Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Publication year range
1.
Cell ; 179(7): 1441-1445, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31835023

ABSTRACT

Despite being a staple of our science, the process of pre-publication peer review has few agreed-upon standards defining its goals or ideal execution. As a community of reviewers and authors, we assembled an evaluation format and associated specific standards for the process as we think it should be practiced. We propose that we apply, debate, and ultimately extend these to improve the transparency of our criticism and the speed with which quality data and ideas become public.


Subject(s)
Peer Review/standards , Biomedical Research/standards , Peer Review/methods , Periodicals as Topic/standards , Quality Improvement
2.
Cell ; 177(2): 231-242, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30951667

ABSTRACT

The Extracellular RNA Communication Consortium (ERCC) was launched to accelerate progress in the new field of extracellular RNA (exRNA) biology and to establish whether exRNAs and their carriers, including extracellular vesicles (EVs), can mediate intercellular communication and be utilized for clinical applications. Phase 1 of the ERCC focused on exRNA/EV biogenesis and function, discovery of exRNA biomarkers, development of exRNA/EV-based therapeutics, and construction of a robust set of reference exRNA profiles for a variety of biofluids. Here, we present progress by ERCC investigators in these areas, and we discuss collaborative projects directed at development of robust methods for EV/exRNA isolation and analysis and tools for sharing and computational analysis of exRNA profiling data.


Subject(s)
Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/metabolism , Extracellular Vesicles/genetics , Biomarkers , Humans , Knowledge Bases , MicroRNAs/genetics , RNA/genetics
3.
Immunity ; 55(7): 1284-1298.e3, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35779527

ABSTRACT

While studies have elucidated many pathophysiological elements of COVID-19, little is known about immunological changes during COVID-19 resolution. We analyzed immune cells and phosphorylated signaling states at single-cell resolution from longitudinal blood samples of patients hospitalized with COVID-19, pneumonia and/or sepsis, and healthy individuals by mass cytometry. COVID-19 patients showed distinct immune compositions and an early, coordinated, and elevated immune cell signaling profile associated with early hospital discharge. Intra-patient longitudinal analysis revealed changes in myeloid and T cell frequencies and a reduction in immune cell signaling across cell types that accompanied disease resolution and discharge. These changes, together with increases in regulatory T cells and reduced signaling in basophils, also accompanied recovery from respiratory failure and were associated with better outcomes at time of admission. Therefore, although patients have heterogeneous immunological baselines and highly variable disease courses, a core immunological trajectory exists that defines recovery from severe SARS-CoV-2 infection.


Subject(s)
COVID-19 , Pneumonia , Disease Progression , Humans , SARS-CoV-2
4.
Immunity ; 55(10): 1891-1908.e12, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36044899

ABSTRACT

Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.


Subject(s)
Mite Infestations , Mites , Animals , Cytokines , Hair Follicle/pathology , Humans , Immunity, Innate , Inflammation , Interleukin-13 , Lymphocytes/pathology , Mice , Mite Infestations/complications , Mite Infestations/parasitology , Mite Infestations/pathology , Symbiosis
5.
Nature ; 604(7905): 337-342, 2022 04.
Article in English | MEDLINE | ID: mdl-35355021

ABSTRACT

Decades of work have elucidated cytokine signalling and transcriptional pathways that control T cell differentiation and have led the way to targeted biologic therapies that are effective in a range of autoimmune, allergic and inflammatory diseases. Recent evidence indicates that obesity and metabolic disease can also influence the immune system1-7, although the mechanisms and effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic dermatitis, we show that lean and obese mice mount markedly different immune responses. Obesity converted the classical type 2 T helper (TH2)-predominant disease associated with atopic dermatitis to a more severe disease with prominent TH17 inflammation. We also observed divergent responses to biologic therapies targeting TH2 cytokines, which robustly protected lean mice but exacerbated disease in obese mice. Single-cell RNA sequencing coupled with genome-wide binding analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells from obese mice relative to lean mice. Conditional ablation of PPARγ in T cells revealed that PPARγ is required to focus the in vivo TH response towards a TH2-predominant state and prevent aberrant non-TH2 inflammation. Treatment of obese mice with a small-molecule PPARγ agonist limited development of TH17 pathology and unlocked therapeutic responsiveness to targeted anti-TH2 biologic therapies. These studies reveal the effects of obesity on immunological disease and suggest a precision medicine approach to target the immune dysregulation caused by obesity.


