Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Mol Genet ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38743908

ABSTRACT

Generalized lymphatic anomaly (GLA) and kaposiform lymphangiomatosis (KLA) are rare congenital disorders that arise through anomalous embryogenesis of the lymphatic system. A somatic activating NRAS p.Q61R variant has been recently detected in GLA and KLA tissues, suggesting that the NRAS p.Q61R variant plays an important role in the development of these diseases. To address this role, we studied the effect of the NRAS p.Q61R variant in lymphatic endothelial cells (LECs) on the structure of the lymphatics during embryonic and postnatal lymphangiogenesis applying inducible, LEC-specific NRAS p.Q61R variant in mice. Lox-stop-Lox NrasQ61R mice were crossed with Prox1-CreERT2 mice expressing tamoxifen-inducible Cre recombinase specifically in LECs. Whole-mount immunostaining of embryonic back skin using an antibody against the LEC surface marker VEGFR3 showed considerably greater lymphatic vessel width in LEC-specific NRAS p.Q61R mutant embryos than in littermate controls. These mutant embryos also showed a significant reduction in the number of lymphatic vessel branches. Furthermore, immunofluorescence staining of whole-mount embryonic back skin using an antibody against the LEC-specific nuclear marker Prox1 showed a large increase in the number of LECs in LEC-specific NRAS p.Q61R mutants. In contrast, postnatal induction of the NRAS p.Q61R variant in LECs did not cause abnormal lymphatic vessel morphogenesis. These results suggest that the NRAS p.Q61R variant in LECs plays a role in development of lymphatic anomalies. While this model does not directly reflect the human pathology of GLA and KLA, there are overlapping features, suggesting that further study of this model may help in studying GLA and KLA mechanisms.

2.
Am J Hum Genet ; 110(7): 1086-1097, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37339631

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of motor neurons. Although repeat expansion in C9orf72 is its most common cause, the pathogenesis of ALS isn't fully clear. In this study, we show that repeat expansion in LRP12, a causative variant of oculopharyngodistal myopathy type 1 (OPDM1), is a cause of ALS. We identify CGG repeat expansion in LRP12 in five families and two simplex individuals. These ALS individuals (LRP12-ALS) have 61-100 repeats, which contrasts with most OPDM individuals with repeat expansion in LRP12 (LRP12-OPDM), who have 100-200 repeats. Phosphorylated TDP-43 is present in the cytoplasm of iPS cell-derived motor neurons (iPSMNs) in LRP12-ALS, a finding that reproduces the pathological hallmark of ALS. RNA foci are more prominent in muscle and iPSMNs in LRP12-ALS than in LRP12-OPDM. Muscleblind-like 1 aggregates are observed only in OPDM muscle. In conclusion, CGG repeat expansions in LRP12 cause ALS and OPDM, depending on the length of the repeat. Our findings provide insight into the repeat length-dependent switching of phenotypes.


Subject(s)
Amyotrophic Lateral Sclerosis , Muscular Dystrophies , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Motor Neurons/pathology , Muscular Dystrophies/genetics , Neurodegenerative Diseases/genetics , C9orf72 Protein/genetics , DNA Repeat Expansion , Low Density Lipoprotein Receptor-Related Protein-1/genetics
3.
Mol Cell ; 68(4): 645-658.e5, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29149593

ABSTRACT

Hajdu-Cheney syndrome (HCS), a rare autosomal disorder caused by heterozygous mutations in NOTCH2, is clinically characterized by acro-osteolysis, severe osteoporosis, short stature, neurological symptoms, cardiovascular defects, and polycystic kidneys. Recent studies identified that aberrant NOTCH2 signaling and consequent osteoclast hyperactivity are closely associated with the bone-related disorder pathogenesis, but the exact molecular mechanisms remain unclear. Here, we demonstrate that sustained osteoclast activity is largely due to accumulation of NOTCH2 carrying a truncated C terminus that escapes FBW7-mediated ubiquitination and degradation. Mice with osteoclast-specific Fbw7 ablation revealed osteoporotic phenotypes reminiscent of HCS, due to elevated Notch2 signaling. Importantly, administration of Notch inhibitors in Fbw7 conditional knockout mice alleviated progressive bone resorption. These findings highlight the molecular basis of HCS pathogenesis and provide clinical insights into potential targeted therapeutic strategies for skeletal disorders associated with the aberrant FBW7/NOTCH2 pathway as observed in patients with HCS.


Subject(s)
F-Box-WD Repeat-Containing Protein 7 , Hajdu-Cheney Syndrome , Mutation , Osteoporosis , Proteolysis , Receptor, Notch2 , Animals , Cell Line , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Hajdu-Cheney Syndrome/genetics , Hajdu-Cheney Syndrome/metabolism , Mice, Knockout , Osteoporosis/genetics , Osteoporosis/metabolism , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Ubiquitination/genetics
4.
Cerebellum ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421477

ABSTRACT

This report describes an adult case of Poretti-Boltshauser syndrome (PTBHS) and with novel variants of LAMA1. A 65-year-old Japanese woman with cerebellar malformation identified during a medical checkup was referred to our hospital. Subsequently, neurological examination, brain imaging, and genetic investigation via whole-exome sequencing were performed. The patient presented with mild cerebellar ataxia and intellectual disability. Magnetic resonance imaging revealed cerebellar dysplasia and cysts and an absence of molar tooth sign. Genetic analysis revealed a novel homozygous variant of c.1711_1712del in LAMA1 (NM_005559.4). Most cases with PTBHS are reported in pediatric patients; however, our patient expressed a mild phenotype and was undiagnosed until her 60 s. These findings suggest that PTBHS should be considered in not only pediatric cerebellar dysplasia but also adult cerebellar ataxia with mild presentation.

5.
Cerebellum ; 23(4): 1498-1508, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38324175

ABSTRACT

Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is an autosomal recessive multisystem neurologic disorder caused by biallelic intronic repeats in RFC1. Although the phenotype of CANVAS has been expanding via diagnostic case accumulation, there are scant pedigree analyses to reveal disease penetrance, intergenerational fluctuations in repeat length, or clinical phenomena (including heterozygous carriers). We identified biallelic RFC1 ACAGG expansions of 1000 ~ repeats in three affected siblings having sensorimotor neuronopathy with spinocerebellar atrophy initially presenting with painful muscle cramps and paroxysmal dry cough. They exhibit almost homogeneous clinical and histopathological features, indicating motor neuronopathy. Over 10 years of follow-up, painful intractable muscle cramps ascended from legs to trunks and hands, followed by amyotrophy and subsequent leg pyramidal signs. The disease course combined with the electrophysical and imagery data suggest initial and prolonged hyperexcitability and the ensuing spinal motor neuron loss, which may progress from the lumbar to the rostral anterior horns and later expand to the corticospinal tract. Genetically, heterozygous ACAGG expansions of similar length were transmitted in unaffected family members of three successive generations, and some of them experienced muscle cramps. Leukocyte telomere length assays revealed comparatively shorter telomeres in affected individuals. This comprehensive pedigree analysis demonstrated a non-anticipating ACAGG transmission and high penetrance of manifestations with a biallelic state, especially motor neuronopathy in which muscle cramps serve as a prodromal and disease progress marker. CANVAS and RFC1 spectrum disorder should be considered when diagnosing lower dominant motor neuron disease, idiopathic muscle cramps, or neuromuscular hyperexcitability syndromes.


Subject(s)
Muscle Cramp , Pedigree , Replication Protein C , Humans , Muscle Cramp/genetics , Male , Female , Replication Protein C/genetics , Adult , Middle Aged , Japan , Motor Neuron Disease/genetics , Bilateral Vestibulopathy/genetics , Spinocerebellar Ataxias/genetics , DNA Repeat Expansion/genetics , East Asian People
6.
J Hum Genet ; 68(1): 51-54, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36167772

ABSTRACT

ANO3 encodes Anoctamin-3, also known as TMEM16C, a calcium-activated chloride channel. Heterozygous variants of ANO3 can cause dystonia 24, an adult-onset focal dystonia. Some pediatric cases have been reported, but most patients were intellectually normal with some exceptions. Here, we report a two-year-old girl who showed mild to moderate developmental delay, tremor, and ataxic gait, but no obvious dystonia. Trio exome sequencing identified a heterozygous de novo missense variant NM_031418.4:c.1809T>G, p.(Asn603Lys) in the ANO3 gene. Three cases with ANO3 variants and intellectual disability have been reported, including the present case. These variants were predicted to face in the same direction on the same alpha-helix (the transmembrane 4 domain), suggesting an association between these variants and childhood-onset movement disorder with intellectual disability. In pediatric cases with developmental delay and movement disorders such as tremor and ataxia, specific variants in the transmembrane 4 domain of ANO3 may be a cause, even in the absence of dystonia.


Subject(s)
Dystonia , Intellectual Disability , Child, Preschool , Female , Humans , Anoctamins/genetics , Chloride Channels/genetics , Developmental Disabilities/genetics , Dystonia/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Tremor
7.
J Hum Genet ; 68(6): 399-408, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36804482

ABSTRACT

Cancer treatment is increasingly evolving toward personalized medicine, which sequences numerous cancer-related genes and identifies therapeutic targets. On the other hand, patients with germline pathogenic variants (GPV) have been identified as secondary findings (SF) and oncologists have been urged to handle them. All SF disclosure considerations for patients are addressed and decided at the molecular tumor boards (MTB) in the facility. In this study, we retrospectively summarized the results of all cases in which comprehensive genomic profiling (CGP) test was conducted at our hospital, and discussed the possibility of presumed germline pathogenic variants (PGPV) at MTB. MTB recommended confirmatory testing for 64 patients. Informed consent was obtained from attending physicians for 53 of them, 30 patients requested testing, and 17 patients tested positive for a confirmatory test. Together with already known variants, 4.5 % of the total confirmed in this cohort. Variants verified in this study were BRCA1 (n = 12), BRCA2 (n = 6), MSH2 (n = 2), MSH6 (n = 2), WT1 (n = 2), TP53, MEN1, CHEK2, MLH1, TSC2, PTEN, RB1, and SMARCB1. There was no difference in the tumor's VAF between confirmed positive and negative cases for variants determined as PGPV by MTB. Current results demonstrate the actual number of cases until confirmatory germline test for patients with PGPV from tumor-only CGP test through the discussion at the MTB. The practical results at this single facility will serve as a guide for the management of the selection and distribution of SF in the genome analysis.


Subject(s)
Germ-Line Mutation , Neoplasms , Humans , Retrospective Studies , Germ-Line Mutation/genetics , Neoplasms/diagnosis , Neoplasms/genetics , Genes, BRCA2 , Genomics
8.
J Med Virol ; 95(4): e28696, 2023 04.
Article in English | MEDLINE | ID: mdl-36951317

ABSTRACT

To investigate the antigenic changes in parechovirus 1 (PeVA1), seroepidemiological analyses were performed against the Harris strain (Harris), isolated in 1956, and PeVA1/Yamagata.JPN/2021-4785, isolated in 2021, using immune sera and 207 and 237 human serum specimens collected in 2021 and 1976, respectively. Although rabbit immune sera showed the highest neutralization antibody (NT-Ab) titers against the immunized viruses at 1:12 800-1:102 400, they were cross-reactive at 1:400-1:800. All 62 Yamagata isolates obtained between 2001 and 2021 (Yamagata strains), belonging to phylogenetic lineage 1B, reacted more strongly (mostly 4-64 times) to antiserum against PeVA1/Yamagata.JPN/2021-4785 than to antiserum against Harris, belonging to phylogenetic lineage 1 A. Human serum specimens obtained in 2021 showed higher NT-Ab titers against PeVA1/Yamagata.JPN/2021-4785, whereas those obtained in 1976 had similar NT-Ab titers against both strains. These findings suggested that Yamagata strains and Harris were antigenically cross-reactive, although there were differences. There are still high NT-Abs titers present against Harris in 2021 in particular, indicating that PeVA1 has been in circulation with high immunity in the population. In conclusion, this study suggested that PeVA1 has been endemically perpetuated with only minor antigenic changes as well as with high immunity over several decades in the community.


Subject(s)
Influenza, Human , Parechovirus , Viruses , Animals , Humans , Rabbits , Japan/epidemiology , Phylogeny , Immune Sera , Influenza, Human/epidemiology
9.
J Med Genet ; 2022 May 09.
Article in English | MEDLINE | ID: mdl-35534205

ABSTRACT

BACKGROUND: DNA replisome is a molecular complex that plays indispensable roles in normal DNA replication. IMAGE-I syndrome is a DNA replisome-associated genetic disease caused by biallelic mutations in the gene encoding DNA polymerase epsilon catalytic subunit 1 (POLE). However, the underlying molecular mechanisms remain largely unresolved. METHODS: The clinical manifestations in two patients with IMAGE-I syndrome were characterised. Whole-exome sequencing was performed and altered mRNA splicing and protein levels of POLE were determined. Subcellular localisation, cell cycle analysis and DNA replication stress were assessed using fibroblasts and peripheral blood from the patients and transfected cell lines to determine the functional significance of POLE mutations. RESULTS: Both patients presented with growth retardation, adrenal insufficiency, immunodeficiency and complicated diffuse large B-cell lymphoma. We identified three novel POLE mutations: namely, a deep intronic mutation, c.1226+234G>A, common in both patients, and missense (c.2593T>G) and in-frame deletion (c.711_713del) mutations in each patient. The unique deep intronic mutation produced aberrantly spliced mRNAs. All mutants showed significantly reduced, but not null, protein levels. Notably, the mutants showed severely diminished nuclear localisation, which was rescued by proteasome inhibitor treatment. Functional analysis revealed impairment of cell cycle progression and increase in the expression of phospho-H2A histone family member X in both patients. CONCLUSION: These findings provide new insights regarding the mechanism via which POLE mutants are highly susceptible to proteasome-dependent degradation in the nucleus, resulting in impaired DNA replication and cell cycle progression, a characteristic of DNA replisome-associated diseases.

10.
J Med Genet ; 59(9): 865-877, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34815299

ABSTRACT

BACKGROUND: Musculocontractural Ehlers-Danlos syndrome is caused by biallelic loss-of-function variants in CHST14 (mcEDS-CHST14) or DSE (mcEDS-DSE). Although 48 patients in 33 families with mcEDS-CHST14 have been reported, the spectrum of pathogenic variants, accurate prevalence of various manifestations and detailed natural history have not been systematically investigated. METHODS: We collected detailed and comprehensive clinical and molecular information regarding previously reported and newly identified patients with mcEDS-CHST14 through international collaborations. RESULTS: Sixty-six patients in 48 families (33 males/females; 0-59 years), including 18 newly reported patients, were evaluated. Japanese was the predominant ethnicity (27 families), associated with three recurrent variants. No apparent genotype-phenotype correlation was noted. Specific craniofacial (large fontanelle with delayed closure, downslanting palpebral fissures and hypertelorism), skeletal (characteristic finger morphologies, joint hypermobility, multiple congenital contractures, progressive talipes deformities and recurrent joint dislocation), cutaneous (hyperextensibility, fine/acrogeria-like/wrinkling palmar creases and bruisability) and ocular (refractive errors) features were observed in most patients (>90%). Large subcutaneous haematomas, constipation, cryptorchidism, hypotonia and motor developmental delay were also common (>80%). Median ages at the initial episode of dislocation or large subcutaneous haematoma were both 6 years. Nine patients died; their median age was 12 years. Several features, including joint and skin characteristics (hypermobility/extensibility and fragility), were significantly more frequent in patients with mcEDS-CHST14 than in eight reported patients with mcEDS-DSE. CONCLUSION: This first international collaborative study of mcEDS-CHST14 demonstrated that the subtype represents a multisystem disorder with unique set of clinical phenotypes consisting of multiple malformations and progressive fragility-related manifestations; these require lifelong, multidisciplinary healthcare approaches.


Subject(s)
Abnormalities, Multiple , Ehlers-Danlos Syndrome , Abnormalities, Multiple/genetics , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Female , Genetic Association Studies , Humans , Male , Phenotype , Sulfotransferases/genetics
11.
PLoS Genet ; 16(2): e1008628, 2020 02.
Article in English | MEDLINE | ID: mdl-32101538

ABSTRACT

Skin lesions, cataracts, and congenital anomalies have been frequently associated with inherited deficiencies in enzymes that synthesize cholesterol. Lanosterol synthase (LSS) converts (S)-2,3-epoxysqualene to lanosterol in the cholesterol biosynthesis pathway. Biallelic mutations in LSS have been reported in families with congenital cataracts and, very recently, have been reported in cases of hypotrichosis. However, it remains to be clarified whether these phenotypes are caused by LSS enzymatic deficiencies in each tissue, and disruption of LSS enzymatic activity in vivo has not yet been validated. We identified two patients with novel biallelic LSS mutations who exhibited congenital hypotrichosis and midline anomalies but did not have cataracts. We showed that the blockade of the LSS enzyme reaction occurred in the patients by measuring the (S)-2,3-epoxysqualene/lanosterol ratio in the forehead sebum, which would be a good biomarker for the diagnosis of LSS deficiency. Epidermis-specific Lss knockout mice showed neonatal lethality due to dehydration, indicating that LSS could be involved in skin barrier integrity. Tamoxifen-induced knockout of Lss in the epidermis caused hypotrichosis in adult mice. Lens-specific Lss knockout mice had cataracts. These results confirmed that LSS deficiency causes hypotrichosis and cataracts due to loss-of-function mutations in LSS in each tissue. These mouse models will lead to the elucidation of the pathophysiological mechanisms associated with disrupted LSS and to the development of therapeutic treatments for LSS deficiency.


Subject(s)
Cataract/genetics , Epidermis/pathology , Hypotrichosis/genetics , Intramolecular Transferases/genetics , Lens, Crystalline/pathology , Adolescent , Animals , Cataract/congenital , Cataract/pathology , Cholesterol/metabolism , DNA Mutational Analysis , Disease Models, Animal , Epidermis/enzymology , Holistic Health , Humans , Hypotrichosis/congenital , Hypotrichosis/pathology , Intramolecular Transferases/metabolism , Lanosterol/analysis , Lanosterol/metabolism , Lens, Crystalline/enzymology , Male , Mice , Mice, Knockout , Mutation , Pedigree , Sebum/chemistry , Exome Sequencing
12.
Cardiol Young ; 33(4): 564-569, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35475426

ABSTRACT

BACKGROUND: Cardiovascular disease is one of the most important problems in long-term follow-up for Noonan syndrome. We examined cardiovascular issues and clinical manifestations, with a focus on the cardiovascular disease and prognosis of patients with Noonan syndrome. METHODS: This single-centre study evaluated patients who were clinically and genetically diagnosed with Noonan syndrome. RESULTS: Forty-three patients diagnosed with Noonan syndrome were analysed. The most prevalent responsible mutation was found in PTPN11 (25/43). The second and third most prevalent causative genes were SOS1 (6/43) and RIT1 (5/43), respectively, and 67.4% of genetically diagnosed patients with Noonan syndrome had structural cardiovascular abnormalities. Pulmonary valve stenosis was prevalent in patients with mutations in PTPN11 (8/25), SOS1 (4/6), and RIT1 (4/5). Hypertrophic cardiomyopathy was found in two of three patients with mutations in RAF1. There was no difference in the cardiovascular events or cardiovascular disease prevalence in patients with or without PTPN11 mutations. The proportion of RIT1 mutation-positive patients who underwent intervention due to cardiovascular disease was significantly higher than that of patients with PTPN11 mutations. Patients who underwent any intervention for pulmonary valve stenosis exhibited significantly higher pulmonary flow velocity than patients who did not undergo intervention, when they visited our hospital for the first time. All patients who underwent intervention for pulmonary valve stenosis had a pulmonary flow velocity of more than 3.0 m/s at first visit. CONCLUSIONS: These findings suggest that genetic information can provide a clinical prognosis for cardiovascular disease and may be part of genotype-based follow-up in Noonan syndrome.


Subject(s)
Cardiomyopathy, Hypertrophic , Noonan Syndrome , Pulmonary Valve Stenosis , Humans , Cardiomyopathy, Hypertrophic/genetics , East Asian People , Genotype , Mutation , Noonan Syndrome/complications , Noonan Syndrome/genetics , Pulmonary Valve Stenosis/epidemiology , Pulmonary Valve Stenosis/genetics
13.
Hum Mutat ; 43(1): 3-15, 2022 01.
Article in English | MEDLINE | ID: mdl-34618388

ABSTRACT

Costello syndrome (CS) is an autosomal-dominant disorder characterized by distinctive facial features, hypertrophic cardiomyopathy, skeletal abnormalities, intellectual disability, and predisposition to cancers. Germline variants in HRAS have been identified in patients with CS. Intragenic HRAS duplications have been reported in three patients with a milder phenotype of CS. In this study, we identified two known HRAS variants, p.(Glu63_Asp69dup), p.(Glu62_Arg68dup), and one novel HRAS variant, p.(Ile55_Asp57dup), in patients with CS, including a patient with craniosynostosis. These intragenic duplications are located in the G3 domain and the switch II region. Cells expressing cDNA with these three intragenic duplications showed an increase in ELK-1 transactivation. Injection of wild-type or mutant HRAS mRNAs with intragenic duplications in zebrafish embryos showed significant elongation of the yolk at 11 h postfertilization, which was improved by MEK inhibitor treatment, and a variety of developmental abnormalities at 3 days post fertilization was observed. These results indicate that small in-frame duplications affecting the G3 domain and switch II region of HRAS increase the activation of the ERK pathway, resulting in developmental abnormalities in zebrafish or patients with CS.


Subject(s)
Abnormalities, Multiple , Costello Syndrome , Abnormalities, Multiple/genetics , Animals , Costello Syndrome/genetics , Humans , MAP Kinase Signaling System , Phenotype , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Zebrafish/genetics
14.
Am J Med Genet C Semin Med Genet ; 190(4): 425-439, 2022 12.
Article in English | MEDLINE | ID: mdl-36394128

ABSTRACT

Enhanced signaling through RAS and the mitogen-associated protein kinase (MAPK) cascade underlies the RASopathies, a family of clinically related disorders affecting development and growth. In RASopathies, increased RAS-MAPK signaling can result from the upregulated activity of various RAS GTPases, enhanced function of proteins positively controlling RAS function or favoring the efficient transmission of RAS signaling to downstream transducers, functional upregulation of RAS effectors belonging to the MAPK cascade, or inefficient signaling switch-off operated by feedback mechanisms acting at different levels. The massive effort in RASopathy gene discovery performed in the last 20 years has identified more than 20 genes implicated in these disorders. It has also facilitated the characterization of several molecular activating mechanisms that had remained unappreciated due to their minor impact in oncogenesis. Here, we provide an overview on the discoveries collected during the last 5 years that have delivered unexpected insights (e.g., Noonan syndrome as a recessive disease) and allowed to profile new RASopathies, novel disease genes and new molecular circuits contributing to the control of RAS-MAPK signaling.


Subject(s)
Noonan Syndrome , Signal Transduction , ras Proteins , Humans , Noonan Syndrome/genetics , ras Proteins/genetics , Signal Transduction/genetics
15.
Am J Hum Genet ; 104(6): 1233-1240, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31130285

ABSTRACT

Noonan syndrome (NS) is characterized by distinctive craniofacial appearance, short stature, and congenital heart disease. Approximately 80% of individuals with NS harbor mutations in genes whose products are involved in the RAS/mitogen-activating protein kinase (MAPK) pathway. However, the underlying genetic causes in nearly 20% of individuals with NS phenotype remain unexplained. Here, we report four de novo RRAS2 variants in three individuals with NS. RRAS2 is a member of the RAS subfamily and is ubiquitously expressed. Three variants, c.70_78dup (p.Gly24_Gly26dup), c.216A>T (p.Gln72His), and c.215A>T (p.Gln72Leu), have been found in cancers; our functional analyses showed that these three changes induced elevated association of RAF1 and that they activated ERK1/2 and ELK1. Notably, prominent activation of ERK1/2 and ELK1 by p.Gln72Leu associates with the severe phenotype of the individual harboring this change. To examine variant pathogenicity in vivo, we generated zebrafish models. Larvae overexpressing c.70_78dup (p.Gly24_Gly26dup) or c.216A>T (p.Gln72His) variants, but not wild-type RRAS2 RNAs, showed craniofacial defects and macrocephaly. The same dose injection of mRNA encoding c.215A>T (p.Gln72Leu) caused severe developmental impairments and low dose overexpression of this variant induced craniofacial defects. In contrast, the RRAS2 c.224T>G (p.Phe75Cys) change, located on the same allele with p.Gln72His in an individual with NS, resulted in no aberrant in vitro or in vivo phenotypes by itself. Together, our findings suggest that activating RRAS2 mutations can cause NS and expand the involvement of RRAS2 proto-oncogene to rare germline disorders.


Subject(s)
Gain of Function Mutation , Germ-Line Mutation , Membrane Proteins/genetics , Monomeric GTP-Binding Proteins/genetics , Noonan Syndrome/etiology , Zebrafish/growth & development , Amino Acid Sequence , Animals , Child , Child, Preschool , Exome , Female , Humans , Male , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/metabolism , Noonan Syndrome/pathology , Phenotype , Protein Conformation , Proto-Oncogene Mas , Sequence Homology , Zebrafish/genetics , Zebrafish/metabolism
16.
J Hum Genet ; 67(10): 557-563, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35322199

ABSTRACT

In June 2019, the Japanese National Health Insurance (NHI) system introduced coverage for two types of tumor genomic profiling (TGP): FoundationOneⓇ CDx (F1) and OncoGuide™ NCC OncoPanel System (NCCOP). TGP sometimes reveals germline variants that are potentially pathogenic as secondary findings (SFs). We conducted a questionnaire-based survey to find out the operational statuses of F1 and NCCOP at institutions where TGP was performed to elucidate issues related to SFs. Responses were received from 97 of 112 institutions (86.6%). As of May 31, 2020, 88 (90.7%) and 78 (80.4%) institutions started performing F1 and NCCOP, respectively. Since F1 only examines tumor samples, germline confirmatory testing is necessary to determine whether they are actually germline pathogenic variants (GPVs). When physicians are obtaining informed consent all but 2.3% of the patients requested SF disclosure. Conversely, when presumed germline pathogenic variants (PGPVs) were detected, 46.2% were not willing to receive confirmatory tests as they wanted to prioritize cancer treatment over SFs investigation, while only 23.3% underwent confirmatory tests. Problems in cancer genomic medicine reported by clinical genetics departments included short-staffing (n = 10), insufficient interdepartmental cooperation (n = 9), inconsistent understanding of genetics among healthcare professionals (n = 8), and low utilization rate of SFs due to lack of insurance coverage for confirmatory tests and post-test health checkups (n = 8). Solutions include; determining the appropriate timing to confirm patient intent on SF disclosure, covering confirmatory tests for PGPVs by the NHI, and establishing cooperation between the oncology and clinical genetics departments.


Subject(s)
Insurance , Neoplasms , Genomics , Humans , Japan/epidemiology , Neoplasms/diagnosis , Neoplasms/genetics , Surveys and Questionnaires
17.
J Hum Genet ; 67(12): 721-728, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36171295

ABSTRACT

Recent studies have shown that the PI3K signaling pathway plays an important role in the pathogenesis of slow-flow vascular malformations (SFVMs). Analysis of genetic mutations has advanced our understanding of the mechanisms involved in SFVM pathogenesis and may identify new therapeutic targets. We screened for somatic variants in a cohort of patients with SFVMs using targeted next-generation sequencing. Targeted next-generation sequencing of 29 candidate genes associated with vascular anomalies or with the PI3K signaling pathway was performed on affected tissues from patients with SFVMs. Fifty-nine patients with SFVMs (venous malformations n = 21, lymphatic malformations n = 27, lymphatic venous malformations n = 1, and Klippel-Trenaunay syndrome n = 10) were included in the study. TEK and PIK3CA were the most commonly mutated genes in the study. We detected eight TEK pathogenic variants in 10 samples (16.9%) and three PIK3CA pathogenic variants in 28 samples (47.5%). In total, 37 of 59 patients (62.7%) with SFVMs harbored pathogenic variants in these three genes involved in the PI3K signaling pathway. Inhibitors of this pathway may prove useful as molecular targeted therapies for SFVMs.


Subject(s)
Phosphatidylinositol 3-Kinases , Vascular Malformations , Humans , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Vascular Malformations/genetics , Vascular Malformations/metabolism , Vascular Malformations/pathology , High-Throughput Nucleotide Sequencing , Mutation
18.
J Hum Genet ; 67(7): 393-397, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35087201

ABSTRACT

Paucity of interlobular bile ducts (PILBD) is a heterogeneous disorder classified into two categories, syndromic and non-syndromic bile duct paucity. Syndromic PILBD is characterized by the presence of clinical manifestations of Alagille syndrome. Non-syndromic PILBD is caused by multiple diseases, such as metabolic and genetic disorders, infectious diseases, and inflammatory and immune disorders. We evaluated a family with a dominantly inherited PILBD, who presented with cholestasis at 1-2 months of age but spontaneously improved by 1 year of age. Next-generation sequencing analysis revealed a heterozygous CACYBP/SIP p.E177Q pathogenic variant. Calcyclin-binding protein and Siah1 interacting protein (CACYBP/SIP) form a ubiquitin ligase complex and induce proteasomal degradation of non-phosphorylated ß-catenin. Immunohistochemical analysis revealed a slight decrease in CACYBP and ß-catenin levels in the liver of patients in early infancy, which almost normalized by 13 months of age. The CACYBP/SIP p.E177Q pathogenic variant may form a more active or stable ubiquitin ligase complex that enhances the degradation of ß-catenin and delays the maturation of intrahepatic bile ducts. Our findings indicate that accurate regulation of the ß-catenin concentration is essential for the development of intrahepatic bile ducts and CACYBP/SIP pathogenic variant is a novel cause of PILDB.


Subject(s)
Alagille Syndrome , Calcium-Binding Proteins , beta Catenin , Bile Ducts, Intrahepatic/metabolism , Calcium-Binding Proteins/genetics , Humans , Infant , Infant, Newborn , Ubiquitin-Protein Ligases , beta Catenin/metabolism
19.
J Hum Genet ; 67(1): 9-17, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34234266

ABSTRACT

Certain large genome cohort studies attempt to return the individual genomic results to the participants; however, the implementation process and psychosocial impacts remain largely unknown. The Tohoku Medical Megabank Project has conducted large genome cohort studies of general residents. To implement the disclosure of individual genomic results, we extracted the potential challenges and obstacles. Major challenges include the determination of genes/disorders based on the current medical system in Japan, the storage of results, prevention of misunderstanding, and collaboration of medical professionals. To overcome these challenges, we plan to conduct multilayer pilot studies, which deal with different disorders/genes. We finally chose familial hypercholesterolemia (FH) as a target disease for the first pilot study. Of the 665 eligible candidates, 33.5% were interested in the pilot study and provided consent after an educational "genetics workshop" on the basic genetics and medical facts of FH. The genetics professionals disclosed the results to the participants. All positive participants were referred to medical care, and a serial questionnaire revealed no significant psychosocial distress after the disclosure. Return of genomic results to research participants was implemented using a well-prepared protocol. To further elucidate the impact of different disorders, we will perform multilayer pilot studies with different disorders, including actionable pharmacogenomics and hereditary tumor syndromes.


Subject(s)
Genetics, Medical , Genome , Genomics , Research , Databases, Genetic , Disclosure , Genomics/methods , Humans , Japan , Pharmacogenetics , Pilot Projects , Research Design
20.
J Med Virol ; 94(6): 2877-2881, 2022 06.
Article in English | MEDLINE | ID: mdl-34811773

ABSTRACT

Although coxsackievirus A21 (CV-A21) has been associated with an acute respiratory infection (ARI) as well as poliomyelitis-like paralysis, reports of CV-A21 detection have been quite limited both globally and in Japan. CV-A21 strains were isolated from five sporadic pediatric cases with ARI in 2019 in Yamagata, Japan. Neutralizing antibodies (NT Abs) were then measured against CV-A21 using sera collected in 1976, 1985, 1999, 2009, and 2019 in Yamagata, to clarify the longitudinal epidemiology of CV-A21. The total Ab-positive rate in each year was 15.2% (35/233), 10.7% (30/281), 14.3% (28/196), 3.1% (7/236), and 1.3% (3/226), respectively. Ab-positive rates generally increased with age, especially between 1976 and 1999. Among the total Ab-positive cases, the Ab titers were relatively low; 50 cases belonged to the 1:8-1:16, 40 to 1:32-1:64, 12 to 1:128-1:256, and 1 to 1:1024< groups, respectively. No Ab-positive cases under the age of 10 were observed in any of the years analyzed. In conclusion, this study and previous works suggested that CV-A21 is a unique enterovirus, which is not transmitted readily among young children but causes sporadic ARI cases mainly among those ≥15 years of age in the community.


Subject(s)
Enterovirus A, Human , Enterovirus , Oncolytic Viruses , Respiratory Tract Infections , Antibodies, Neutralizing , Child , Child, Preschool , Humans , Japan/epidemiology , Respiratory Tract Infections/epidemiology , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL