Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Soft Matter ; 16(26): 6091-6101, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32542249

ABSTRACT

Hydrogen bonding and charge transport in the protic polymerized ionic liquid poly[tris(2-(2-methoxyethoxy)ethyl)ammoniumacryloxypropyl sulfonate] (PAAPS) are studied by combining Fourier transform infrared (FTIR) and broadband dielectric spectroscopy (BDS) in a wide temperature range from 170 to 300 K. While the former enables to determine precisely the formation of hydrogen bonds and other moiety-specific quantized vibrational states, the latter allows for recording the complex conductivity in a spectral range from 10-2 to 10+9 Hz. A pronounced thermal hysteresis is observed for the H-bond network formation in distinct contrast to the reversibility of the effective conductivity measured by BDS. On the basis of this finding and the fact that the conductivity changes with temperature by orders of magnitude, whereas the integrated absorbance of the N-H stretching vibration (being proportional to the number density of protons in the hydrogen bond network) changes only by a factor of 4, it is concluded that charge transport takes place predominantly due to hopping conduction assisted by glassy dynamics (dynamic glass transition assisted hopping) and is not significantly affected by the establishment of H-bonds.

2.
Soft Matter ; 15(7): 1605-1618, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30672557

ABSTRACT

Polymeric ionic liquids (PILs) form a novel class of materials in which the extraordinary properties of ionic liquids (ILs) are combined with the mechanical stability of polymeric systems qualifying them for multifold applications. In the present study broadband dielectric spectroscopy (BDS), Fourier transform infrared spectroscopy (FTIR), AC-chip calorimetry (ACC) and differential scanning calorimetry (DSC) are combined in order to unravel the interplay between charge transport and glassy dynamics. Three low molecular weight ILs and their polymeric correspondents are studied with systematic variations of anions and cations. For all examined samples charge transport takes place by glassy dynamics assisted hopping conduction. In contrast to low molecular weight ILs the thermal activation of DC conductivity for the polymeric systems changes from a Vogel-Fulcher-Tammann- to an Arrhenius-dependence at a (sample specific) temperature Tσ0. This temperature has been widely discussed to coincide with the glass transition temperature Tg, a refined analysis, instead, reveals Tσ0 of all PILs under study at up to 80 K higher values. In effect, below the Tσ0 charge transport in PILs becomes more efficient - albeit on a much lower level compared to the low molecular weight pendants - indicating conduction paths along the polymer chain. This is corroborated by analysing the temperature dependence of specific IR-active vibrations showing at Tσ0 distinct changes in the spectral position and the oscillator strength, whereas other molecular units are not affected. This leads to the identification of charge transport responsive (CTR) as well as charge transport irresponsive (CTI) moieties and paves the way to a refined molecular understanding of electrical conduction in PILs.

3.
Biomacromolecules ; 18(12): 3954-3962, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-28954189

ABSTRACT

Spider dragline silk is distinguished through the highest toughness of all natural as well as artificial fiber materials. To unravel the toughness's molecular foundation and to enable manufacturing biomimetic analogues, we investigated the morphological and functional structure of recombinant fibers, which exhibit toughness similar to that of the natural template, on the molecular scale by means of vibrational spectroscopy and on the mesoscale by X-ray scattering. Whereas the former was used to identify protein secondary structures and their alignment in the natural as well as artificial silks, the latter revealed nanometer-sized crystallites on the higher structural level. Furthermore, a spectral red shift of a crystal-specific absorption band demonstrated that macroscopically applied stress is directly transferred to the molecular scale, where it is finally dissipated. Concerning this feature, both the natural as well as the biomimetic fibers are almost indistinguishable, giving rise to the toughness of both fiber materials.


Subject(s)
Silk/chemistry , Spiders/chemistry , Amino Acid Sequence , Animals , Biomimetics/methods , Fibroins/chemistry , Protein Structure, Secondary , Tensile Strength
4.
J Am Chem Soc ; 137(18): 6034-43, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25892664

ABSTRACT

The IR-based method of infrared transition moment orientational analysis (IR-TMOA) is employed to unravel molecular order in thin layers of the semiconducting polymer poly[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) (P(NDI2OD-T2)). Structure-specific vibrational bands are analyzed in dependence on polarization and inclination of the sample with respect to the optical axis. By that the molecular order parameter tensor for the respective molecular moieties with regard to the sample coordinate system is deduced. Making use of the specificity of the IR spectral range, we are able to determine separately the orientation of atomistic planes defined through the naphthalenediimide (NDI) and bithiophene (T2) units relative to the substrate, and hence, relative to each other. A pronounced solvent effect is observed: While chlorobenzene causes the T2 planes to align preferentially parallel to the substrate at an angle of 29°, using a 1:1 chloronaphthalene:xylene mixture results in a reorientation of the T2 units from a face on into an edge on arrangement. In contrast the NDI unit remains unaffected. Additionally, for both solvents evidence is observed for the aggregation of chains in accord with recently published results obtained by UV-vis absorption spectroscopy.

5.
Soft Matter ; 11(6): 1158-64, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25557527

ABSTRACT

The experimental realization and an algorithm for analysing the pressure dependence of the molecular order parameter of specific structural moieties in (bio)macromolecular fibres are described. By employing a diamond anvil cell (DAC) the polarization-dependent IR-transmission and in parallel, using an integrated microscope, the macroscopic orientation of the fibres is determined. This enables one to separate between order and disorder at macroscopic and microscopic scales. Using the example of spider silk the pressure dependence of the molecular order parameter of alanine groups being located within nano-crystalline building blocks is deduced and found to decrease reversibly by 0.01 GPa(-1) when varying the external hydrostatic pressure between 0 and 3 GPa.


Subject(s)
Silk/chemistry , Spectrophotometry, Infrared/methods , Animals , Diamond , Hydrostatic Pressure , Spectrophotometry, Infrared/instrumentation , Spiders
SELECTION OF CITATIONS
SEARCH DETAIL