Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Cell ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38889727

ABSTRACT

How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland-a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization-most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation.

2.
Proc Natl Acad Sci U S A ; 121(27): e2312456121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917000

ABSTRACT

Controlling the principal African malaria vector, the mosquito Anopheles gambiae, is considered essential to curtail malaria transmission. However, existing vector control technologies rely on insecticides, which are becoming increasingly ineffective. Sterile insect technique (SIT) is a powerful suppression approach that has successfully eradicated a number of insect pests, yet the A. gambiae toolkit lacks the requisite technologies for its implementation. SIT relies on iterative mass releases of nonbiting, nondriving, sterile males which seek out and mate with monandrous wild females. Once mated, females are permanently sterilized due to mating-induced refractoriness, which results in population suppression of the subsequent generation. However, sterilization by traditional methods renders males unfit, making the creation of precise genetic sterilization methods imperative. Here, we introduce a vector control technology termed precision-guided sterile insect technique (pgSIT), in A. gambiae for inducible, programmed male sterilization and female elimination for wide-scale use in SIT campaigns. Using a binary CRISPR strategy, we cross separate engineered Cas9 and gRNA strains to disrupt male-fertility and female-essential genes, yielding >99.5% male sterility and >99.9% female lethality in hybrid progeny. We demonstrate that these genetically sterilized males have good longevity, are able to induce sustained population suppression in cage trials, and are predicted to eliminate wild A. gambiae populations using mathematical models, making them ideal candidates for release. This work provides a valuable addition to the malaria genetic biocontrol toolkit, enabling scalable SIT-like confinable, species-specific, and safe suppression in the species.


Subject(s)
Anopheles , Malaria , Mosquito Control , Mosquito Vectors , Animals , Male , Anopheles/genetics , Anopheles/physiology , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Malaria/transmission , Malaria/prevention & control , Female , Mosquito Control/methods , Infertility, Male/genetics , CRISPR-Cas Systems
3.
PLoS Genet ; 19(11): e1011065, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38011259

ABSTRACT

Only female mosquitoes consume blood giving them the opportunity to transmit deadly human pathogens. Therefore, it is critical to remove females before conducting releases for genetic biocontrol interventions. Here we describe a robust sex-sorting approach termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter) that exploits sex-specific alternative splicing of an innocuous reporter to ensure exclusive dominant male-specific expression. Using SEPARATOR, we demonstrate reliable sex selection from early larval and pupal stages in Aedes aegypti, and use a Complex Object Parametric Analyzer and Sorter (COPAS) to demonstrate scalable high-throughput sex-selection of first instar larvae. Additionally, we use this approach to sequence the transcriptomes of early larval males and females and find several genes that are sex-specifically expressed. SEPARATOR can simplify mass production of males for release programs and is designed to be cross-species portable and should be instrumental for genetic biocontrol interventions.


Subject(s)
Aedes , Alternative Splicing , Animals , Male , Female , Humans , Alternative Splicing/genetics , Aedes/genetics , Animals, Genetically Modified , Larva/genetics
4.
PLoS Pathog ; 19(1): e1010842, 2023 01.
Article in English | MEDLINE | ID: mdl-36656895

ABSTRACT

As a major insect vector of multiple arboviruses, Aedes aegypti poses a significant global health and economic burden. A number of genetic engineering tools have been exploited to understand its biology with the goal of reducing its impact. For example, current tools have focused on knocking-down RNA transcripts, inducing loss-of-function mutations, or expressing exogenous DNA. However, methods for transactivating endogenous genes have not been developed. To fill this void, here we developed a CRISPR activation (CRISPRa) system in Ae. aegypti to transactivate target gene expression. Gene expression is activated through pairing a catalytically-inactive ('dead') Cas9 (dCas9) with a highly-active tripartite activator, VP64-p65-Rta (VPR) and synthetic guide RNA (sgRNA) complementary to a user defined target-gene promoter region. As a proof of concept, we demonstrate that engineered Ae. aegypti mosquitoes harboring a binary CRISPRa system can be used to effectively overexpress two developmental genes, even-skipped (eve) and hedgehog (hh), resulting in observable morphological phenotypes. We also used this system to overexpress the positive transcriptional regulator of the Toll immune pathway known as AaRel1, which resulted in a significant suppression of dengue virus serotype 2 (DENV2) titers in the mosquito. This system provides a versatile tool for research pathways not previously possible in Ae. aegypti, such as programmed overexpression of endogenous genes, and may aid in gene characterization studies and the development of innovative vector control tools.


Subject(s)
Aedes , Animals , Humans , Hedgehog Proteins/metabolism , Mosquito Vectors/genetics , RNA/metabolism , Transcriptional Activation , CRISPR-Cas Systems
5.
Nature ; 563(7732): 501-507, 2018 11.
Article in English | MEDLINE | ID: mdl-30429615

ABSTRACT

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.


Subject(s)
Aedes/genetics , Arbovirus Infections/virology , Arboviruses , Genome, Insect/genetics , Genomics/standards , Insect Control , Mosquito Vectors/genetics , Mosquito Vectors/virology , Aedes/virology , Animals , Arbovirus Infections/transmission , Arboviruses/isolation & purification , DNA Copy Number Variations/genetics , Dengue Virus/isolation & purification , Female , Genetic Variation/genetics , Genetics, Population , Glutathione Transferase/genetics , Insecticide Resistance/drug effects , Male , Molecular Sequence Annotation , Multigene Family/genetics , Pyrethrins/pharmacology , Reference Standards , Sex Determination Processes/genetics
7.
PLoS Pathog ; 16(1): e1008103, 2020 01.
Article in English | MEDLINE | ID: mdl-31945137

ABSTRACT

With dengue virus (DENV) becoming endemic in tropical and subtropical regions worldwide, there is a pressing global demand for effective strategies to control the mosquitoes that spread this disease. Recent advances in genetic engineering technologies have made it possible to create mosquitoes with reduced vector competence, limiting their ability to acquire and transmit pathogens. Here we describe the development of Aedes aegypti mosquitoes synthetically engineered to impede vector competence to DENV. These mosquitoes express a gene encoding an engineered single-chain variable fragment derived from a broadly neutralizing DENV human monoclonal antibody and have significantly reduced viral infection, dissemination, and transmission rates for all four major antigenically distinct DENV serotypes. Importantly, this is the first engineered approach that targets all DENV serotypes, which is crucial for effective disease suppression. These results provide a compelling route for developing effective genetic-based DENV control strategies, which could be extended to curtail other arboviruses.


Subject(s)
Aedes/genetics , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Dengue Virus/immunology , Aedes/virology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/genetics , Broadly Neutralizing Antibodies/biosynthesis , Broadly Neutralizing Antibodies/genetics , Female , Humans , Male , Protein Engineering , Single-Chain Antibodies/genetics
8.
Proc Natl Acad Sci U S A ; 116(9): 3656-3661, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30723148

ABSTRACT

Recent Zika virus (ZIKV) outbreaks have highlighted the necessity for development of novel vector control strategies to combat arboviral transmission, including genetic versions of the sterile insect technique, artificial infection with Wolbachia to reduce population size and/or vectoring competency, and gene drive-based methods. Here, we describe the development of mosquitoes synthetically engineered to impede vector competence to ZIKV. We demonstrate that a polycistronic cluster of engineered synthetic small RNAs targeting ZIKV is expressed and fully processed in Aedes aegypti, ensuring the formation of mature synthetic small RNAs in the midgut where ZIKV resides in the early stages of infection. Critically, we demonstrate that engineered Ae. aegypti mosquitoes harboring the anti-ZIKV transgene have significantly reduced viral infection, dissemination, and transmission rates of ZIKV. Taken together, these compelling results provide a promising path forward for development of effective genetic-based ZIKV control strategies, which could potentially be extended to curtail other arboviruses.


Subject(s)
Mosquito Vectors/genetics , Zika Virus Infection/genetics , Zika Virus/genetics , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/virology , Disease Outbreaks , Humans , Mosquito Vectors/virology , Saliva/virology , Viral Load/genetics , Wolbachia/pathogenicity , Wolbachia/virology , Zika Virus/pathogenicity , Zika Virus Infection/transmission , Zika Virus Infection/virology
9.
Nature ; 515(7527): 355-64, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409824

ABSTRACT

The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.


Subject(s)
Genome/genetics , Genomics , Mice/genetics , Molecular Sequence Annotation , Animals , Cell Lineage/genetics , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence/genetics , DNA Replication/genetics , Deoxyribonuclease I/metabolism , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Genome-Wide Association Study , Humans , RNA/genetics , Regulatory Sequences, Nucleic Acid/genetics , Species Specificity , Transcription Factors/metabolism , Transcriptome/genetics
10.
Proc Natl Acad Sci U S A ; 113(36): 10097-102, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27551098

ABSTRACT

Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control.


Subject(s)
Gene Expression Regulation, Developmental , Metamorphosis, Biological/genetics , Polychaeta/genetics , Pseudoalteromonas/genetics , Symbiosis/genetics , p38 Mitogen-Activated Protein Kinases/genetics , Animals , Biofouling/prevention & control , Cilia/genetics , Cilia/immunology , Cilia/microbiology , Genome , Immunity, Innate , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/immunology , Metamorphosis, Biological/immunology , Polychaeta/growth & development , Polychaeta/immunology , Polychaeta/microbiology , Protein Kinase Inhibitors/pharmacology , Pseudoalteromonas/growth & development , Pseudoalteromonas/metabolism , RNA, Messenger/genetics , RNA, Messenger/immunology , Signal Transduction , Urochordata/genetics , Urochordata/growth & development , p38 Mitogen-Activated Protein Kinases/immunology
11.
Nature ; 489(7414): 101-8, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22955620

ABSTRACT

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.


Subject(s)
DNA/genetics , Encyclopedias as Topic , Genome, Human/genetics , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid/genetics , Transcription, Genetic/genetics , Transcriptome/genetics , Alleles , Cell Line , DNA, Intergenic/genetics , Enhancer Elements, Genetic , Exons/genetics , Gene Expression Profiling , Genes/genetics , Genomics , Humans , Polyadenylation/genetics , Protein Isoforms/genetics , RNA/biosynthesis , RNA/genetics , RNA Editing/genetics , RNA Splicing/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, RNA
12.
Genome Res ; 24(2): 281-90, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24389048

ABSTRACT

The neural crest is an embryonic stem cell population that gives rise to a multitude of derivatives. In particular, the cranial neural crest (CNC) is unique in its ability to contribute to both facial skeleton and peripheral ganglia. To gain further insight into the molecular underpinnings that distinguish the CNC from other embryonic tissues, we have utilized a CNC-specific enhancer as a tool to isolate a pure, region-specific NC subpopulation for transcriptional profiling. The resulting data set reveals previously unknown transcription factors and signaling pathways that may influence the CNC's ability to migrate and/or differentiate into unique derivatives. To elaborate on the CNC gene regulatory network, we evaluated the effects of knocking down known neural plate border genes and early neural crest specifier genes on selected neural crest-enriched transcripts. The results suggest that ETS1 and SOX9 may act as pan-neural crest regulators of the migratory CNC. Taken together, our analysis provides unprecedented characterization of the migratory CNC transcriptome and identifies new links in the gene regulatory network responsible for development of this critical cell population.


Subject(s)
Gene Regulatory Networks , Proto-Oncogene Protein c-ets-1/genetics , SOX9 Transcription Factor/genetics , Skull/growth & development , Animals , Chick Embryo , Embryonic Stem Cells , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genome , Neural Crest/growth & development , Proto-Oncogene Protein c-ets-1/metabolism , SOX9 Transcription Factor/metabolism , Signal Transduction/genetics
13.
Genome Res ; 22(10): 1920-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22539650

ABSTRACT

Nutrient availability profoundly influences gene expression. Many animal genes encode multiple transcript isoforms, yet the effect of nutrient availability on transcript isoform expression has not been studied in genome-wide fashion. When Caenorhabditis elegans larvae hatch without food, they arrest development in the first larval stage (L1 arrest). Starved larvae can survive L1 arrest for weeks, but growth and post-embryonic development are rapidly initiated in response to feeding. We used RNA-seq to characterize the transcriptome during L1 arrest and over time after feeding. Twenty-seven percent of detectable protein-coding genes were differentially expressed during recovery from L1 arrest, with the majority of changes initiating within the first hour, demonstrating widespread, acute effects of nutrient availability on gene expression. We used two independent approaches to track expression of individual exons and mRNA isoforms, and we connected changes in expression to functional consequences by mining a variety of databases. These two approaches identified an overlapping set of genes with alternative isoform expression, and they converged on common functional patterns. Genes affecting mRNA splicing and translation are regulated by alternative isoform expression, revealing post-transcriptional consequences of nutrient availability on gene regulation. We also found that phosphorylation sites are often alternatively expressed, revealing a common mode by which alternative isoform expression modifies protein function and signal transduction. Our results detail rich changes in C. elegans gene expression as larvae initiate growth and post-embryonic development, and they provide an excellent resource for ongoing investigation of transcriptional regulation and developmental physiology.


Subject(s)
Caenorhabditis elegans/genetics , Gene Expression Regulation, Developmental , RNA, Messenger/metabolism , 3' Untranslated Regions , Alternative Splicing , Animals , Caenorhabditis elegans/growth & development , Cluster Analysis , Exons , Gene Expression Profiling , Operon/genetics , RNA Isoforms/metabolism , Trans-Splicing , Transcriptome
14.
Nucleic Acids Res ; 41(4): 2769-78, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23303782

ABSTRACT

Zinc-finger nucleases (ZFNs) and TAL effector nucleases (TALENs) have been shown to induce targeted mutations, but they have not been extensively tested in any animal model. Here, we describe a large-scale comparison of ZFN and TALEN mutagenicity in zebrafish. Using deep sequencing, we found that TALENs are significantly more likely to be mutagenic and induce an average of 10-fold more mutations than ZFNs. We observed a strong correlation between somatic and germ-line mutagenicity, and identified germ line mutations using ZFNs whose somatic mutations rates are well below the commonly used threshold of 1%. Guidelines that have previously been proposed to predict optimal ZFN and TALEN target sites did not predict mutagenicity in vivo. However, we observed a significant negative correlation between TALEN mutagenicity and the number of CpG repeats in TALEN target sites, suggesting that target site methylation may explain the poor mutagenicity of some TALENs in vivo. The higher mutation rates and ability to target essentially any sequence make TALENs the superior technology for targeted mutagenesis in zebrafish, and likely other animal models.


Subject(s)
Deoxyribonucleases/metabolism , Mutagenesis , Zinc Fingers , Animals , CpG Islands , Germ-Line Mutation , INDEL Mutation , Mutation , Zebrafish/embryology , Zebrafish/genetics
15.
Circulation ; 127(19): 1957-67, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23589024

ABSTRACT

BACKGROUND: Mitochondria are key players in the development and progression of heart failure (HF). Mitochondrial (mt) dysfunction leads to diminished energy production and increased cell death contributing to the progression of left ventricular failure. The fundamental mechanisms that underlie mt dysfunction in HF have not been fully elucidated. METHODS AND RESULTS: To characterize mt morphology, biogenesis, and genomic integrity in human HF, we investigated left ventricular tissue from nonfailing hearts and end-stage ischemic (ICM) or dilated (DCM) cardiomyopathic hearts. Although mt dysfunction was present in both types of cardiomyopathy, mt were smaller and increased in number in DCM compared with ICM or nonfailing hearts. mt volume density and mtDNA copy number was increased by ≈2-fold (P<0.001) in DCM hearts in comparison with ICM hearts. These changes were accompanied by an increase in the expression of mtDNA-encoded genes in DCM versus no change in ICM. mtDNA repair and antioxidant genes were reduced in failing hearts, suggestive of a defective repair and protection system, which may account for the 4.1-fold increase in mtDNA deletion mutations in DCM (P<0.05 versus nonfailing hearts, P<0.05 versus ICM). CONCLUSIONS: In DCM, mt dysfunction is associated with mtDNA damage and deletions, which could be a consequence of mutating stress coupled with a peroxisome proliferator-activated receptor γ coactivator 1α-dependent stimulus for mt biogenesis. However, this maladaptive compensatory response contributes to additional oxidative damage. Thus, our findings support further investigations into novel mechanisms and therapeutic strategies for mt dysfunction in DCM.


Subject(s)
Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Mitochondrial Turnover/physiology , Adult , Aged , Aged, 80 and over , Cardiomyopathies/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Female , Heart Transplantation/pathology , Heart Transplantation/physiology , Humans , Male , Middle Aged
16.
bioRxiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-37873352

ABSTRACT

Gene drive elements promote the spread of linked traits, even when their presence confers a fitness cost to carriers, and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs (the Cleaver/Toxin) that disrupts endogenous versions of an essential gene, and a recoded version of the essential gene resistant to cleavage (the Rescue/Antidote). ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. We demonstrate the essential features of ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61, whose expression is required in male and female gametes for their survival. Resistant (uncleavable but functional) alleles, which can slow or prevent drive, were not observed. Modeling shows plant ClvRs are likely to be robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications in plant breeding, weed control, and conservation are discussed.

17.
Nat Plants ; 10(6): 936-953, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38886522

ABSTRACT

Gene drive elements promote the spread of linked traits and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Here we demonstrate the essential features of the ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61. Resistant alleles, which can slow or prevent drive, were not observed. Modelling shows plant ClvRs are robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications are discussed.


Subject(s)
Arabidopsis , Gene Drive Technology , Arabidopsis/genetics , Gene Drive Technology/methods , Germ Cells, Plant , Genes, Plant , CRISPR-Cas Systems , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Alleles
18.
Elife ; 122024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289340

ABSTRACT

Each year, hundreds of millions of people are infected with arboviruses such as dengue, yellow fever, chikungunya, and Zika, which are all primarily spread by the notorious mosquito Aedes aegypti. Traditional control measures have proven insufficient, necessitating innovations. In response, here we generate a next-generation CRISPR-based precision-guided sterile insect technique (pgSIT) for Ae. aegypti that disrupts genes essential for sex determination and fertility, producing predominantly sterile males that can be deployed at any life stage. Using mathematical models and empirical testing, we demonstrate that released pgSIT males can effectively compete with, suppress, and eliminate caged mosquito populations. This versatile species-specific platform has the potential for field deployment to effectively control wild populations of disease vectors.


Subject(s)
Aedes , Infertility, Male , Zika Virus Infection , Zika Virus , Humans , Male , Animals , Mosquito Vectors/genetics , Aedes/genetics , Disease Vectors , Species Specificity , Zika Virus Infection/prevention & control
19.
Genome Res ; 20(12): 1740-7, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20980554

ABSTRACT

Efficient sequencing of animal and plant genomes by next-generation technology should allow many neglected organisms of biological and medical importance to be better understood. As a test case, we have assembled a draft genome of Caenorhabditis sp. 3 PS1010 through a combination of direct sequencing and scaffolding with RNA-seq. We first sequenced genomic DNA and mixed-stage cDNA using paired 75-nt reads from an Illumina GAII. A set of 230 million genomic reads yielded an 80-Mb assembly, with a supercontig N50 of 5.0 kb, covering 90% of 429 kb from previously published genomic contigs. Mixed-stage poly(A)(+) cDNA gave 47.3 million mappable 75-mers (including 5.1 million spliced reads), which separately assembled into 17.8 Mb of cDNA, with an N50 of 1.06 kb. By further scaffolding our genomic supercontigs with cDNA, we increased their N50 to 9.4 kb, nearly double the average gene size in C. elegans. We predicted 22,851 protein-coding genes, and detected expression in 78% of them. Multigenome alignment and data filtering identified 2672 DNA elements conserved between PS1010 and C. elegans that are likely to encode regulatory sequences or previously unknown ncRNAs. Genomic and cDNA sequencing followed by joint assembly is a rapid and useful strategy for biological analysis.


Subject(s)
Caenorhabditis/genetics , Genome/genetics , Genomics/methods , Sequence Analysis, DNA/methods , Software , Animals , Base Sequence , Conserved Sequence/genetics , DNA, Complementary/genetics , Molecular Sequence Data , Phylogeny , Sequence Alignment
20.
bioRxiv ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37398094

ABSTRACT

Only female mosquitoes consume blood and transmit deadly human pathogens. Therefore, it is critical to remove females before conducting releases for genetic biocontrol interventions. Here we describe a robust sex-sorting approach termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter) that exploits sex-specific alternative splicing of an innocuous reporter to ensure exclusive dominant male-specific expression. Using SEPARATOR, we demonstrate reliable sex selection from larval and pupal stages in Aedes aegypti, and use a Complex Object Parametric Analyzer and Sorter (COPAS®) to demonstrate scalable high-throughput sex-selection of first instar larvae. Additionally, we use this approach to sequence the transcriptomes of early larval males and females and find several genes that are sex-specifically expressed in males. SEPARATOR can simplify mass production of males for release programs and is designed to be cross-species portable and should be instrumental for genetic biocontrol interventions.

SELECTION OF CITATIONS
SEARCH DETAIL