Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Molecules ; 28(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298920

ABSTRACT

Structurally well-defined polymer-grafted nanoparticle hybrids are highly sought after for a variety of applications, such as antifouling, mechanical reinforcement, separations, and sensing. Herein, we report the synthesis of poly(methyl methacrylate) grafted- and poly(styrene) grafted-BaTiO3 nanoparticles using activator regeneration via electron transfer (ARGET ATRP) with a sacrificial initiator, atom transfer radical polymerization (normal ATRP), and ATRP with sacrificial initiator, to understand the role of the polymerization procedure in influencing the structure of nanoparticle hybrids. Irrespective of the polymerization procedure adopted for the synthesis of nanoparticle hybrids, we noticed PS grafted on the nanoparticles showed moderation in molecular weight and graft density (ranging from 30,400 to 83,900 g/mol and 0.122 to 0.067 chain/nm2) compared to PMMA-grafted nanoparticles (ranging from 44,620 to 230,000 g/mol and 0.071 to 0.015 chain/nm2). Reducing the polymerization time during ATRP has a significant impact on the molecular weight of polymer brushes grafted on the nanoparticles. PMMA-grafted nanoparticles synthesized using ATRP had lower graft density and considerably higher molecular weight compared to PS-grafted nanoparticles. However, the addition of a sacrificial initiator during ATRP resulted in moderation of the molecular weight and graft density of PMMA-grafted nanoparticles. The use of a sacrificial initiator along with ARGET offered the best control in achieving lower molecular weight and narrow dispersity for both PS (37,870 g/mol and PDI of 1.259) and PMMA (44,620 g/mol and PDI of 1.263) nanoparticle hybrid systems.


Subject(s)
Nanoparticles , Polymers , Polymers/chemistry , Polymethyl Methacrylate/chemistry , Molecular Weight , Nanoparticles/chemistry
2.
Nanotechnology ; 32(14): 142004, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33260170

ABSTRACT

Polymer nanocomposites (PNC) have attracted enormous scientific and technological interest due to their applications in energy storage, electronics, biosensing, drug delivery, cosmetics and packaging industry. Nanomaterials (platelet, fibers, spheroids, whiskers, rods) dispersed in different types of polymer matrices constitute such PNC. The degree of dispersion of the inorganic nanomaterials in the polymer matrix, as well as the structured arrangement of the nanomaterials, are some of the key factors influencing the overall performance of the nanocomposite. To this end, the surface functionalization of the nanomaterials determines its state of dispersion within the polymer matrix. For energy storage and electronics, these nanomaterials are usually chosen for their dielectric properties for enhancing the performance of device applications. Although several reviews on surface modification of nanomaterials have been reported, a review on the surface functionalization of nanomaterials as it pertains to polymer dielectrics is currently lacking. This review summarizes the recent developments in the surface modification of important metal oxide dielectric nanomaterials including Silicon dioxide (SiO2), titanium dioxide (TiO2), barium titanate (BaTiO3), and aluminum oxide (Al2O3) by chemical agents such as silanes, phosphonic acids, and dopamine. We report the impact of chemical modification of the nanomaterial on the dielectric performance (dielectric constant, breakdown strength, and energy density) of the nanocomposite. Aside from bringing novice and experts up to speed in the area of polymer dielectric nanocomposites, this review will serve as an intellectual resource in the selection of appropriate chemical agents for functionalizing nanomaterials for use in specific polymer matrix so as to potentially tune the final performance of nanocomposite.

3.
Molecules ; 26(10)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063362

ABSTRACT

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the "grafting from" and "grafting to" approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.

4.
JACS Au ; 3(5): 1365-1375, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37234129

ABSTRACT

Designing high energy density dielectric capacitors for advanced energy storage systems needs nanocomposite-based dielectric materials, which can utilize the properties of both inorganic and polymeric materials. Polymer-grafted nanoparticle (PGNP)-based nanocomposites alleviate the problems of poor nanocomposite properties by providing synergistic control over nanoparticle and polymer properties. Here, we synthesize "core-shell" barium titanate-poly(methyl methacrylate) (BaTiO3-PMMA) grafted PGNPs using surface-initiated atom transfer polymerization (SI-ATRP) with variable grafting densities of (0.303 to 0.929) chains/nm2 and high molecular masses (97700 g/mL to 130000 g/mol) and observe that low grafted density and high molecular mass based PGNP show high permittivity, high dielectric strength, and hence higher energy densities (≈ 5.2 J/cm3) as compared to the higher grafted density PGNPs, presumably due to their "star-polymer"-like conformations with higher chain-end densities that are known to enhance breakdown. Nonetheless, these energy densities are an order of magnitude higher than their nanocomposite blend counterparts. We expect that these PGNPs can be readily used as commercial dielectric capacitors, and these findings can serve as guiding principles for developing tunable high energy density energy storage devices using PGNP systems.

SELECTION OF CITATIONS
SEARCH DETAIL