Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Mol Cell Neurosci ; 128: 103919, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307302

ABSTRACT

Parkinson's disease (PD) is a complex, progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain. Despite extensive research efforts, the molecular and cellular changes that precede neurodegeneration in PD are poorly understood. To address this, here we describe the use of patient specific human midbrain organoids harboring the SNCA triplication to investigate mechanisms underlying dopaminergic degeneration. Our midbrain organoid model recapitulates key pathological hallmarks of PD, including the aggregation of α-synuclein and the progressive loss of dopaminergic neurons. We found that these pathological hallmarks are associated with an increase in senescence associated cellular phenotypes in astrocytes including nuclear lamina defects, the presence of senescence associated heterochromatin foci, and the upregulation of cell cycle arrest genes. These results suggest a role of pathological α-synuclein in inducing astrosenescence which may, in turn, increase the vulnerability of dopaminergic neurons to degeneration.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Astrocytes/metabolism , Neurodegenerative Diseases/metabolism , Mesencephalon/metabolism , Mesencephalon/pathology , Dopaminergic Neurons/metabolism , Organoids/metabolism , Organoids/pathology , Substantia Nigra/metabolism
2.
J Neuroinflammation ; 21(1): 174, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014482

ABSTRACT

BACKGROUND: Specific microglia responses are thought to contribute to the development and progression of neurodegenerative diseases, including Parkinson's disease (PD). However, the phenotypic acquisition of microglial cells and their role during the underlying neuroinflammatory processes remain largely elusive. Here, according to the multiple-hit hypothesis, which stipulates that PD etiology is determined by a combination of genetics and various environmental risk factors, we investigate microglial transcriptional programs and morphological adaptations under PARK7/DJ-1 deficiency, a genetic cause of PD, during lipopolysaccharide (LPS)-induced inflammation. METHODS: Using a combination of single-cell RNA-sequencing, bulk RNA-sequencing, multicolor flow cytometry and immunofluorescence analyses, we comprehensively compared microglial cell phenotypic characteristics in PARK7/DJ-1 knock-out (KO) with wildtype littermate mice following 6- or 24-h intraperitoneal injection with LPS. For translational perspectives, we conducted corresponding analyses in human PARK7/DJ-1 mutant induced pluripotent stem cell (iPSC)-derived microglia and murine bone marrow-derived macrophages (BMDMs). RESULTS: By excluding the contribution of other immune brain resident and peripheral cells, we show that microglia acutely isolated from PARK7/DJ-1 KO mice display a distinct phenotype, specially related to type II interferon and DNA damage response signaling, when compared with wildtype microglia, in response to LPS. We also detected discrete signatures in human PARK7/DJ-1 mutant iPSC-derived microglia and BMDMs from PARK7/DJ-1 KO mice. These specific transcriptional signatures were reflected at the morphological level, with microglia in LPS-treated PARK7/DJ-1 KO mice showing a less amoeboid cell shape compared to wildtype mice, both at 6 and 24 h after acute inflammation, as also observed in BMDMs. CONCLUSIONS: Taken together, our results show that, under inflammatory conditions, PARK7/DJ-1 deficiency skews microglia towards a distinct phenotype characterized by downregulation of genes involved in type II interferon signaling and a less prominent amoeboid morphology compared to wildtype microglia. These findings suggest that the underlying oxidative stress associated with the lack of PARK7/DJ-1 affects microglia neuroinflammatory responses, which may play a causative role in PD onset and progression.


Subject(s)
Inflammation , Lipopolysaccharides , Mice, Knockout , Microglia , Protein Deglycase DJ-1 , Animals , Protein Deglycase DJ-1/deficiency , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Mice , Lipopolysaccharides/toxicity , Lipopolysaccharides/pharmacology , Inflammation/pathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/genetics , Humans , Mice, Inbred C57BL , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/genetics
3.
Mov Disord ; 37(1): 80-94, 2022 01.
Article in English | MEDLINE | ID: mdl-34637165

ABSTRACT

BACKGROUND: The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) gene involved in mitochondrial homeostasis, vesicle trafficking, and autophagy are sufficient to cause PD. OBJECTIVES: We sought to evaluate the difference between controls' and PINK1 patients' derived neurons in their transition from neuroepithelial stem cells to neurons, allowing us to identify potential pathways to target with repurposed compounds. METHODS: Using two-dimensional and three-dimensional models of patients' derived neurons we recapitulated PD-related phenotypes. We introduced the usage of midbrain organoids for testing compounds. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), we corrected the point mutations of three patients' derived cells. We evaluated the effect of the selected compound in a mouse model. RESULTS: PD patient-derived cells presented differences in their energetic profile, imbalanced proliferation, apoptosis, mitophagy, and a reduced differentiation efficiency to tyrosine hydroxylase positive (TH+) neurons compared to controls' cells. Correction of a patient's point mutation ameliorated the metabolic properties and neuronal firing rates as well as reversing the differentiation phenotype, and reducing the increased astrocytic levels. Treatment with 2-hydroxypropyl-ß-cyclodextrin increased the autophagy and mitophagy capacity of neurons concomitant with an improved dopaminergic differentiation of patient-specific neurons in midbrain organoids and ameliorated neurotoxicity in a mouse model. CONCLUSION: We show that treatment with a repurposed compound is sufficient for restoring the impaired dopaminergic differentiation of PD patient-derived cells. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , 2-Hydroxypropyl-beta-cyclodextrin/metabolism , Animals , Brain/metabolism , Dopaminergic Neurons/metabolism , Humans , Mice , Neurons/metabolism , Organoids/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phenotype
4.
BMC Genomics ; 15: 1154, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25528190

ABSTRACT

BACKGROUND: The human neuroblastoma cell line, SH-SY5Y, is a commonly used cell line in studies related to neurotoxicity, oxidative stress, and neurodegenerative diseases. Although this cell line is often used as a cellular model for Parkinson's disease, the relevance of this cellular model in the context of Parkinson's disease (PD) and other neurodegenerative diseases has not yet been systematically evaluated. RESULTS: We have used a systems genomics approach to characterize the SH-SY5Y cell line using whole-genome sequencing to determine the genetic content of the cell line and used transcriptomics and proteomics data to determine molecular correlations. Further, we integrated genomic variants using a network analysis approach to evaluate the suitability of the SH-SY5Y cell line for perturbation experiments in the context of neurodegenerative diseases, including PD. CONCLUSIONS: The systems genomics approach showed consistency across different biological levels (DNA, RNA and protein concentrations). Most of the genes belonging to the major Parkinson's disease pathways and modules were intact in the SH-SY5Y genome. Specifically, each analysed gene related to PD has at least one intact copy in SH-SY5Y. The disease-specific network analysis approach ranked the genetic integrity of SH-SY5Y as higher for PD than for Alzheimer's disease but lower than for Huntington's disease and Amyotrophic Lateral Sclerosis for loss of function perturbation experiments.


Subject(s)
Genomics , Neuroblastoma/pathology , Parkinson Disease/genetics , Cell Line, Tumor , DNA Copy Number Variations , DNA Transposable Elements/genetics , Gene Expression Profiling , Genetic Variation , Humans , INDEL Mutation , Proteomics
5.
Heliyon ; 10(18): e37792, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39315158

ABSTRACT

Background: Epidemiological studies suggest that metformin reduces the risk of developing several types of cancer, including gliomas, and improves the overall survival in cancer patients. Nevertheless, while the effect of metformin on cancer cells has been extensively studied, its impact on other components of the tumour microenvironment, such as macrophages, is less understood. Results: Metformin-treated mouse bone marrow cells differentiate into spindle-shaped macrophages exhibiting increased phagocytic activity and tumour cell cytotoxicity coupled with modulated expression of co-stimulatory molecules displaying reduced sensitivity to inflammatory cues compared with untreated cells. Transcriptional analyses of metformin-treated mouse bone marrow-derived macrophages show decreased expression levels of pro-tumour genes, including Tgfbi and Il1ß, related to enhanced mTOR/HIF1α signalling and metabolic rewiring towards glycolysis. Significance: Our study provides novel insights into the immunomodulatory properties of metformin in macrophages and its potential application in preventing tumour onset and in cancer immunotherapy.

6.
Mamm Genome ; 22(7-8): 401-19, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21559878

ABSTRACT

Animal models with high predictive power are a prerequisite for translational research. The closer the similarity of a model to Parkinson's disease (PD), the higher is the predictive value for clinical trials. An ideal PD model should present behavioral signs and pathology that resemble the human disease. The increasing understanding of PD stratification and etiology, however, complicates the choice of adequate animal models for preclinical studies. An ultimate mouse model, relevant to address all PD-related questions, is yet to be developed. However, many of the existing models are useful in answering specific questions. An appropriate model should be chosen after considering both the context of the research and the model properties. This review addresses the validity, strengths, and limitations of current PD mouse models for translational research.


Subject(s)
Disease Models, Animal , Mice , Parkinson Disease , Animals , Humans , Mice/genetics , Mice/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Translational Research, Biomedical
7.
Front Cell Dev Biol ; 9: 740758, 2021.
Article in English | MEDLINE | ID: mdl-34805149

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease with unknown cause in the majority of patients, who are therefore considered "idiopathic" (IPD). PD predominantly affects dopaminergic neurons in the substantia nigra pars compacta (SNpc), yet the pathology is not limited to this cell type. Advancing age is considered the main risk factor for the development of IPD and greatly influences the function of microglia, the immune cells of the brain. With increasing age, microglia become dysfunctional and release pro-inflammatory factors into the extracellular space, which promote neuronal cell death. Accordingly, neuroinflammation has also been described as a feature of PD. So far, studies exploring inflammatory pathways in IPD patient samples have primarily focused on blood-derived immune cells or brain sections, but rarely investigated patient microglia in vitro. Accordingly, we decided to explore the contribution of microglia to IPD in a comparative manner using, both, iPSC-derived cultures and postmortem tissue. Our meta-analysis of published RNAseq datasets indicated an upregulation of IL10 and IL1B in nigral tissue from IPD patients. We observed increased expression levels of these cytokines in microglia compared to neurons using our single-cell midbrain atlas. Moreover, IL10 and IL1B were upregulated in IPD compared to control microglia. Next, to validate these findings in vitro, we generated IPD patient microglia from iPSCs using an established differentiation protocol. IPD microglia were more readily primed as indicated by elevated IL1B and IL10 gene expression and higher mRNA and protein levels of NLRP3 after LPS treatment. In addition, IPD microglia had higher phagocytic capacity under basal conditions-a phenotype that was further exacerbated upon stimulation with LPS, suggesting an aberrant microglial function. Our results demonstrate the significance of microglia as the key player in the neuroinflammation process in IPD. While our study highlights the importance of microglia-mediated inflammatory signaling in IPD, further investigations will be needed to explore particular disease mechanisms in these cells.

8.
Sci Rep ; 11(1): 21946, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34754035

ABSTRACT

Parkinson's disease (PD) is characterised by the degeneration of A9 dopaminergic neurons and the pathological accumulation of alpha-synuclein. The p.A30P SNCA mutation generates the pathogenic form of the alpha-synuclein protein causing an autosomal-dominant form of PD. There are limited studies assessing pathogenic SNCA mutations in patient-derived isogenic cell models. Here we provide a functional assessment of dopaminergic neurons derived from a patient harbouring the p.A30P SNCA mutation. Using two clonal gene-corrected isogenic cell lines we identified image-based phenotypes showing impaired neuritic processes. The pathological neurons displayed impaired neuronal activity, reduced mitochondrial respiration, an energy deficit, vulnerability to rotenone, and transcriptional alterations in lipid metabolism. Our data describes for the first time the mutation-only effect of the p.A30P SNCA mutation on neuronal function, supporting the use of isogenic cell lines in identifying image-based pathological phenotypes that can serve as an entry point for future disease-modifying compound screenings and drug discovery strategies.


Subject(s)
Dopaminergic Neurons/cytology , Mutation , Parkinson Disease/pathology , alpha-Synuclein/genetics , Cell Line , Dopaminergic Neurons/metabolism , Humans , Mitochondria , Parkinson Disease/genetics
9.
Cell Rep ; 37(3): 109864, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686322

ABSTRACT

Increasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.


Subject(s)
Brain/enzymology , COUP Transcription Factor I/metabolism , Dopaminergic Neurons/enzymology , Induced Pluripotent Stem Cells/enzymology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Neural Stem Cells/enzymology , Neurogenesis , Parkinson Disease/enzymology , Animals , Brain/pathology , COUP Transcription Factor I/genetics , Cell Cycle , Cell Line , Cell Proliferation , Cell Survival , Dopaminergic Neurons/pathology , Female , Humans , Induced Pluripotent Stem Cells/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Mice, 129 Strain , Mice, Knockout , Mutation , Neural Stem Cells/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Phenotype , RNA-Seq , Signal Transduction , Single-Cell Analysis , Time Factors
10.
NPJ Syst Biol Appl ; 6(1): 38, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33173039

ABSTRACT

Mitochondrial dysfunction is linked to pathogenesis of Parkinson's disease (PD). However, individual mitochondria-based analyses do not show a uniform feature in PD patients. Since mitochondria interact with each other, we hypothesize that PD-related features might exist in topological patterns of mitochondria interaction networks (MINs). Here we show that MINs formed nonclassical scale-free supernetworks in colonic ganglia both from healthy controls and PD patients; however, altered network topological patterns were observed in PD patients. These patterns were highly correlated with PD clinical scores and a machine-learning approach based on the MIN features alone accurately distinguished between patients and controls with an area-under-curve value of 0.989. The MINs of midbrain dopaminergic neurons (mDANs) derived from several genetic PD patients also displayed specific changes. CRISPR/CAS9-based genome correction of alpha-synuclein point mutations reversed the changes in MINs of mDANs. Our organelle-interaction network analysis opens another critical dimension for a deeper characterization of various complex diseases with mitochondrial dysregulation.


Subject(s)
Mitochondria/pathology , Parkinson Disease/pathology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Female , Humans , Male , Middle Aged , Mitochondria/genetics , Parkinson Disease/genetics
11.
Sci Rep ; 9(1): 9455, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31263238

ABSTRACT

Autophagic processes play a central role in cellular homeostasis. In pathological conditions, the flow of autophagy can be affected at multiple and distinct steps of the pathway. Current analyses tools do not deliver the required detail for dissecting pathway intermediates. The development of new tools to analyze autophagic processes qualitatively and quantitatively in a more straightforward manner is required. Defining all autophagy pathway intermediates in a high-throughput manner is technologically challenging and has not been addressed yet. Here, we overcome those requirements and limitations by the developed of stable autophagy and mitophagy reporter-iPSC and the establishment of a novel high-throughput phenotyping platform utilizing automated high-content image analysis to assess autophagy and mitophagy pathway intermediates.


Subject(s)
Autophagy , Mitophagy , Algorithms , Autophagosomes/metabolism , Autophagy/drug effects , Chloroquine/pharmacology , Humans , Image Processing, Computer-Assisted , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Lysosomes/metabolism , Microscopy, Fluorescence , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitophagy/drug effects
12.
Adv Sci (Weinh) ; 6(1): 1800927, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30643711

ABSTRACT

Parkinson's disease (PD)-specific neurons, grown in standard 2D cultures, typically only display weak endophenotypes. The cultivation of PD patient-specific neurons, derived from induced pluripotent stem cells carrying the LRRK2-G2019S mutation, is optimized in 3D microfluidics. The automated image analysis algorithms are implemented to enable pharmacophenomics in disease-relevant conditions. In contrast to 2D cultures, this 3D approach reveals robust endophenotypes. High-content imaging data show decreased dopaminergic differentiation and branching complexity, altered mitochondrial morphology, and increased cell death in LRRK2-G2019S neurons compared to isogenic lines without using stressor agents. Treatment with the LRRK2 inhibitor 2 (Inh2) rescues LRRK2-G2019S-dependent dopaminergic phenotypes. Strikingly, a holistic analysis of all studied features shows that the genetic background of the PD patients, and not the LRRK2-G2019S mutation, constitutes the strongest contribution to the phenotypes. These data support the use of advanced in vitro models for future patient stratification and personalized drug development.

13.
NPJ Parkinsons Dis ; 5: 5, 2019.
Article in English | MEDLINE | ID: mdl-30963107

ABSTRACT

Modeling Parkinson's disease (PD) using advanced experimental in vitro models is a powerful tool to study disease mechanisms and to elucidate unexplored aspects of this neurodegenerative disorder. Here, we demonstrate that three-dimensional (3D) differentiation of expandable midbrain floor plate neural progenitor cells (mfNPCs) leads to organoids that resemble key features of the human midbrain. These organoids are composed of midbrain dopaminergic neurons (mDANs), which produce and secrete dopamine. Midbrain-specific organoids derived from PD patients carrying the LRRK2-G2019S mutation recapitulate disease-relevant phenotypes. Automated high-content image analysis shows a decrease in the number and complexity of mDANs in LRRK2-G2019S compared to control organoids. The floor plate marker FOXA2, required for mDAN generation, increases in PD patient-derived midbrain organoids, suggesting a neurodevelopmental defect in mDANs expressing LRRK2-G2019S. Thus, we provide a robust method to reproducibly generate 3D human midbrain organoids containing mDANs to investigate PD-relevant patho-mechanisms.

14.
Stem Cell Reports ; 12(5): 878-889, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30982740

ABSTRACT

Emerging evidence suggests that Parkinson's disease (PD), besides being an age-associated disorder, might also have a neurodevelopment component. Disruption of mitochondrial homeostasis has been highlighted as a crucial cofactor in its etiology. Here, we show that PD patient-specific human neuroepithelial stem cells (NESCs), carrying the LRRK2-G2019S mutation, recapitulate key mitochondrial defects previously described only in differentiated dopaminergic neurons. By combining high-content imaging approaches, 3D image analysis, and functional mitochondrial readouts we show that LRRK2-G2019S mutation causes aberrations in mitochondrial morphology and functionality compared with isogenic controls. LRRK2-G2019S NESCs display an increased number of mitochondria compared with isogenic control lines. However, these mitochondria are more fragmented and exhibit decreased membrane potential. Functional alterations in LRRK2-G2019S cultures are also accompanied by a reduced mitophagic clearance via lysosomes. These findings support the hypothesis that preceding mitochondrial developmental defects contribute to the manifestation of the PD pathology later in life.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mitochondria/genetics , Mutation , Neural Stem Cells/metabolism , Parkinson Disease/genetics , Aged, 80 and over , Cell Differentiation/genetics , Dopaminergic Neurons/metabolism , Female , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Middle Aged , Mitochondria/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology
15.
Parkinsonism Relat Disord ; 67: 48-55, 2019 10.
Article in English | MEDLINE | ID: mdl-31621607

ABSTRACT

Parkinson's disease (PD) is a multifactorial disorder with complex etiology. The most prevalent PD associated mutation, LRRK2-G2019S is linked to familial and sporadic cases. Based on the multitude of genetic predispositions in PD and the incomplete penetrance of LRRK2-G2019S, we hypothesize that modifiers in the patients' genetic background act as susceptibility factors for developing PD. To assess LRRK2-G2019S modifiers, we used human induced pluripotent stem cell-derived neuroepithelial stem cells (NESCs). Isogenic controls distinguish between LRRK2-G2019S dependent and independent cellular phenotypes. LRRK2-G2019S patient and healthy mutagenized lines showed altered NESC self-renewal and viability, as well as impaired serine metabolism. In patient cells, phenotypes were only partly LRRK2-G2019S dependent, suggesting a significant contribution of the genetic background. In this context we identified the gene serine racemase (SRR) as a novel patient-specific, developmental, genetic modifier contributing to the aberrant phenotypes. Its enzymatic product, d-serine, rescued altered cellular phenotypes. Susceptibility factors in the genetic background, such as SRR, could be new targets for early PD diagnosis and treatment.


Subject(s)
Cell Self Renewal/genetics , Parkinson Disease/genetics , Racemases and Epimerases/genetics , Serine/metabolism , Case-Control Studies , Cell Line , Cell Survival/genetics , Genetic Predisposition to Disease , Humans , Induced Pluripotent Stem Cells , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Neural Stem Cells , Parkinson Disease/metabolism , Phenotype
16.
PLoS One ; 11(2): e0149050, 2016.
Article in English | MEDLINE | ID: mdl-26872335

ABSTRACT

Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels.


Subject(s)
Gene Regulatory Networks , Interferon Regulatory Factor-1/physiology , Proteins/physiology , Animals , Carboxy-Lyases , Gene Expression Regulation, Enzymologic , Humans , Leukocytes, Mononuclear/enzymology , Leukocytes, Mononuclear/immunology , Lipopolysaccharides/pharmacology , Macrophages/enzymology , Male , Mice , Mitochondria/metabolism , Protein Transport , RAW 264.7 Cells , Transcription, Genetic
17.
Curr Opin Biotechnol ; 34: 48-55, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25498477

ABSTRACT

Ecosystems and biological systems are known to be inherently complex and to exhibit nonlinear dynamics. Diseases such as microbiome dysregulation or depression can be seen as complex systems as well and were shown to exhibit patterns of nonlinearity in their response to perturbations. These nonlinearities can be revealed by a sudden shift in system states, for instance from health to disease. The identification and characterization of early warning signals which could predict upcoming critical transitions is of primordial interest as prevention of disease onset is a major aim in health care. In this review, we focus on recent evidence for critical transitions in diseases and discuss the potential of such studies for therapeutic applications.


Subject(s)
Ecosystem , Animals , Chronic Disease , Cross-Sectional Studies , Humans , Longitudinal Studies
18.
Ann Clin Transl Neurol ; 2(1): 67-73, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25642436

ABSTRACT

OBJECTIVE: Mitochondrial dysfunction is a hallmark of idiopathic Parkinson's disease (IPD), which has been reported not to be restricted to striatal neurons. However, studies that analyzed mitochondrial function at the level of selected enzymatic activities in peripheral tissues have produced conflicting data. We considered the electron transport chain as a complex system with mitochondrial membrane potential as an integrative indicator for mitochondrial fitness. METHODS: Twenty-five IPD patients (nine females; mean disease duration, 6.2 years) and 16 healthy age-matched controls (12 females) were recruited. Live platelets were purified using magnetic-activated cell sorting (MACS) and single-cell data on mitochondrial membrane potential (Δψ) were measured by cytometry and challenged with a protonophore agent. RESULTS: Functional mitochondrial membrane potential was detected in all participants. The challenge test reduced the membrane potential in all IPD patients and controls (P < 0.001). However, the response to the challenge was not significantly different between patients and controls. INTERPRETATION: While the reported protonophore challenge assay is a valid marker of overall mitochondrial function in live platelets, intact mitochondrial membrane potential in platelets derived from IPD patients suggests that presumed mitochondrial enzymatic deficiencies are compensable in this cell type. In consequence, mitochondrial membrane potential in platelets cannot be used as a diagnostic biomarker for nonstratified IPD but should be further explored in potential Parkinson's disease subtypes and tissues with higher energy demands.

19.
Mol Neurobiol ; 49(1): 88-102, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23832570

ABSTRACT

Parkinson's disease (PD) is a major neurodegenerative chronic disease, most likely caused by a complex interplay of genetic and environmental factors. Information on various aspects of PD pathogenesis is rapidly increasing and needs to be efficiently organized, so that the resulting data is available for exploration and analysis. Here we introduce a computationally tractable, comprehensive molecular interaction map of PD. This map integrates pathways implicated in PD pathogenesis such as synaptic and mitochondrial dysfunction, impaired protein degradation, alpha-synuclein pathobiology and neuroinflammation. We also present bioinformatics tools for the analysis, enrichment and annotation of the map, allowing the research community to open new avenues in PD research. The PD map is accessible at http://minerva.uni.lu/pd_map .


Subject(s)
Computational Biology/methods , Nerve Net/metabolism , Parkinson Disease/physiopathology , Proteolysis , Signal Transduction/physiology , Animals , Computational Biology/trends , Humans , Mesencephalon/metabolism , Mesencephalon/pathology , Mesencephalon/physiopathology , Nerve Net/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology
20.
FEBS J ; 280(23): 5981-93, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23663200

ABSTRACT

Since the discovery of dopamine as a neurotransmitter in the 1950s, Parkinson's disease (PD) research has generated a rich and complex body of knowledge, revealing PD to be an age-related multifactorial disease, influenced by both genetic and environmental factors. The tremendous complexity of the disease is increased by a nonlinear progression of the pathogenesis between molecular, cellular and organic systems. In this minireview, we explore the complexity of PD and propose a systems-based approach, organizing the available information around cellular disease hallmarks. We encourage our peers to adopt this cell-based view with the aim of improving communication in interdisciplinary research endeavors targeting the molecular events, modulatory cell-to-cell signaling pathways and emerging clinical phenotypes related to PD.


Subject(s)
Parkinson Disease/pathology , Signal Transduction , Systems Biology , Disease Progression , Humans , Parkinson Disease/metabolism , Parkinson Disease/therapy , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL