Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Commun ; 11(1): 319, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949159

ABSTRACT

Optimal functioning of neuronal networks is critical to the complex cognitive processes of memory and executive function that deteriorate in Alzheimer's disease (AD). Here we use cellular and animal models as well as human biospecimens to show that AD-related stressors mediate global disturbances in dynamic intra- and inter-neuronal networks through pathologic rewiring of the chaperome system into epichaperomes. These structures provide the backbone upon which proteome-wide connectivity, and in turn, protein networks become disturbed and ultimately dysfunctional. We introduce the term protein connectivity-based dysfunction (PCBD) to define this mechanism. Among most sensitive to PCBD are pathways with key roles in synaptic plasticity. We show at cellular and target organ levels that network connectivity and functional imbalances revert to normal levels upon epichaperome inhibition. In conclusion, we provide proof-of-principle to propose AD is a PCBDopathy, a disease of proteome-wide connectivity defects mediated by maladaptive epichaperomes.


Subject(s)
Alzheimer Disease/metabolism , Hippocampus/metabolism , Neuronal Plasticity/physiology , Proteome/metabolism , Alzheimer Disease/pathology , Animals , Brain/pathology , Brain Mapping , Cognitive Dysfunction/metabolism , Executive Function/physiology , Female , Hippocampus/pathology , Humans , Male , Memory/physiology , Mice , Neural Pathways
SELECTION OF CITATIONS
SEARCH DETAIL