ABSTRACT
Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.
Subject(s)
Epithelial Cells/metabolism , Epithelial Cells/pathology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Pore Forming Cytotoxic Proteins/metabolism , Pyroptosis , Base Sequence , Case-Control Studies , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Epithelial Cells/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , HEK293 Cells , HT29 Cells , Humans , Inflammatory Bowel Diseases/genetics , Methotrexate/pharmacology , Mutation/genetics , Phosphorylation/drug effects , Polymorphism, Single Nucleotide/genetics , Pyroptosis/drug effects , Pyroptosis/genetics , Reproducibility of Results , Transcriptome/drug effects , Transcriptome/genetics , Up-Regulation/drug effects , Wound Healing/drug effects , Wound Healing/geneticsABSTRACT
Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut. We identify the differentiation hierarchies of developing fibroblast and myofibroblast subtypes and describe diverse functions for these including as vascular niche cells. We pinpoint the origins of Peyer's patches and gut-associated lymphoid tissue (GALT) and describe location-specific immune programs. We use our resource to present an unbiased analysis of morphogen gradients that direct sequential waves of cellular differentiation and define cells and locations linked to rare developmental intestinal disorders. We compile a publicly available online resource, spatio-temporal analysis resource of fetal intestinal development (STAR-FINDer), to facilitate further work.
Subject(s)
Intestines/cytology , Intestines/growth & development , Single-Cell Analysis , Endothelial Cells/cytology , Enteric Nervous System/cytology , Fetus/embryology , Fibroblasts/cytology , Humans , Immunity , Intestinal Diseases/congenital , Intestinal Diseases/pathology , Intestinal Mucosa/growth & development , Intestines/blood supply , Ligands , Mesoderm/cytology , Neovascularization, Physiologic , Pericytes/cytology , Stem Cells/cytology , Time Factors , Transcription Factors/metabolismABSTRACT
Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cell function. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.
Subject(s)
Inflammatory Bowel Diseases/physiopathology , Mesoderm/physiology , Animals , Cell Proliferation , Colitis/genetics , Colitis/physiopathology , Colon/physiology , Epithelial Cells/metabolism , Fibroblasts/physiology , Genetic Heterogeneity , Homeostasis , Humans , Inflammation , Intestinal Mucosa/immunology , Intestinal Mucosa/physiology , Intestines/immunology , Intestines/physiology , Mesenchymal Stem Cells/physiology , Mesoderm/metabolism , Mice , Mice, Inbred C57BL , Myofibroblasts , Pericytes , RAW 264.7 Cells , SOXD Transcription Factors/physiology , Single-Cell Analysis/methods , Thromboplastin/physiology , Tumor Necrosis Factor Ligand Superfamily Member 14/genetics , Wnt Signaling Pathway/physiologyABSTRACT
Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.
Subject(s)
Arrhythmias, Cardiac/metabolism , Calcitonin/metabolism , Fibrinogen/biosynthesis , Heart Atria/metabolism , Myocardium/metabolism , Paracrine Communication , Animals , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Atrial Fibrillation , Collagen Type I/metabolism , Female , Fibroblasts/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Heart Atria/cytology , Heart Atria/pathology , Heart Atria/physiopathology , Humans , Male , Mice , Myocardium/cytology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Receptors, Calcitonin/metabolismABSTRACT
The colonic epithelium facilitates host-microorganism interactions to control mucosal immunity, coordinate nutrient recycling and form a mucus barrier. Breakdown of the epithelial barrier underpins inflammatory bowel disease (IBD). However, the specific contributions of each epithelial-cell subtype to this process are unknown. Here we profile single colonic epithelial cells from patients with IBD and unaffected controls. We identify previously unknown cellular subtypes, including gradients of progenitor cells, colonocytes and goblet cells within intestinal crypts. At the top of the crypts, we find a previously unknown absorptive cell, expressing the proton channel OTOP2 and the satiety peptide uroguanylin, that senses pH and is dysregulated in inflammation and cancer. In IBD, we observe a positional remodelling of goblet cells that coincides with downregulation of WFDC2-an antiprotease molecule that we find to be expressed by goblet cells and that inhibits bacterial growth. In vivo, WFDC2 preserves the integrity of tight junctions between epithelial cells and prevents invasion by commensal bacteria and mucosal inflammation. We delineate markers and transcriptional states, identify a colonic epithelial cell and uncover fundamental determinants of barrier breakdown in IBD.
Subject(s)
Colon/cytology , Colon/pathology , Epithelial Cells/classification , Epithelial Cells/cytology , Health , Inflammatory Bowel Diseases/pathology , Ion Channels/metabolism , Animals , Biomarkers/analysis , Colitis, Ulcerative/genetics , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Colon/microbiology , Epithelial Cells/microbiology , Epithelial Cells/pathology , Genetic Predisposition to Disease/genetics , Goblet Cells/cytology , Goblet Cells/metabolism , Goblet Cells/pathology , Humans , Hydrogen-Ion Concentration , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice , Natriuretic Peptides/metabolism , Proteins/metabolism , Single-Cell Analysis , Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/pathology , Tight Junctions/metabolism , Transcription, Genetic , WAP Four-Disulfide Core Domain Protein 2ABSTRACT
BACKGROUND: Collagen XVII is most typically associated with human disease when biallelic COL17A1 variants (>230) cause junctional epidermolysis bullosa (JEB), a rare, genetically heterogeneous, mucocutaneous blistering disease with amelogenesis imperfecta (AI), a developmental enamel defect. Despite recognition that heterozygous carriers in JEB families can have AI, and that heterozygous COL17A1 variants also cause dominant corneal epithelial recurrent erosion dystrophy (ERED), the importance of heterozygous COL17A1 variants causing dominant non-syndromic AI is not widely recognised. METHODS: Probands from an AI cohort were screened by single molecule molecular inversion probes or targeted hybridisation capture (both a custom panel and whole exome sequencing) for COL17A1 variants. Patient phenotypes were assessed by clinical examination and analyses of affected teeth. RESULTS: Nineteen unrelated probands with isolated AI (no co-segregating features) had 17 heterozygous, potentially pathogenic COL17A1 variants, including missense, premature termination codons, frameshift and splice site variants in both the endo-domains and the ecto-domains of the protein. The AI phenotype was consistent with enamel of near normal thickness and variable focal hypoplasia with surface irregularities including pitting. CONCLUSION: These results indicate that COL17A1 variants are a frequent cause of dominantly inherited non-syndromic AI. Comparison of variants implicated in AI and JEB identifies similarities in type and distribution, with five identified in both conditions, one of which may also cause ERED. Increased availability of genetic testing means that more individuals will receive reports of heterozygous COL17A1 variants. We propose that patients with isolated AI or ERED, due to COL17A1 variants, should be considered as potential carriers for JEB and counselled accordingly, reflecting the importance of multidisciplinary care.
Subject(s)
Amelogenesis Imperfecta , Non-Fibrillar Collagens , Humans , Non-Fibrillar Collagens/genetics , Non-Fibrillar Collagens/metabolism , Autoantigens/genetics , Amelogenesis Imperfecta/genetics , Heterozygote , Phenotype , Mutation/geneticsABSTRACT
T cell recognition of a cognate peptide-major histocompatibility complex (pMHC) presented on the surface of infected or malignant cells is of the utmost importance for mediating robust and long-term immune responses. Accurate predictions of cognate pMHC targets for T cell receptors would greatly facilitate identification of vaccine targets for both pathogenic diseases and personalized cancer immunotherapies. Predicting immunogenic peptides therefore has been at the center of intensive research for the past decades but has proven challenging. Although numerous models have been proposed, performance of these models has not been systematically evaluated and their success rate in predicting epitopes in the context of human pathology has not been measured and compared. In this study, we evaluated the performance of several publicly available models, in identifying immunogenic CD8+ T cell targets in the context of pathogens and cancers. We found that for predicting immunogenic peptides from an emerging virus such as severe acute respiratory syndrome coronavirus 2, none of the models perform substantially better than random or offer considerable improvement beyond HLA ligand prediction. We also observed suboptimal performance for predicting cancer neoantigens. Through investigation of potential factors associated with ill performance of models, we highlight several data- and model-associated issues. In particular, we observed that cross-HLA variation in the distribution of immunogenic and non-immunogenic peptides in the training data of the models seems to substantially confound the predictions. We additionally compared key parameters associated with immunogenicity between pathogenic peptides and cancer neoantigens and observed evidence for differences in the thresholds of binding affinity and stability, which suggested the need to modulate different features in identifying immunogenic pathogen versus cancer peptides. Overall, we demonstrate that accurate and reliable predictions of immunogenic CD8+ T cell targets remain unsolved; thus, we hope our work will guide users and model developers regarding potential pitfalls and unsettled questions in existing immunogenicity predictors.
Subject(s)
COVID-19 , Neoplasms , CD8-Positive T-Lymphocytes/metabolism , Computer Simulation , Epitopes, T-Lymphocyte , Humans , PeptidesABSTRACT
Human plasmacytoid dendritic cells (pDCs) play a vital role in modulating immune responses. They can produce massive amounts of type I IFNs in response to nucleic acids via TLRs, but they are also known to possess weak Ag-presenting properties inducing CD4+ T cell activation. Previous studies showed a cross-regulation between TNF-α and IFN-α, but many questions remain about the effect of TNF-α in regulating human pDCs. In this study, we showed that TNF-α significantly inhibited the secretion of IFN-α and TNF-α of TLR-stimulated pDCs. Instead, exogenous TNF-α promoted pDC maturation by upregulating costimulatory molecules and chemokine receptors such as CD80, CD86, HLA-DR, and CCR7. Additionally, RNA sequencing analysis showed that TNF-α inhibited IFN-α and TNF-α production by downregulating IRF7 and NF-κB pathways, while it promoted Ag processing and presentation pathways as well as T cell activation and differentiation. Indeed, TNF-α-treated pDCs induced in vitro higher CD4+ T cell proliferation and activation, enhancing the production of Th1 and Th17 cytokines. In conclusion, TNF-α favors pDC maturation by switching their main role as IFN-α-producing cells to a more conventional dendritic cell phenotype. The functional status of pDCs might therefore be strongly influenced by their overall inflammatory environment, and TNF-α might regulate IFN-α-mediated aspects of a range of autoimmune and inflammatory diseases.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Dendritic Cells/immunology , Interferon-alpha/immunology , Lymphocyte Activation , Tumor Necrosis Factor-alpha/immunology , Gene Expression Regulation/immunology , HumansABSTRACT
The conditions and extent of cross-protective immunity between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and common-cold human coronaviruses (HCoVs) remain open despite several reports of pre-existing T cell immunity to SARS-CoV-2 in individuals without prior exposure. Using a pool of functionally evaluated SARS-CoV-2 peptides, we report a map of 126 immunogenic peptides with high similarity to 285 MHC-presented peptides from at least one HCoV. Employing this map of SARS-CoV-2-non-homologous and homologous immunogenic peptides, we observe several immunogenic peptides with high similarity to human proteins, some of which have been reported to have elevated expression in severe COVID-19 patients. After combining our map with SARS-CoV-2-specific TCR repertoire data from COVID-19 patients and healthy controls, we show that public repertoires for the majority of convalescent patients are dominated by TCRs cognate to non-homologous SARS-CoV-2 peptides. We find that for a subset of patients, >50% of their public SARS-CoV-2-specific repertoires consist of TCRs cognate to homologous SARS-CoV-2-HCoV peptides. Further analysis suggests that this skewed distribution of TCRs cognate to homologous or non-homologous peptides in COVID-19 patients is likely to be HLA-dependent. Finally, we provide 10 SARS-CoV-2 peptides with known cognate TCRs that are conserved across multiple coronaviruses and are predicted to be recognized by a high proportion of the global population. These findings may have important implications for COVID-19 heterogeneity, vaccine-induced immune responses, and robustness of immunity to SARS-CoV-2 and its variants.
Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Cross Reactions , Epitopes, T-Lymphocyte , Humans , Peptides , Receptors, Antigen, T-Cell , Spike Glycoprotein, CoronavirusABSTRACT
BACKGROUND & AIMS: In homeostasis, intestinal cell fate is controlled by balanced gradients of morphogen signaling. The bone morphogenetic protein (BMP) pathway has a physiological, prodifferentiation role, predominantly inferred through previous experimental pathway inactivation. Intestinal regeneration is underpinned by dedifferentiation and cell plasticity, but the signaling pathways that regulate this adaptive reprogramming are not well understood. We assessed the BMP signaling landscape and investigated the impact and therapeutic potential of pathway manipulation in homeostasis and regeneration. METHODS: A novel mouse model was generated to assess the effect of the autocrine Bmp4 ligand on individual secretory cell fate. We spatiotemporally mapped BMP signaling in mouse and human regenerating intestine. Transgenic models were used to explore the functional impact of pathway manipulation on stem cell fate and intestinal regeneration. RESULTS: In homeostasis, ligand exposure reduced proliferation, expedited terminal differentiation, abrogated secretory cell survival, and prevented dedifferentiation. After ulceration, physiological attenuation of BMP signaling arose through upregulation of the secreted antagonist Grem1 from topographically distinct populations of fibroblasts. Concomitant expression supported functional compensation after Grem1 deletion from tissue-resident cells. BMP pathway manipulation showed that antagonist-mediated BMP attenuation was obligatory but functionally submaximal, because regeneration was impaired or enhanced by epithelial overexpression of Bmp4 or Grem1, respectively. Mechanistically, Bmp4 abrogated regenerative stem cell reprogramming despite a convergent impact of YAP/TAZ on cell fate in remodeled wounds. CONCLUSIONS: BMP signaling prevents epithelial dedifferentiation, and pathway attenuation through stromal Grem1 upregulation was required for adaptive reprogramming in intestinal regeneration. This intercompartmental antagonism was functionally submaximal, raising the possibility of therapeutic pathway manipulation in inflammatory bowel disease.
Subject(s)
Bone Morphogenetic Protein 4/metabolism , Colitis/metabolism , Colon/metabolism , Epithelial Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Radiation Injuries, Experimental/metabolism , Regeneration , Animals , Autocrine Communication , Bone Morphogenetic Protein 4/genetics , Cell Differentiation , Cell Proliferation , Colitis/genetics , Colitis/pathology , Colon/pathology , Epithelial Cells/pathology , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intestinal Mucosa/pathology , Intestine, Small/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Radiation Injuries, Experimental/genetics , Radiation Injuries, Experimental/pathology , Re-Epithelialization , Signal TransductionABSTRACT
OBJECTIVES: Plasmacytoid dendritic cells (pDC) have been implicated in the pathogenesis of autoimmune diseases, such as scleroderma (SSc). However, this has been derived from indirect evidence using ex vivo human samples or mouse pDC in vivo. We have developed human-specific pDC models to directly identify their role in inflammation and fibrosis, as well as attenuation of pDC function with BDCA2-targeting to determine its therapeutic application. METHODS: RNAseq of human pDC with TLR9 agonist ODN2216 and humanised monoclonal BDCA2 antibody, CBS004. Organotypic skin rafts consisting of fibroblasts and keratinocytes were stimulated with supernatant from TLR9-stimulated pDC and with CBS004. Human pDC were xenotransplanted into Nonobese diabetic/severe combined immunodeficiency (NOD SCID) mice treated with Aldara (inflammatory model), or bleomycin (fibrotic model) with CBS004 or human IgG control. Skin punch biopsies were used to assess gene and protein expression. RESULTS: RNAseq shows TLR9-induced activation of human pDC goes beyond type I interferon (IFN) secretion, which is functionally inactivated by BDCA2-targeting. Consistent with these findings, we show that BDCA2-targeting of pDC can completely suppress in vitro skin IFN-induced response. Most importantly, xenotransplantation of human pDC significantly increased in vivo skin IFN-induced response to TLR agonist and strongly enhanced fibrotic and immune response to bleomycin compared with controls. In these contexts, BDCA2-targeting suppressed human pDC-specific pathological responses. CONCLUSIONS: Our data indicate that human pDC play a key role in inflammation and immune-driven skin fibrosis, which can be effectively blocked by BDCA2-targeting, providing direct evidence supporting the development of attenuation of pDC function as a therapeutic application for SSc.
Subject(s)
Dendritic Cells/immunology , Lectins, C-Type/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , Scleroderma, Localized/immunology , Scleroderma, Localized/pathology , Animals , Dendritic Cells/pathology , Disease Models, Animal , Fibrosis , Heterografts , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Scleroderma, Localized/metabolism , Skin/immunology , Skin/metabolism , Skin/pathologyABSTRACT
Recent methods for transcriptome-wide N6-methyladenosine (m6A) profiling have facilitated investigations into the RNA methylome and established m6A as a dynamic modification that has critical regulatory roles in gene expression and may play a role in human disease. However, bioinformatics resources available for the analysis of m6A sequencing data are still limited. Here, we describe m6aViewer-a cross-platform application for analysis and visualization of m6A peaks from sequencing data. m6aViewer implements a novel m6A peak-calling algorithm that identifies high-confidence methylated residues with more precision than previously described approaches. The application enables data analysis through a graphical user interface, and thus, in contrast to other currently available tools, does not require the user to be skilled in computer programming. m6aViewer and test data can be downloaded here: http://dna2.leeds.ac.uk/m6a.
Subject(s)
Adenosine/analogs & derivatives , Computational Biology/methods , Sequence Analysis, RNA/methods , Software , Adenosine/analysis , User-Computer InterfaceABSTRACT
BACKGROUND: Lethal fetal akinesia deformation sequence (FADS) describes a clinically and genetically heterogeneous phenotype that includes fetal akinesia, intrauterine growth retardation, arthrogryposis and developmental anomalies. Affected babies die as a result of pulmonary hypoplasia. We aimed to identify the underlying genetic cause of this disorder in a family in which there were three affected individuals from two sibships. METHODS: Autosomal-recessive inheritance was suggested by a family history of consanguinity and by recurrence of the phenotype between the two sibships. We performed exome sequencing of the affected individuals and their unaffected mother, followed by autozygosity mapping and variant filtering to identify the causative gene. RESULTS: Five autozygous regions were identified, spanning 31.7 Mb of genomic sequence and including 211 genes. Using standard variant filtering criteria, we excluded all variants as being the likely pathogenic cause, apart from a single novel nonsense mutation, c.188C>A p.(Ser63*) (NM_002478.4), in MYOD1. This gene encodes an extensively studied transcription factor involved in muscle development, which has nonetheless not hitherto been associated with a hereditary human disease phenotype. CONCLUSIONS: We provide the first description of a human phenotype that appears to result from MYOD1 mutation. The presentation with FADS is consistent with a large body of data demonstrating that in the mouse, MyoD is a major controller of precursor cell commitment to the myogenic differentiation programme.
Subject(s)
Arthrogryposis/genetics , Fetal Growth Retardation/genetics , High-Throughput Nucleotide Sequencing , MyoD Protein/genetics , Aborted Fetus , Animals , Arthrogryposis/pathology , Exome/genetics , Female , Fetal Growth Retardation/pathology , Humans , Lung/pathology , Mice , Mutation , Pedigree , Phenotype , PregnancyABSTRACT
MOTIVATION: In attempts to determine the genetic causes of human disease, researchers are often faced with a large number of candidate genes. Linkage studies can point to a genomic region containing hundreds of genes, while the high-throughput sequencing approach will often identify a great number of non-synonymous genetic variants. Since systematic experimental verification of each such candidate gene is not feasible, a method is needed to decide which genes are worth investigating further. Computational gene prioritization presents itself as a solution to this problem, systematically analyzing and sorting each gene from the most to least likely to be the disease-causing gene, in a fraction of the time it would take a researcher to perform such queries manually. RESULTS: Here, we present Gene TIssue Expression Ranker (GeneTIER), a new web-based application for candidate gene prioritization. GeneTIER replaces knowledge-based inference traditionally used in candidate disease gene prioritization applications with experimental data from tissue-specific gene expression datasets and thus largely overcomes the bias toward the better characterized genes/diseases that commonly afflict other methods. We show that our approach is capable of accurate candidate gene prioritization and illustrate its strengths and weaknesses using case study examples. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://dna.leeds.ac.uk/GeneTIER/. CONTACT: umaan@leeds.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Subject(s)
Algorithms , Disease/genetics , Genetic Association Studies/methods , Organ Specificity/genetics , Transcriptome/genetics , Area Under Curve , Humans , ROC CurveABSTRACT
MOTIVATION: Exome sequencing has become a de facto standard method for Mendelian disease gene discovery in recent years, yet identifying disease-causing mutations among thousands of candidate variants remains a non-trivial task. RESULTS: Here we describe a new variant prioritization tool, OVA (ontology variant analysis), in which user-provided phenotypic information is exploited to infer deeper biological context. OVA combines a knowledge-based approach with a variant-filtering framework. It reduces the number of candidate variants by considering genotype and predicted effect on protein sequence, and scores the remainder on biological relevance to the query phenotype.We take advantage of several ontologies in order to bridge knowledge across multiple biomedical domains and facilitate computational analysis of annotations pertaining to genes, diseases, phenotypes, tissues and pathways. In this way, OVA combines information regarding molecular and physical phenotypes and integrates both human and model organism data to effectively prioritize variants. By assessing performance on both known and novel disease mutations, we show that OVA performs biologically meaningful candidate variant prioritization and can be more accurate than another recently published candidate variant prioritization tool. AVAILABILITY AND IMPLEMENTATION: OVA is freely accessible at http://dna2.leeds.ac.uk:8080/OVA/index.jsp. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: umaan@leeds.ac.uk.
Subject(s)
Algorithms , Biological Ontologies , Computational Biology/methods , Disease/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Exome/genetics , Genotype , Humans , TranscriptomeABSTRACT
BACKGROUND: The widespread adoption of high-throughput sequencing technologies by genetic diagnostic laboratories has enabled significant expansion of their testing portfolios. Rare autosomal recessive conditions have been a particular focus of many new services. Here we report a cohort of 26 patients referred for genetic analysis of Joubert (JBTS) and Meckel-Gruber (MKS) syndromes, two clinically and genetically heterogeneous neurodevelopmental conditions that define a phenotypic spectrum, with MKS at the severe end. METHODS: Exome sequencing was performed for all cases, using Agilent SureSelect v5 reagents and Illumina paired-end sequencing. For two cases medium-coverage (9×) whole genome sequencing was subsequently undertaken. RESULTS: Using a standard analysis pipeline for the detection of single nucleotide and small insertion or deletion variants, molecular diagnoses were confirmed in 12 cases (4%). Seeking to determine whether our cohort harboured pathogenic copy number variants (CNV), in JBTS- or MKS-associated genes, targeted comparative read-depth analysis was performed using FishingCNV. These analyses identified a putative intragenic AHI1 deletion that included three exons spanning at least 3.4 kb and an intergenic MPP4 to TMEM237 deletion that included exons spanning at least 21.5 kb. Whole genome sequencing enabled confirmation of the deletion-containing alleles and precise characterisation of the mutation breakpoints at nucleotide resolution. These data were validated following development of PCR-based assays that could be subsequently used for "cascade" screening and/or prenatal diagnosis. CONCLUSIONS: Our investigations expand the AHI1 and TMEM237 mutation spectrum and highlight the importance of performing CNV screening of disease-associated genes. We demonstrate a robust increasingly cost-effective CNV detection workflow that is applicable to all MKS/JBTS referrals.
Subject(s)
Cerebellum/abnormalities , Chromosome Mapping , Ciliary Motility Disorders/diagnosis , Ciliary Motility Disorders/genetics , Encephalocele/diagnosis , Encephalocele/genetics , Exome , Polycystic Kidney Diseases/diagnosis , Polycystic Kidney Diseases/genetics , Retina/abnormalities , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Alleles , Cohort Studies , DNA Copy Number Variations , Exons , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Prenatal Diagnosis , Retinitis Pigmentosa , Sequence Analysis, DNA , Sequence DeletionABSTRACT
The success of checkpoint inhibitors (CPIs) for cancer has been tempered by immune-related adverse effects including colitis. CPI-induced colitis is hallmarked by expansion of resident mucosal IFNγ cytotoxic CD8+ T cells, but how these arise is unclear. Here, we track CPI-bound T cells in intestinal tissue using multimodal single-cell and subcellular spatial transcriptomics (ST). Target occupancy was increased in inflamed tissue, with drug-bound T cells located in distinct microdomains distinguished by specific intercellular signaling and transcriptional gradients. CPI-bound cells were largely CD4+ T cells, including enrichment in CPI-bound peripheral helper, follicular helper, and regulatory T cells. IFNγ CD8+ T cells emerged from both tissue-resident memory (TRM) and peripheral populations, displayed more restricted target occupancy profiles, and co-localized with damaged epithelial microdomains lacking effective regulatory cues. Our multimodal analysis identifies causal pathways and constitutes a resource to inform novel preventive strategies.
Subject(s)
Colitis , Immune Checkpoint Inhibitors , Colitis/chemically induced , Colitis/immunology , Colitis/pathology , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/pharmacology , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Animals , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Interferon-gamma/metabolism , Female , Single-Cell Analysis , MiceABSTRACT
T cell recognition of SARS-CoV-2 antigens after vaccination and/or natural infection has played a central role in resolving SARS-CoV-2 infections and generating adaptive immune memory. However, the clinical impact of SARS-CoV-2-specific T cell responses is variable and the mechanisms underlying T cell interaction with target antigens are not fully understood. This is especially true given the virus' rapid evolution, which leads to new variants with immune escape capacity. In this study, we used the Omicron variant as a model organism and took a systems approach to evaluate the impact of mutations on CD8+ T cell immunogenicity. We computed an immunogenicity potential score for each SARS-CoV-2 peptide antigen from the ancestral strain and Omicron, capturing both antigen presentation and T cell recognition probabilities. By comparing ancestral vs. Omicron immunogenicity scores, we reveal a divergent and heterogeneous landscape of impact for CD8+ T cell recognition of mutated targets in Omicron variants. While T cell recognition of Omicron peptides is broadly preserved, we observed mutated peptides with deteriorated immunogenicity that may assist breakthrough infection in some individuals. We then combined our scoring scheme with an in silico mutagenesis, to characterise the position- and residue-specific theoretical mutational impact on immunogenicity. While we predict many escape trajectories from the theoretical landscape of substitutions, our study suggests that Omicron mutations in T cell epitopes did not develop under cell-mediated pressure. Our study provides a generalisable platform for fostering a deeper understanding of existing and novel variant impact on antigen-specific vaccine- and/or infection-induced T cell immunity.