Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Publication year range
1.
Cell ; 184(19): 4848-4856, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34480864

ABSTRACT

Since the first reports of a novel severe acute respiratory syndrome (SARS)-like coronavirus in December 2019 in Wuhan, China, there has been intense interest in understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the human population. Recent debate has coalesced around two competing ideas: a "laboratory escape" scenario and zoonotic emergence. Here, we critically review the current scientific evidence that may help clarify the origin of SARS-CoV-2.


Subject(s)
SARS-CoV-2/physiology , Animals , Biological Evolution , COVID-19/virology , Humans , Laboratories , SARS-CoV-2/genetics , Zoonoses/virology
2.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38168672

ABSTRACT

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Subject(s)
Biomedical Research , Containment of Biohazards , Virology , Humans , COVID-19 , United States , Viruses , Biomedical Research/standards
3.
Proc Natl Acad Sci U S A ; 117(46): 29190-29201, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139552

ABSTRACT

Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia-one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to bat-population turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysia-clade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus's range.


Subject(s)
Chiroptera/virology , Henipavirus Infections/epidemiology , Henipavirus Infections/transmission , Henipavirus Infections/veterinary , Henipavirus Infections/virology , Nipah Virus/classification , Nipah Virus/genetics , Animals , Asia , Bangladesh/epidemiology , Disease Outbreaks , Female , Host Specificity , Humans , Immunity , Male , Models, Biological , Molecular Epidemiology , Nipah Virus/immunology , Phylogeny , Zoonoses/epidemiology , Zoonoses/immunology , Zoonoses/transmission , Zoonoses/virology
4.
Arch Virol ; 167(10): 1977-1987, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35781557

ABSTRACT

As part of a broad One Health surveillance effort to detect novel viruses in wildlife and people, we report several paramyxovirus sequences sampled primarily from bats during 2013 and 2014 in Brazil and Malaysia, including seven from which we recovered full-length genomes. Of these, six represent the first full-length paramyxovirid genomes sequenced from the Americas, including two that are the first full-length bat morbillivirus genome sequences published to date. Our findings add to the vast number of viral sequences in public repositories, which have been increasing considerably in recent years due to the rising accessibility of metagenomics. Taxonomic classification of these sequences in the absence of phenotypic data has been a significant challenge, particularly in the subfamily Orthoparamyxovirinae, where the rate of discovery of novel sequences has been substantial. Using pairwise amino acid sequence classification (PAASC), we propose that five of these sequences belong to members of the genus Jeilongvirus and two belong to members of the genus Morbillivirus. We also highlight inconsistencies in the classification of Tupaia virus and Mòjiang virus using the same demarcation criteria and suggest reclassification of these viruses into new genera. Importantly, this study underscores the critical importance of sequence length in PAASC analysis as well as the importance of biological characteristics such as genome organization in the taxonomic classification of viral sequences.


Subject(s)
Chiroptera , Morbillivirus , Viruses , Animals , Brazil , Genome, Viral , Humans , Malaysia , Morbillivirus/genetics , Paramyxoviridae/genetics , Phylogeny
5.
J Virol ; 94(18)2020 08 31.
Article in English | MEDLINE | ID: mdl-32611759

ABSTRACT

Ebola virus (EBOV) entry into cells is mediated by its spike glycoprotein (GP). Following attachment and internalization, virions traffic to late endosomes where GP is cleaved by host cysteine proteases. Cleaved GP then binds its cellular receptor, Niemann-Pick C1. In response to an unknown cellular trigger, GP undergoes conformational rearrangements that drive fusion of viral and endosomal membranes. The temperature-dependent stability (thermostability) of the prefusion conformers of class I viral fusion glycoproteins, including those of filovirus GPs, has provided insights into their propensity to undergo fusion-related rearrangements. However, previously described assays have relied on soluble glycoprotein ectodomains. Here, we developed a simple enzyme-linked immunosorbent assay (ELISA)-based assay that uses the temperature-dependent loss of conformational epitopes to measure thermostability of GP embedded in viral membranes. The base and glycan cap subdomains of all filovirus GPs tested suffered a concerted loss of prefusion conformation at elevated temperatures but did so at different temperature ranges, indicating virus-specific differences in thermostability. Despite these differences, all of these GPs displayed reduced thermostability upon cleavage to GP conformers (GPCL). Surprisingly, acid pH enhanced, rather than decreased, GP thermostability, suggesting it could enhance viral survival in hostile endo/lysosomal compartments. Finally, we confirmed and extended previous findings that some small-molecule inhibitors of filovirus entry destabilize EBOV GP and uncovered evidence that the most potent inhibitors act through multiple mechanisms. We establish the epitope-loss ELISA as a useful tool for studies of filovirus entry, engineering of GP variants with enhanced stability for use in vaccine development, and discovery of new stability-modulating antivirals.IMPORTANCE The development of Ebola virus countermeasures is challenged by our limited understanding of cell entry, especially at the step of membrane fusion. The surface-exposed viral protein, GP, mediates membrane fusion and undergoes major structural rearrangements during this process. The stability of GP at elevated temperatures (thermostability) can provide insights into its capacity to undergo these rearrangements. Here, we describe a new assay that uses GP-specific antibodies to measure GP thermostability under a variety of conditions relevant to viral entry. We show that proteolytic cleavage and acid pH have significant effects on GP thermostability that shed light on their respective roles in viral entry. We also show that the assay can be used to study how small-molecule entry inhibitors affect GP stability. This work provides a simple and readily accessible assay to engineer stabilized GP variants for antiviral vaccines and to discover and improve drugs that act by modulating GP stability.


Subject(s)
Ebolavirus/drug effects , Niemann-Pick C1 Protein/antagonists & inhibitors , Receptors, Virus/antagonists & inhibitors , Viral Envelope Proteins/antagonists & inhibitors , Viral Fusion Proteins/antagonists & inhibitors , Virion/drug effects , Animals , Binding Sites , Biological Assay , Chlorocebus aethiops , Clomiphene/chemistry , Clomiphene/pharmacology , Ebolavirus/chemistry , Ebolavirus/genetics , Ebolavirus/metabolism , Epitopes/chemistry , Epitopes/genetics , Epitopes/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Molecular Docking Simulation , Niemann-Pick C1 Protein/chemistry , Niemann-Pick C1 Protein/genetics , Niemann-Pick C1 Protein/metabolism , Protein Binding/drug effects , Protein Interaction Domains and Motifs , Protein Stability , Protein Structure, Tertiary , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , Tamoxifen/analogs & derivatives , Tamoxifen/chemistry , Tamoxifen/pharmacology , Toremifene/chemistry , Toremifene/pharmacology , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Virion/chemistry , Virion/genetics , Virion/metabolism
6.
J Virol ; 94(5)2020 02 14.
Article in English | MEDLINE | ID: mdl-31801868

ABSTRACT

Traditionally, the emergence of coronaviruses (CoVs) has been attributed to a gain in receptor binding in a new host. Our previous work with severe acute respiratory syndrome (SARS)-like viruses argued that bats already harbor CoVs with the ability to infect humans without adaptation. These results suggested that additional barriers limit the emergence of zoonotic CoV. In this work, we describe overcoming host restriction of two Middle East respiratory syndrome (MERS)-like bat CoVs using exogenous protease treatment. We found that the spike protein of PDF2180-CoV, a MERS-like virus found in a Ugandan bat, could mediate infection of Vero and human cells in the presence of exogenous trypsin. We subsequently show that the bat virus spike can mediate the infection of human gut cells but is unable to infect human lung cells. Using receptor-blocking antibodies, we show that infection with the PDF2180 spike does not require MERS-CoV receptor DPP4 and antibodies developed against the MERS spike receptor-binding domain and S2 portion are ineffective in neutralizing the PDF2180 chimera. Finally, we found that the addition of exogenous trypsin also rescues HKU5-CoV, a second bat group 2c CoV. Together, these results indicate that proteolytic cleavage of the spike, not receptor binding, is the primary infection barrier for these two group 2c CoVs. Coupled with receptor binding, proteolytic activation offers a new parameter to evaluate the emergence potential of bat CoVs and offers a means to recover previously unrecoverable zoonotic CoV strains.IMPORTANCE Overall, our studies demonstrate that proteolytic cleavage is the primary barrier to infection for a subset of zoonotic coronaviruses. Moving forward, the results argue that both receptor binding and proteolytic cleavage of the spike are critical factors that must be considered for evaluating the emergence potential and risk posed by zoonotic coronaviruses. In addition, the findings also offer a novel means to recover previously uncultivable zoonotic coronavirus strains and argue that other tissues, including the digestive tract, could be a site for future coronavirus emergence events in humans.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/metabolism , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , Caco-2 Cells , Chiroptera , Chlorocebus aethiops , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Humans , Trypsin , Vero Cells , Zoonoses/metabolism , Zoonoses/virology
7.
J Infect Dis ; 221(Suppl 4): S375-S382, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32034942