Subject(s)
Dermatitis, Atopic , PPAR gamma , Animals , Cytokines/metabolism , Disease Models, Animal , Inflammation/metabolism , Mice , Obesity/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Precision Medicine , Sequence Analysis, RNA , Th2 Cells/metabolism
6.
Nat Methods ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014073

ABSTRACT

RNA structural switches are key regulators of gene expression in bacteria, but their characterization in Metazoa remains limited. Here, we present SwitchSeeker, a comprehensive computational and experimental approach for systematic identification of functional RNA structural switches. We applied SwitchSeeker to the human transcriptome and identified 245 putative RNA switches. To validate our approach, we characterized a previously unknown RNA switch in the 3' untranslated region of the RORC (RAR-related orphan receptor C) transcript. In vivo dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), coupled with cryogenic electron microscopy, confirmed its existence as two alternative structural conformations. Furthermore, we used genome-scale CRISPR screens to identify trans factors that regulate gene expression through this RNA structural switch. We found that nonsense-mediated messenger RNA decay acts on this element in a conformation-specific manner. SwitchSeeker provides an unbiased, experimentally driven method for discovering RNA structural switches that shape the eukaryotic gene expression landscape.

7.
Am J Hum Genet ; 110(7): 1068-1085, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37352860

ABSTRACT

ERI1 is a 3'-to-5' exoribonuclease involved in RNA metabolic pathways including 5.8S rRNA processing and turnover of histone mRNAs. Its biological and medical significance remain unclear. Here, we uncover a phenotypic dichotomy associated with bi-allelic ERI1 variants by reporting eight affected individuals from seven unrelated families. A severe spondyloepimetaphyseal dysplasia (SEMD) was identified in five affected individuals with missense variants but not in those with bi-allelic null variants, who showed mild intellectual disability and digital anomalies. The ERI1 missense variants cause a loss of the exoribonuclease activity, leading to defective trimming of the 5.8S rRNA 3' end and a decreased degradation of replication-dependent histone mRNAs. Affected-individual-derived induced pluripotent stem cells (iPSCs) showed impaired in vitro chondrogenesis with downregulation of genes regulating skeletal patterning. Our study establishes an entity previously unreported in OMIM and provides a model showing a more severe effect of missense alleles than null alleles within recessive genotypes, suggesting a key role of ERI1-mediated RNA metabolism in human skeletal patterning and chondrogenesis.


Subject(s)
Exoribonucleases , Histones , Humans , Exoribonucleases/genetics , Histones/genetics , Mutation, Missense/genetics , RNA, Ribosomal, 5.8S , RNA , RNA, Messenger/genetics
8.
Nat Immunol ; 15(8): 777-88, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24997565

ABSTRACT

A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4(+) T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis.


Subject(s)
Asthma/genetics , Asthma/immunology , Genetic Predisposition to Disease , Th1 Cells/immunology , Th2 Cells/immunology , Adolescent , Adult , Aged , Binding Sites/genetics , Binding Sites/immunology , Cell Differentiation/immunology , Cells, Cultured , Core Binding Factor Alpha 3 Subunit/genetics , DNA Methylation/genetics , Epigenomics , Female , GATA3 Transcription Factor/genetics , Genome-Wide Association Study , Histones/genetics , Histones/immunology , Humans , Immunologic Memory/immunology , Male , MicroRNAs/genetics , Middle Aged , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Protein Binding/immunology , Sequence Analysis, RNA , T-Box Domain Proteins/genetics , Young Adult
9.
Nat Immunol ; 15(1): 98-108, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24292363

ABSTRACT

Dendritic cells (DCs) that orchestrate mucosal immunity have been studied in mice. Here we characterized human gut DC populations and defined their relationship to previously studied human and mouse DCs. CD103(+)Sirpα(-) DCs were related to human blood CD141(+) DCs and to mouse intestinal CD103(+)CD11b(-) DCs and expressed markers of cross-presenting DCs. CD103(+)Sirpα(+) DCs aligned with human blood CD1c(+) DCs and mouse intestinal CD103(+)CD11b(+) DCs and supported the induction of regulatory T cells. Both CD103(+) DC subsets induced the TH17 subset of helper T cells, while CD103(-)Sirpα(+) DCs induced the TH1 subset of helper T cells. Comparative analysis of transcriptomes revealed conserved transcriptional programs among CD103(+) DC subsets and identified a selective role for the transcriptional repressors Bcl-6 and Blimp-1 in the specification of CD103(+)CD11b(-) DCs and intestinal CD103(+)CD11b(+) DCs, respectively. Our results highlight evolutionarily conserved and divergent programming of intestinal DCs.


Subject(s)
Cell Differentiation/immunology , Dendritic Cells/immunology , Intestinal Mucosa/immunology , Transcriptome/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, CD1/immunology , Antigens, CD1/metabolism , CD11b Antigen/immunology , CD11b Antigen/metabolism , Cell Differentiation/genetics , Cells, Cultured , Cluster Analysis , Cross-Priming/genetics , Cross-Priming/immunology , Dendritic Cells/metabolism , Flow Cytometry , Glycoproteins/immunology , Glycoproteins/metabolism , Humans , Integrin alpha Chains/immunology , Integrin alpha Chains/metabolism , Integrins/genetics , Integrins/immunology , Mice , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Oligonucleotide Array Sequence Analysis , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Transcriptome/genetics
10.
Nat Immunol ; 15(12): 1162-70, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25362490

ABSTRACT

MicroRNAs (miRNAs) exert powerful effects on immunological function by tuning networks of target genes that orchestrate cell activity. We sought to identify miRNAs and miRNA-regulated pathways that control the type 2 helper T cell (TH2 cell) responses that drive pathogenic inflammation in asthma. Profiling miRNA expression in human airway-infiltrating T cells revealed elevated expression of the miRNA miR-19a in asthma. Modulating miR-19 activity altered TH2 cytokine production in both human and mouse T cells, and TH2 cell responses were markedly impaired in cells lacking the entire miR-17∼92 cluster. miR-19 promoted TH2 cytokine production and amplified inflammatory signaling by direct targeting of the inositol phosphatase PTEN, the signaling inhibitor SOCS1 and the deubiquitinase A20. Thus, upregulation of miR-19a in asthma may be an indicator and a cause of increased TH2 cytokine production in the airways.


Subject(s)
Asthma/immunology , Cytokines/biosynthesis , MicroRNAs/immunology , Th2 Cells/immunology , Animals , Asthma/genetics , Asthma/metabolism , Bronchoalveolar Lavage Fluid/cytology , Clinical Trials as Topic , Flow Cytometry , High-Throughput Screening Assays , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Mice , Mice, Transgenic , Multiplex Polymerase Chain Reaction , Th2 Cells/metabolism , Up-Regulation
11.
Trends Immunol ; 44(10): 792-806, 2023 10.
Article in English | MEDLINE | ID: mdl-37599172

ABSTRACT

RNA is integral to the regulatory circuits that control cell identity and behavior. Cis-regulatory elements in mRNAs interact with RNA-binding proteins (RBPs) that can alter RNA sequence, stability, and translation into protein. Similarly, long noncoding RNAs (lncRNAs) scaffold ribonucleoprotein complexes that mediate transcriptional and post-transcriptional regulation of gene expression. Indeed, cell programming is fundamental to multicellular life and, in this era of cellular therapies, it is of particular interest in T cells. Here, we review key concepts and recent advances in our understanding of the RNA circuits and RBPs that govern mammalian T cell differentiation and immune function.


Subject(s)
RNA, Long Noncoding , RNA , Animals , Humans , T-Lymphocytes/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonucleoproteins , RNA, Messenger/metabolism , RNA, Long Noncoding/genetics , Mammals
12.
Proc Natl Acad Sci U S A ; 120(25): e2300987120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307442

ABSTRACT

T cell antigen receptor stimulation induces tyrosine phosphorylation of downstream signaling molecules and the phosphatidylinositol, Ras, MAPK, and PI3 kinase pathways, leading to T cell activation. Previously, we reported that the G-protein-coupled human muscarinic receptor could bypass tyrosine kinases to activate the phosphatidylinositol pathway and induce interleukin-2 production in Jurkat leukemic T cells. Here, we demonstrate that stimulating G-protein-coupled muscarinic receptors (M1 and synthetic hM3Dq) can activate primary mouse T cells if PLCß1 is coexpressed. Resting peripheral hM3Dq+PLCß1 (hM3Dq/ß1) T cells did not respond to clozapine, an hM3Dq agonist, unless they were preactivated by TCR and CD28 stimulation which increased hM3Dq and PLCß1 expression. This permitted large calcium and phosphorylated ERK responses to clozapine. Clozapine treatment induced high IFN-γ, CD69, and CD25 expression, but surprisingly did not induce substantial IL-2 in hM3Dq/ß1 T cells. Importantly, costimulation of both muscarinic receptors plus the TCR even led to reduced IL-2 expression, suggesting a selective inhibitory effect of muscarinic receptor costimulation. Stimulation of muscarinic receptors induced strong nuclear translocation of NFAT and NFκB and activated AP-1. However, stimulation of hM3Dq led to reduced IL-2 mRNA stability which correlated with an effect on the IL-2 3'UTR activity. Interestingly, stimulation of hM3Dq resulted in reduced pAKT and its downstream pathway. This may explain the inhibitory impact on IL-2 production in hM3Dq/ß1T cells. Moreover, an inhibitor of PI3K reduced IL-2 production in TCR-stimulated hM3Dq/ß1 CD4 T cells, suggesting that activating the pAKT pathway is critical for IL-2 production in T cells.


Subject(s)
Clozapine , Interleukin-2 , Humans , Animals , Mice , Receptors, Muscarinic , Interferon-gamma , GTP-Binding Proteins , Tyrosine
13.
Nat Immunol ; 14(8): 840-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23812098

ABSTRACT

Follicular helper T cells (TFH cells) are the prototypic helper T cell subset specialized to enable B cells to form germinal centers (GCs) and produce high-affinity antibodies. We found that expression of microRNAs (miRNAs) by T cells was essential for TFH cell differentiation. More specifically, we show that after immunization of mice with protein, the miRNA cluster miR-17∼92 was critical for robust differentiation and function of TFH cells in a cell-intrinsic manner that occurred regardless of changes in proliferation. In a viral infection model, miR-17∼92 restrained the expression of genes 'inappropriate' to the TFH cell subset, including the direct miR-17∼92 target Rora. Removal of one Rora allele partially 'rescued' the inappropriate gene signature in miR-17∼92-deficient TFH cells. Our results identify the miR-17∼92 cluster as a critical regulator of T cell-dependent antibody responses, TFH cell differentiation and the fidelity of the TFH cell gene-expression program.


Subject(s)
Cell Differentiation/immunology , Gene Expression Regulation/immunology , MicroRNAs/immunology , Nuclear Receptor Subfamily 1, Group F, Member 1/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adaptive Immunity/immunology , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , Flow Cytometry , Immunohistochemistry , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Statistics, Nonparametric , T-Lymphocytes, Helper-Inducer/cytology
14.
Immunity ; 44(4): 821-32, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26850657

ABSTRACT

MicroRNAs (miRNAs) are important regulators of cell fate decisions in immune responses. They act by coordinate repression of multiple target genes, a property that we exploited to uncover regulatory networks that govern T helper-2 (Th2) cells. A functional screen of individual miRNAs in primary T cells uncovered multiple miRNAs that inhibited Th2 cell differentiation. Among these were miR-24 and miR-27, miRNAs coexpressed from two genomic clusters, which each functioned independently to limit interleukin-4 (IL-4) production. Mice lacking both clusters in T cells displayed increased Th2 cell responses and tissue pathology in a mouse model of asthma. Gene expression and pathway analyses placed miR-27 upstream of genes known to regulate Th2 cells. They also identified targets not previously associated with Th2 cell biology which regulated IL-4 production in unbiased functional testing. Thus, elucidating the biological function and target repertoire of miR-24 and miR-27 reveals regulators of Th2 cell biology.


Subject(s)
Asthma/immunology , Interleukin-4/biosynthesis , MicroRNAs/genetics , Th2 Cells/immunology , Animals , Base Sequence , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Disease Models, Animal , Female , Inflammation/immunology , Interleukin-4/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Knockout , Multigene Family/genetics , Sequence Analysis, RNA , Th2 Cells/cytology
15.
Proc Natl Acad Sci U S A ; 119(17): e2106083119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35446623

ABSTRACT

CD8 T cells mediate protection against intracellular pathogens and tumors. However, persistent antigen during chronic infections or cancer leads to T cell exhaustion, suboptimal functionality, and reduced protective capacity. Despite considerable work interrogating the transcriptional regulation of exhausted CD8 T cells (TEX), the posttranscriptional control of TEX remains poorly understood. Here, we interrogated the role of microRNAs (miRs) in CD8 T cells responding to acutely resolved or chronic viral infection and identified miR-29a as a key regulator of TEX. Enforced expression of miR-29a improved CD8 T cell responses during chronic viral infection and antagonized exhaustion. miR-29a inhibited exhaustion-driving transcriptional pathways, including inflammatory and T cell receptor signaling, and regulated ribosomal biogenesis. As a result, miR-29a fostered a memory-like CD8 T cell differentiation state during chronic infection. Thus, we identify miR-29a as a key regulator of TEX and define mechanisms by which miR-29a can divert exhaustion toward a more beneficial memory-like CD8 T cell differentiation state.


Subject(s)
MicroRNAs , Neoplasms , CD8-Positive T-Lymphocytes , Humans , Immunotherapy/methods , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/metabolism , Persistent Infection
16.
Immunity ; 42(2): 265-278, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25680272

ABSTRACT

During persistent antigen stimulation, CD8(+) T cells show a gradual decrease in effector function, referred to as exhaustion, which impairs responses in the setting of tumors and infections. Here we demonstrate that the transcription factor NFAT controls the program of T cell exhaustion. When expressed in cells, an engineered form of NFAT1 unable to interact with AP-1 transcription factors diminished T cell receptor (TCR) signaling, increased the expression of inhibitory cell surface receptors, and interfered with the ability of CD8(+) T cells to protect against Listeria infection and attenuate tumor growth in vivo. We defined the genomic regions occupied by endogenous and engineered NFAT1 in primary CD8(+) T cells and showed that genes directly induced by the engineered NFAT1 overlapped with genes expressed in exhausted CD8(+) T cells in vivo. Our data show that NFAT promotes T cell anergy and exhaustion by binding at sites that do not require cooperation with AP-1.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Clonal Anergy/genetics , NFATC Transcription Factors/physiology , Recombinant Proteins/pharmacology , Transcription Factor AP-1/metabolism , Animals , Cells, Cultured , Clonal Anergy/drug effects , Gene Expression Regulation/genetics , Listeria monocytogenes/immunology , Listeriosis/immunology , Listeriosis/microbiology , Lymphocyte Activation/immunology , Mice , Mice, Transgenic , NFATC Transcription Factors/genetics , Neoplasms/immunology , Promoter Regions, Genetic/genetics , Receptors, Antigen, T-Cell/immunology , Recombinant Proteins/genetics
17.
Nature ; 559(7715): E13, 2018 07.
Article in English | MEDLINE | ID: mdl-29899441

ABSTRACT

In this Letter, analysis of steady-state regulatory T (Treg) cell percentages from Il2ra enhancer deletion (EDEL) and wild-type (WT) mice revealed no differences between them (Extended Data Fig. 9d). This analysis included two mice whose genotypes were incorrectly assigned. Even after correction of the genotypes, no significant differences in Treg cell percentages were seen when data across experimental cohorts were averaged (as was done in Extended Data Fig. 9d). However, if we normalize the corrected data to account for variation among experimental cohorts, a subtle decrease in EDEL Treg cell percentages is revealed and, using the corrected and normalized data, we have redrawn Extended Data Fig. 9d in Supplementary Fig. 1. The Supplementary Information to this Amendment contains the corrected and reanalysed Extended Data Fig. 9d. The sentence "This enhancer deletion (EDEL) strain also had no obvious T cell phenotypes at steady state (Extended Data Fig. 9)." should read: "This enhancer deletion (EDEL) strain had a small decrease in the percentage of Treg cells (Extended Data Fig. 9).". This error does not affect any of the main figures in the Letter or the data from mice with the human autoimmune-associated single nucleotide polymorphism (SNP) knocked in or with a 12-base-pair deletion at the site (12DEL). In addition, we stated in the Methods that we observed consistent immunophenotypes of EDEL mice across three founders, but in fact, we observed consistent phenotypes in mice from two founders. This does not change any of our conclusions and the original Letter has not been corrected.

18.
Nature ; 549(7670): 111-115, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28854172

ABSTRACT

The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.


Subject(s)
Autoimmunity/genetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Enhancer Elements, Genetic/genetics , Animals , Antigens, CD/biosynthesis , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/biosynthesis , Antigens, Differentiation, T-Lymphocyte/genetics , Antigens, Differentiation, T-Lymphocyte/immunology , Cell Differentiation , Cell Line , Chromatin/genetics , Female , Gene Expression Regulation/genetics , Humans , Interleukin-2 Receptor alpha Subunit/biosynthesis , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/immunology , Lectins, C-Type/biosynthesis , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Th17 Cells/cytology , Th17 Cells/immunology
19.
Genome Res ; 29(6): 896-906, 2019 06.
Article in English | MEDLINE | ID: mdl-31152051

ABSTRACT

Compared to coding sequences, untranslated regions of the transcriptome are not well conserved, and functional annotation of these sequences is challenging. Global relationships between nucleotide composition of 3' UTR sequences and their sequence conservation have been appreciated since mammalian genomes were first sequenced, but the functional relevance of these patterns remain unknown. We systematically measured the effect on gene expression of the sequences of more than 25,000 RNA-binding protein (RBP) binding sites in primary mouse T cells using a massively parallel reporter assay. GC-rich sequences were destabilizing of reporter mRNAs and come from more rapidly evolving regions of the genome. These sequences were more likely to be folded in vivo and contain a number of structural motifs that reduced accumulation of a heterologous reporter protein. Comparison of full-length 3' UTR sequences across vertebrate phylogeny revealed that strictly conserved 3' UTRs were GC-poor and enriched in genes associated with organismal development. In contrast, rapidly evolving 3' UTRs tended to be GC-rich and derived from genes involved in metabolism and immune responses. Cell-essential genes had lower GC content in their 3' UTRs, suggesting a connection between unstructured mRNA noncoding sequences and optimal protein production. By reducing gene expression, GC-rich RBP-occupied sequences act as a rapidly evolving substrate for gene regulatory interactions.


Subject(s)
3' Untranslated Regions , Base Composition , Conserved Sequence , Gene Expression Regulation , Gene Expression , Genes, Reporter , RNA, Messenger/genetics , Animals , Base Sequence , Evolution, Molecular , GC Rich Sequence , Humans , Mice , Nucleic Acid Conformation , RNA Stability , RNA, Messenger/chemistry
20.
Bioinformatics ; 37(18): 3004-3007, 2021 09 29.
Article in English | MEDLINE | ID: mdl-33624747

ABSTRACT

SUMMARY: The Probabilistic Identification of Causal SNPs (PICS) algorithm and web application was developed as a fine-mapping tool to determine the likelihood that each single nucleotide polymorphism (SNP) in LD with a reported index SNP is a true causal polymorphism. PICS is notable for its ability to identify candidate causal SNPs within a locus using only the index SNP, which are widely available from published GWAS, whereas other methods require full summary statistics or full genotype data. However, the original PICS web application operates on a single SNP at a time, with slow performance, severely limiting its usability. We have developed a next-generation PICS tool, PICS2, which enables performance of PICS analyses of large batches of index SNPs with much faster performance. Additional updates and extensions include use of LD reference data generated from 1000 Genomes phase 3; annotation of variant consequences; annotation of GTEx eQTL genes and downloadable PICS SNPs from GTEx eQTLs; the option of generating PICS probabilities from experimental summary statistics; and generation of PICS SNPs from all SNPs of the GWAS catalog, automatically updated weekly. These free and easy-to-use resources will enable efficient determination of candidate loci for biological studies to investigate the true causal variants underlying disease processes. AVAILABILITY AND IMPLEMENTATION: PICS2 is available at https://pics2.ucsf.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL