterning , Cell Differentiation , Cell Lineage , Gastrulation , Mouse Embryonic Stem Cells/physiology , Animals , Cell Culture Techniques , Cells, Cultured , Gene Expression Regulation, Developmental , Mice , Microscopy , Organoids , Signal Transduction , Time Factors
7.
Curr Biol ; 30(15): 2984-2994.e3, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32559447

ABSTRACT

A fundamental question in developmental biology is how the early embryo establishes the spatial coordinate system that is later important for the organization of the embryonic body plan. Although we know a lot about the signaling and gene-regulatory networks required for this process, much less is understood about how these can operate to pattern tissues in the context of the extensive cell movements that drive gastrulation. In zebrafish, germ layer specification depends on the inheritance of maternal mRNAs [1-3], cortical rotation to generate a dorsal pole of ß-catenin activity [4-8], and the release of Nodal signals from the yolk syncytial layer (YSL) [9-12]. To determine whether germ layer specification is robust to altered cell-to-cell positioning, we separated embryonic cells from the yolk and allowed them to develop as spherical aggregates. These aggregates break symmetry autonomously to form elongated structures with an anterior-posterior pattern. Both forced reaggregation and endogenous cell mixing reveals how robust early axis specification is to spatial disruption of maternal pre-patterning. During these movements, a pole of Nodal signaling emerges that is required for explant elongation via the planar cell polarity (PCP) pathway. Blocking of PCP-dependent elongation disrupts the shaping of opposing poles of BMP and Wnt/TCF activity and the anterior-posterior patterning of neural tissue. These results lead us to suggest that embryo elongation plays a causal role in timing the exposure of cells to changes in BMP and Wnt signal activity during zebrafish gastrulation. VIDEO ABSTRACT.


Subject(s)
Body Patterning/genetics , Body Patterning/physiology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Morphogenesis/genetics , Morphogenesis/physiology , Zebrafish/embryology , Animals , Cell Communication/physiology , Cell Polarity , RNA, Messenger , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
8.
Elife ; 72018 08 29.
Article in English | MEDLINE | ID: mdl-30156184

ABSTRACT

CRISPR/Cas9 efficiently induces targeted mutations via non-homologous-end-joining but for genome editing, precise, homology-directed repair (HDR) of endogenous DNA stretches is a prerequisite. To favor HDR, many approaches interfere with the repair machinery or manipulate Cas9 itself. Using Medaka we show that the modification of 5' ends of long dsDNA donors strongly enhances HDR, favors efficient single-copy integration by retaining a monomeric donor conformation thus facilitating successful gene replacement or tagging.


Subject(s)
CRISPR-Cas Systems , DNA End-Joining Repair , DNA/genetics , Gene Editing/methods , Recombinational DNA Repair , Animals , DNA/metabolism , Embryo, Nonmammalian/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Models, Genetic , Oryzias
SELECTION OF CITATIONS
SEARCH DETAIL