ABSTRACT

Bat-borne zoonotic pathogens belonging to the family Paramxyoviridae, including Nipah and Hendra viruses, and the family Filoviridae, including Ebola and Marburg viruses, can cause severe disease and high mortality rates on spillover into human populations. Surveillance efforts for henipaviruses and filoviruses have been largely restricted to the Old World; however, recent studies suggest a potentially broader distribution for henipaviruses and filoviruses than previously recognized. In the current study, we screened for henipaviruses and filoviruses in New World bats collected across 4 locations in Trinidad near the coast of Venezuela. Bat tissue samples were screened using previously established reverse-transcription polymerase chain reaction assays. Serum were screened using a multiplex immunoassay to detect antibodies reactive with the envelope glycoprotein of viruses in the genus Henipavirus and the family Filoviridae. Serum samples were also screened by means of enzyme-linked immunosorbent assay for antibodies reactive with Nipah G and F glycoproteins. Of 84 serum samples, 28 were reactive with ≥1 henipavirus glycoprotein by ≥1 serological method, and 6 serum samples were reactive against ≥1 filovirus glycoproteins. These data provide evidence of potential circulation of viruses related to the henipaviruses and filoviruses in New World bats.


Subject(s)
Chiroptera/virology , Filoviridae Infections/veterinary , Filoviridae , Henipavirus Infections/veterinary , Henipavirus , Animals , Chiroptera/blood , Chiroptera/classification , Filoviridae Infections/epidemiology , Filoviridae Infections/virology , Henipavirus Infections/epidemiology , Henipavirus Infections/virology , Serologic Tests , Trinidad and Tobago/epidemiology
9.
Arch Virol ; 165(12): 3023-3072, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32888050

ABSTRACT

In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Subject(s)
Mononegavirales/classification , Terminology as Topic
10.
Proc Natl Acad Sci U S A ; 110(20): 8194-9, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23610427

ABSTRACT

Although there are over 1,150 bat species worldwide, the diversity of viruses harbored by bats has only recently come into focus as a result of expanded wildlife surveillance. Such surveys are of importance in determining the potential for novel viruses to emerge in humans, and for optimal management of bats and their habitats. To enhance our knowledge of the viral diversity present in bats, we initially surveyed 415 sera from African and Central American bats. Unbiased high-throughput sequencing revealed the presence of a highly diverse group of bat-derived viruses related to hepaciviruses and pegiviruses within the family Flaviridae. Subsequent PCR screening of 1,258 bat specimens collected worldwide indicated the presence of these viruses also in North America and Asia. A total of 83 bat-derived viruses were identified, representing an infection rate of nearly 5%. Evolutionary analyses revealed that all known hepaciviruses and pegiviruses, including those previously documented in humans and other primates, fall within the phylogenetic diversity of the bat-derived viruses described here. The prevalence, unprecedented viral biodiversity, phylogenetic divergence, and worldwide distribution of the bat-derived viruses suggest that bats are a major and ancient natural reservoir for both hepaciviruses and pegiviruses and provide insights into the evolutionary history of hepatitis C virus and the human GB viruses.


Subject(s)
Chiroptera/virology , Disease Reservoirs/veterinary , Flaviviridae/genetics , Hepacivirus/genetics , Virus Diseases/virology , Amino Acid Sequence , Animals , Bayes Theorem , Codon , Disease Reservoirs/virology , Genetic Variation , Genome, Viral , Geography , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Virus Diseases/veterinary
11.
Ecol Evol ; 14(6): e11501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895563

ABSTRACT

Public health concerns about recent viral epidemics have motivated researchers to seek novel ways to understand pathogen infection in native, wildlife hosts. With its deep history of tools and perspectives for understanding the abundance and distribution of organisms, ecology can shed new light on viral infection dynamics. However, datasets allowing deep explorations of viral communities from an ecological perspective are lacking. We sampled 1086 bats from two, adjacent Puerto Rican caves and tested them for infection by herpesviruses, resulting in 3131 short, viral sequences. Using percent identity of nucleotides and a machine learning algorithm (affinity propagation), we categorized herpesviruses into 43 operational taxonomic units (OTUs) to be used in place of species in subsequent ecological analyses. Herpesvirus metacommunities demonstrated long-tailed rank frequency distributions at all analyzed levels of host organization (i.e., individual, population, and community). Although 13 herpesvirus OTUs were detected in more than one host species, OTUs generally exhibited host specificity by infecting a single core host species at a significantly higher prevalence than in all satellite species combined. We describe the natural history of herpesvirus metacommunities in Puerto Rican bats and suggest that viruses follow the general law that communities comprise few common and many rare species. To guide future efforts in the field of viral ecology, hypotheses are presented regarding mechanisms that contribute to these patterns.

12.
Emerg Infect Dis ; 19(2): 270-3, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23343532

ABSTRACT

To determine geographic range for Ebola virus, we tested 276 bats in Bangladesh. Five (3.5%) bats were positive for antibodies against Ebola Zaire and Reston viruses; no virus was detected by PCR. These bats might be a reservoir for Ebola or Ebola-like viruses, and extend the range of filoviruses to mainland Asia.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/veterinary , Animals , Antibodies, Viral/blood , Bangladesh/epidemiology , Chiroptera/immunology , Chiroptera/virology , Female , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Male
13.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425914

ABSTRACT

APOBEC3, an enzyme subfamily that plays a role in virus restriction by generating mutations at particular DNA motifs or mutational "hotspots," can drive viral mutagenesis with host-specific preferential hotspot mutations contributing to pathogen variation. While previous analysis of viral genomes from the 2022 Mpox (formerly Monkeypox) disease outbreak has shown a high frequency of C>T mutations at T C motifs, suggesting recent mutations are human APOBEC3-mediated, how emerging monkeypox virus (MPXV) strains will evolve as a consequence of APOBEC3-mediated mutations remains unknown. By measuring hotspot under-representation, depletion at synonymous sites, and a combination of the two, we analyzed APOBEC3-driven evolution in human poxvirus genomes, finding varying hotspot under-representation patterns. While the native poxvirus molluscum contagiosum exhibits a signature consistent with extensive coevolution with human APOBEC3, including depletion of T C hotspots, variola virus shows an intermediate effect consistent with ongoing evolution at the time of eradication. MPXV, likely the result of recent zoonosis, showed many genes with more T C hotspots than expected by chance (over-representation) and fewer G C hotspots than expected (under-representation). These results suggest the MPXV genome: 1) may have evolved in a host with a particular APOBEC G C hotspot preference, 2) has inverted terminal repeat (ITR) regions -which may be exposed to APOBEC3 for longer during viral replication- and longer genes likely to evolve faster, and therefore 3) has a heightened potential for future human APOBEC3-meditated evolution as the virus spreads in the human population. Our predictions of MPXV mutational potential can both help guide future vaccine development and identification of putative drug targets and add urgency to the task of containing human Mpox disease transmission and uncovering the ecology of the virus in its reservoir host.

14.
Virus Evol ; 9(2): vead047, 2023.
Article in English | MEDLINE | ID: mdl-37577211

ABSTRACT

APOBEC3, an enzyme subfamily that plays a role in virus restriction by generating mutations at particular DNA motifs or mutational 'hotspots', can drive viral mutagenesis with host-specific preferential hotspot mutations contributing to pathogen variation. While previous analysis of viral genomes from the 2022 Mpox (formerly Monkeypox) disease outbreak has shown a high frequency of C>T mutations at TC motifs, suggesting recent mutations are human APOBEC3-mediated, how emerging monkeypox virus (MPXV) strains will evolve as a consequence of APOBEC3-mediated mutations remains unknown. By measuring hotspot under-representation, depletion at synonymous sites, and a combination of the two, we analyzed APOBEC3-driven evolution in human poxvirus genomes, finding varying hotspot under-representation patterns. While the native poxvirus molluscum contagiosum exhibits a signature consistent with extensive coevolution with human APOBEC3, including depletion of TC hotspots, variola virus shows an intermediate effect consistent with ongoing evolution at the time of eradication. MPXV, likely the result of recent zoonosis, showed many genes with more TC hotspots than expected by chance (over-representation) and fewer GC hotspots than expected (under-representation). These results suggest the MPXV genome: (1) may have evolved in a host with a particular APOBEC GC hotspot preference, (2) has inverted terminal repeat (ITR) regions-which may be exposed to APOBEC3 for longer during viral replication-and longer genes likely to evolve faster, and therefore (3) has a heightened potential for future human APOBEC3-meditated evolution as the virus spreads in the human population. Our predictions of MPXV mutational potential can both help guide future vaccine development and identification of putative drug targets and add urgency to the task of containing human Mpox disease transmission and uncovering the ecology of the virus in its reservoir host.

15.
Cell Host Microbe ; 31(6): 874-889, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37321171

ABSTRACT

Recombination is thought to be a mechanism that facilitates cross-species transmission in coronaviruses, thus acting as a driver of coronavirus spillover and emergence. Despite its significance, the mechanism of recombination is poorly understood, limiting our potential to estimate the risk of novel recombinant coronaviruses emerging in the future. As a tool for understanding recombination, here, we outline a framework of the recombination pathway for coronaviruses. We review existing literature on coronavirus recombination, including comparisons of naturally observed recombinant genomes as well as in vitro experiments, and place the findings into the recombination pathway framework. We highlight gaps in our understanding of coronavirus recombination illustrated by the framework and outline how further experimental research is critical for disentangling the molecular mechanism of recombination from external environmental pressures. Finally, we describe how an increased understanding of the mechanism of recombination can inform pandemic predictive intelligence, with a retrospective emphasis on SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Retrospective Studies , Phylogeny , Recombination, Genetic
16.
Nat Microbiol ; 8(6): 1108-1122, 2023 06.
Article in English | MEDLINE | ID: mdl-37142773

ABSTRACT

Morbilliviruses are among the most contagious viral pathogens of mammals. Although previous metagenomic surveys have identified morbillivirus sequences in bats, full-length morbilliviruses from bats are limited. Here we characterize the myotis bat morbillivirus (MBaMV) from a bat surveillance programme in Brazil, whose full genome was recently published. We demonstrate that the fusion and receptor binding protein of MBaMV utilize bat CD150 and not human CD150, as an entry receptor in a mammalian cell line. Using reverse genetics, we produced a clone of MBaMV that infected Vero cells expressing bat CD150. Electron microscopy of MBaMV-infected cells revealed budding of pleomorphic virions, a characteristic morbillivirus feature. MBaMV replication reached 103-105 plaque-forming units ml-1 in human epithelial cell lines and was dependent on nectin-4. Infection of human macrophages also occurred, albeit 2-10-fold less efficiently than measles virus. Importantly, MBaMV is restricted by cross-neutralizing human sera elicited by measles, mumps and rubella vaccination and is inhibited by orally bioavailable polymerase inhibitors in vitro. MBaMV-encoded P/V genes did not antagonize human interferon induction. Finally, we show that MBaMV does not cause disease in Jamaican fruit bats. We conclude that, while zoonotic spillover into humans may theoretically be plausible, MBaMV replication would probably be controlled by the human immune system.


Subject(s)
Chiroptera , Morbillivirus , Animals , Chlorocebus aethiops , Humans , Vero Cells , Zoonoses , Morbillivirus/genetics , Cell Line
17.
Vet Res ; 43: 40, 2012 Apr 30.
Article in English | MEDLINE | ID: mdl-22546071

ABSTRACT

Bluetongue virus (BTV) is a double stranded (ds) RNA virus (genus Orbivirus; family Reoviridae), which is considered capable of infecting all species of domestic and wild ruminants, although clinical signs are seen mostly in sheep. BTV is arthropod-borne ("arbovirus") and able to productively infect and replicate in many different cell types of both insects and mammalian hosts. Although the organ and cellular tropism of BTV in ruminants has been the subject of several studies, many aspects of its pathogenesis are still poorly understood, partly because of inherent problems in distinguishing between "virus replication" and "virus presence".BTV replication and organ tropism were studied in a wide range of infected sheep tissues, by immuno-fluorescence-labeling of non-structural or structural proteins (NS2 or VP7 and core proteins, respectively) using confocal microscopy to distinguish between virus presence and replication. These results are compared to gross and microscopic pathological findings in selected organs from infected sheep. Replication was demonstrated in two major cell types: vascular endothelial cells, and agranular leukocytes which morphologically resemble lymphocytes, monocytes/macrophages and/or dendritic cells. Two organs (the skin and tonsils) were shown to support relatively high levels of BTV replication, although they have not previously been proposed as important replication sites during BTV infection. The high level of BTV replication in the skin is thought to be of major significance for the pathogenesis and transmission of BTV (via biting insects) and a refinement of our current model of BTV pathogenesis is discussed.


Subject(s)
Bluetongue virus/physiology , Bluetongue/virology , Ceratopogonidae/physiology , Skin/virology , Animals , Bluetongue virus/genetics , Bluetongue virus/isolation & purification , Feeding Behavior , Food Chain , Immunohistochemistry/veterinary , Inflammation/veterinary , Inflammation/virology , Microscopy, Confocal/veterinary , Organ Specificity , Sheep , Viral Core Proteins/metabolism , Viral Nonstructural Proteins/metabolism
18.
Ecohealth ; 19(2): 216-232, 2022 06.
Article in English | MEDLINE | ID: mdl-35771308

ABSTRACT

Bats are important hosts of zoonotic viruses with pandemic potential, including filoviruses, MERS-Coronavirus (CoV), SARS-CoV -1, and likely SARS-CoV-2. Viral infection and transmission among wildlife are dependent on a combination of factors that include host ecology and immunology, life history traits, roosting habitats, biogeography, and external stressors. Between 2016 and 2018, four species of insectivorous bats from a readily accessed roadside cave and buildings in Ethiopia were sampled and tested for viruses using consensus PCR assays for five viral families/genera. Previously identified and novel coronaviruses and paramyxoviruses were identified in 99 of the 589 sampled bats. Bats sampled from the cave site were more likely to test positive for a CoV than bats sampled from buildings; viral shedding was more common in the wet season; and rectal swabs were the most common sample type to test positive. A previously undescribed alphacoronavirus was detected in two bat species from different taxonomic families, sampling interfaces, geographic locations, and years. These findings expand knowledge of the range and diversity of coronaviruses and paramyxoviruses in insectivorous bats in Ethiopia and reinforce that an improved understanding of viral diversity and species-specific shedding dynamics is important for designing informed zoonotic disease surveillance and spillover risk reduction efforts.


Subject(s)
COVID-19 , Chiroptera , Viruses , Animals , COVID-19/epidemiology , Ethiopia/epidemiology , Genome, Viral , Humans , Phylogeny , SARS-CoV-2
19.
Commun Biol ; 5(1): 844, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986178

ABSTRACT

Host-virus associations have co-evolved under ecological and evolutionary selection pressures that shape cross-species transmission and spillover to humans. Observed virus-host associations provide relevant context for newly discovered wildlife viruses to assess knowledge gaps in host-range and estimate pathways for potential human infection. Using models to predict virus-host networks, we predicted the likelihood of humans as hosts for 513 newly discovered viruses detected by large-scale wildlife surveillance at high-risk animal-human interfaces in Africa, Asia, and Latin America. Predictions indicated that novel coronaviruses are likely to infect a greater number of host species than viruses from other families. Our models further characterize novel viruses through prioritization scores and directly inform surveillance targets to identify host ranges for newly discovered viruses.


Subject(s)
Viruses , Zoonoses , Africa , Animals , Animals, Wild , Host Specificity , Humans , Zoonoses/epidemiology
20.
Viruses ; 13(4)2021 04 01.
Article in English | MEDLINE | ID: mdl-33915875

ABSTRACT

Coronavirus (CoV) spillover events from wildlife reservoirs can result in mild to severe human respiratory illness. These spillover events underlie the importance of detecting known and novel CoVs circulating in reservoir host species and determining CoV prevalence and distribution, allowing improved prediction of spillover events or where a human-reservoir interface should be closely monitored. To increase the likelihood of detecting all circulating genera and strains, we have modified primers published by Watanabe et al. in 2010 to generate a semi-nested pan-CoV PCR assay. Representatives from the four coronavirus genera (α-CoVs, ß-CoVs, γ-CoVs and δ-CoVs) were tested and all of the in-house CoVs were detected using this assay. After comparing both assays, we found that the updated assay reliably detected viruses in all genera of CoVs with high sensitivity, whereas the sensitivity of the original assay was lower. Our updated PCR assay is an important tool to detect, monitor and track CoVs to enhance viral surveillance in reservoir hosts.


Subject(s)
Coronavirus/classification , Coronavirus/genetics , Coronavirus/isolation & purification , Polymerase Chain Reaction/methods , Animals , Animals, Wild , Clinical Laboratory Techniques/methods , Coronavirus Infections/virology , Disease Reservoirs/virology , Genome, Viral , Host Specificity , Humans , Limit of Detection , Pandemics , Phylogeny , RNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL