Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Cell ; 185(11): 1875-1887.e8, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35523182

ABSTRACT

We examined antibody and memory B cell responses longitudinally for ∼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently reactivated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA-vaccine-induced immunity over time through 3 or more antigen exposures.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
2.
Cell ; 184(7): 1858-1864.e10, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33631096

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the coronavirus disease 2019 (COVID-19) pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 431 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 251 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that ∼20% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but they were boosted upon SARS-CoV-2 infection.


Subject(s)
Alphacoronavirus/immunology , Antibodies, Viral , Betacoronavirus/immunology , COVID-19/immunology , Adolescent , Adult , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Serological Testing , Child , Child, Preschool , Chlorocebus aethiops , Cross Protection , Cross Reactions , Disease Susceptibility , HEK293 Cells , Humans , Infant , Infant, Newborn , Vero Cells
3.
Nat Immunol ; 24(10): 1711-1724, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37735592

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific cluster of differentiation (CD)4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production and primary responses to nonspike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.

4.
Nat Immunol ; 23(8): 1183-1192, 2022 08.
Article in English | MEDLINE | ID: mdl-35902637

ABSTRACT

Anti-programmed death-1 (anti-PD-1) immunotherapy reinvigorates CD8 T cell responses in patients with cancer but PD-1 is also expressed by other immune cells, including follicular helper CD4 T cells (Tfh) which are involved in germinal centre responses. Little is known, however, about the effects of anti-PD-1 immunotherapy on noncancer immune responses in humans. To investigate this question, we examined the impact of anti-PD-1 immunotherapy on the Tfh-B cell axis responding to unrelated viral antigens. Following influenza vaccination, a subset of adults receiving anti-PD-1 had more robust circulating Tfh responses than adults not receiving immunotherapy. PD-1 pathway blockade resulted in transcriptional signatures of increased cellular proliferation in circulating Tfh and responding B cells compared with controls. These latter observations suggest an underlying change in the Tfh-B cell and germinal centre axis in a subset of immunotherapy patients. Together, these results demonstrate dynamic effects of anti-PD-1 therapy on influenza vaccine responses and highlight analytical vaccination as an approach that may reveal underlying immune predisposition to adverse events.


Subject(s)
Influenza Vaccines , Adult , Humans , Immunity, Humoral , Seasons , T-Lymphocytes, Helper-Inducer , Vaccination
5.
Immunity ; 54(9): 2133-2142.e3, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34453880

ABSTRACT

SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses on healthy SARS-CoV-2-naive and recovered individuals prior to and following mRNA prime and boost vaccination. Vaccination induced rapid antigen-specific CD4+ T cell responses in naive subjects after the first dose, whereas CD8+ T cell responses developed gradually and were variable in magnitude. Vaccine-induced Th1 and Tfh cell responses following the first dose correlated with post-boost CD8+ T cells and neutralizing antibodies, respectively. Integrated analysis revealed coordinated immune responses with distinct trajectories in SARS-CoV-2-naive and recovered individuals. Last, whereas booster vaccination improved T cell responses in SARS-CoV-2-naive subjects, the second dose had little effect in SARS-CoV-2-recovered individuals. These findings highlight the role of rapidly primed CD4+ T cells in coordinating responses to the second vaccine dose in SARS-CoV-2-naive individuals.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Th1 Cells/immunology , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , BNT162 Vaccine , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunologic Memory , Lectins, C-Type/metabolism , Lymphocyte Activation , Male , Middle Aged , Peptides/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
6.
Nat Immunol ; 17(5): 556-64, 2016 May.
Article in English | MEDLINE | ID: mdl-26974206

ABSTRACT

Homeostasis of the immune system depends on the proper function of regulatory T cells (T(reg) cells). Compromised suppressive activity of T(reg) cells leads to autoimmune disease and graft rejection and promotes anti-tumor immunity. Here we report a previously unrecognized requirement for the serine-threonine phosphatase PP2A in the function of T(reg) cells. T(reg) cells exhibited high PP2A activity, and T(reg) cell-specific ablation of the PP2A complex resulted in a severe, multi-organ, lymphoproliferative autoimmune disorder. Mass spectrometry revealed that PP2A associated with components of the mTOR metabolic-checkpoint kinase pathway and suppressed the activity of the mTORC1 complex. In the absence of PP2A, T(reg) cells altered their metabolic and cytokine profile and were unable to suppress effector immune responses. Therefore, PP2A is required for the function of T(reg) cells and the prevention of autoimmunity.


Subject(s)
Autoimmune Diseases/immunology , Lymphoproliferative Disorders/immunology , Protein Phosphatase 2/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , Autoimmunity/genetics , Autoimmunity/immunology , Cells, Cultured , Ceramides/immunology , Ceramides/metabolism , Female , Flow Cytometry , Humans , Immunoblotting , Jurkat Cells , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/metabolism , Male , Mechanistic Target of Rapamycin Complex 1 , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Multiprotein Complexes/immunology , Multiprotein Complexes/metabolism , Phosphorylation/immunology , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/metabolism , TOR Serine-Threonine Kinases/immunology , TOR Serine-Threonine Kinases/metabolism
7.
Eur J Immunol ; 46(6): 1383-91, 2016 06.
Article in English | MEDLINE | ID: mdl-27060346

ABSTRACT

TCR-αß(+) double negative (DN) T cells (CD3(+) TCR-αß(+) CD4(-) CD8(-) NK1.1(-) CD49b(-) ) represent a minor heterogeneous population in healthy humans and mice. These cells have been ascribed pro-inflammatory and regulatory capacities and are known to expand during the course of several autoimmune diseases. Importantly, previous studies have shown that self-reactive CD8(+) T cells become DN after activation by self-antigens, suggesting that self-reactive T cells may exist within the DN T-cell population. Here, we demonstrate that programmed cell death 1 (PD-1) expression in unmanipulated mice identifies a subset of DN T cells with expression of activation-associated markers and a phenotype that strongly suggests they are derived from self-reactive CD8(+) cells. We also found that, within DN T cells, the PD-1(+) subset generates the majority of pro-inflammatory cytokines. Finally, using a TCR-activation reporter mouse (Nur77-GFP), we confirmed that in the steady-state PD-1(+) DN T cells engage endogenous antigens in healthy mice. In conclusion, we provide evidence that indicates that the PD-1(+) fraction of DN T cells represents self-reactive cells.


Subject(s)
Autoimmunity , CD4 Antigens/metabolism , CD8 Antigens/metabolism , Lymphocyte Activation/immunology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Autoantigens/metabolism , Biomarkers , Cells, Cultured , Cytokines/metabolism , Gene Expression , Immunophenotyping , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators/metabolism , Mice , Mice, Knockout , Phenotype , Programmed Cell Death 1 Receptor/genetics
8.
J Immunol ; 194(9): 4207-14, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25825451

ABSTRACT

TCR-αß(+) double-negative (DN; CD4(-)CD8(-)) T cells represent a poorly understood cellular subset suggested to contribute to the pathogenesis of the autoimmune disease systemic lupus erythematosus. DN T cells have been proposed to derive from CD8(+) cells. However, the conditions that govern the loss of CD8 expression after Ag encounter are unknown. In this study, we tracked the fate of CD8 T cells from transgenic TCR mice exposed to their cognate Ags as self or in the context of infection. We demonstrate that CD8 T cells lose CD8 expression and become DN only when cognate Ag is sensed as self. This process is restricted to tissues where the Ag is present. We also show that DN T cells derived from self-reactive CD8 cells express the inhibitory molecules PD-1 and Helios. These molecules identify a subset of DN T cells in normal mice. A similar population expands when CD8 T cells from repertoires enriched in self-reactive cells (Aire-deficient) are transferred into cognate hosts. Collectively, our data suggest that a subset of DN T cells, identified by the expression of PD-1 and Helios, represent self-reactive cells. Our results provide an explanation for the origin of DN T cells and introduce CD8 loss as a process associated with self-Ag encounter.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , DNA-Binding Proteins/metabolism , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , Transcription Factors/metabolism , Animals , Mice , Mice, Nude , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocyte Subsets/immunology
9.
Proc Natl Acad Sci U S A ; 111(37): 13457-62, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25187566

ABSTRACT

The immune-regulatory cytokine IL-10 plays a central role during innate and adaptive immune responses. IL-10 is elevated in the serum and tissues of patients with systemic lupus erythematosus (SLE), an autoimmune disorder characterized by autoantibody production, immune-complex formation, and altered cytokine expression. Because of its B cell-promoting effects, IL-10 may contribute to autoantibody production and tissue damage in SLE. We aimed to determine molecular events governing T cell-derived IL-10 expression in health and disease. We link reduced DNA methylation of the IL10 gene with increased recruitment of Stat family transcription factors. Stat3 and Stat5 recruitment to the IL10 promoter and an intronic enhancer regulate gene expression. Both Stat3 and Stat5 mediate trans-activation and epigenetic remodeling of IL10 through their interaction with the histone acetyltransferase p300. In T cells from SLE patients, activation of Stat3 is increased, resulting in enhanced recruitment to regulatory regions and competitive replacement of Stat5, subsequently promoting IL-10 expression. A complete understanding of the molecular events governing cytokine expression will provide new treatment options in autoimmune disorders, including SLE. The observation that altered activation of Stat3 influences IL-10 expression in T cells from SLE patients offers molecular targets in the search for novel target-directed treatment options.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Interleukin-10/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , STAT3 Transcription Factor/metabolism , T-Lymphocytes/metabolism , Transcriptional Activation/genetics , Acetylation , Computational Biology , DNA Methylation/genetics , E1A-Associated p300 Protein/metabolism , Enhancer Elements, Genetic/genetics , Histones/metabolism , Humans , Interleukin-10/metabolism , Lysine/metabolism , Phosphorylation , Protein Binding , Receptors, Antigen, T-Cell/metabolism , STAT5 Transcription Factor/metabolism
10.
J Biol Chem ; 289(4): 2361-70, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24297179

ABSTRACT

TCR-αß(+)CD3(+)CD4(-)CD8(-) "double negative" T cells are expanded in the peripheral blood of patients with systemic lupus erythematosus (SLE) and lupus-prone mice. Double negative T cells have been claimed to derive from CD8(+) cells that down-regulate CD8 co-receptors and acquire a distinct effector phenotype that includes the expression of proinflammatory cytokines. This, along with the fact that double negative T cells have been documented in inflamed organs, suggests that they may contribute to disease expression and tissue damage. We recently linked the transcription factor cAMP responsive element modulator (CREM) α, which is expressed at increased levels in T cells from SLE patients and lupus prone MRL/lpr mice, with trans-repression of a region syntenic to the murine CD8b promoter. However, the exact molecular mechanisms that result in a stable silencing of both CD8A and CD8B genes remain elusive. Here, we demonstrate that CREMα orchestrates epigenetic remodeling of the CD8 cluster through the recruitment of DNA methyltransferase (DNMT) 3a and histone methyltransferase G9a. Thus, we propose that CREMα is essential for the expansion of double negative T cells in SLE. CREMα blockade may have therapeutic value in autoimmune disorders with DN T cell expansion.


Subject(s)
CD3 Complex , CD8 Antigens/biosynthesis , Chromatin Assembly and Disassembly , Cyclic AMP Response Element Modulator/metabolism , Lupus Erythematosus, Systemic/metabolism , T-Lymphocytes/metabolism , Animals , CD8 Antigens/genetics , Cyclic AMP Response Element Modulator/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Female , Gene Silencing , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Male , Mice , Mice, Inbred MRL lpr , T-Lymphocytes/pathology
11.
Cytokine ; 75(2): 207-15, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26028353

ABSTRACT

Interleukin 17 is a proinflammatory cytokine produced by CD4+ T cells when in the presence of a distinct set of cytokines and other cells. Preclinical and clinical studies have assigned a role to IL-17 in tissue inflammation and damage in patients with rheumatoid arthritis, psoriasis and psoriatic arthritis, ankylosing spondylitis and systemic lupus erythematosus. Antibodies blocking the action of IL-17 have already been approved to treat patients with psoriasis and it is expected that they may also benefit patients with other rheumatic diseases.


Subject(s)
Autoimmune Diseases/immunology , CD4-Positive T-Lymphocytes/immunology , Inflammation/immunology , Interleukin-17/immunology , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/immunology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Autoimmune Diseases/drug therapy , Humans , Interleukin-17/antagonists & inhibitors , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/immunology , Signal Transduction/immunology , Spondylitis, Ankylosing/drug therapy , Spondylitis, Ankylosing/immunology
12.
Proc Natl Acad Sci U S A ; 109(41): 16606-11, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-23019580

ABSTRACT

Appropriate expression of IL-2 plays a central role during the priming and differentiation of T cells. A tight balance between IL-2 and the effector cytokine IL-17A is essential for immune homeostasis. Epigenetic mechanisms have been documented as a key component of cytokine regulation during lineage commitment. The molecular mechanisms that induce chromatin remodeling are less well understood. We investigated epigenetic regulators that mediate the diametric expression of IL-2 and IL-17A in naive, central memory, and effector memory CD4(+) T cells. We demonstrate that cAMP response modulator (CREM)α contributes to epigenetic remodeling of IL2 in effector memory T cells through the recruitment of DNMT3a. CREMα also reduces CpG-DNA methylation of the IL17A promoter. CREMα expression is regulated at the epigenetic level by CpG-DNA methylation, which allows increased CREMα expression in effector memory CD4(+) T cells. T cells from patients with systemic lupus erythematosus (SLE) express increased levels of CREMα and exhibit a phenotype that is similar to effector memory CD4(+) T cells with epigenetically predetermined expression patterns of IL-2 and IL-17A. We conclude that CREMα mediates epigenetic remodeling of the IL2 and IL17A gene during T-cell differentiation in favor of effector memory T cells in health and disease.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cyclic AMP Response Element Modulator/immunology , Interleukin-17/immunology , Interleukin-2/immunology , Lupus Erythematosus, Systemic/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Cell Lineage/immunology , Cells, Cultured , CpG Islands/genetics , Cyclic AMP Response Element Modulator/genetics , Cyclic AMP Response Element Modulator/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/immunology , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA Methyltransferase 3A , Flow Cytometry , Gene Expression , HEK293 Cells , Humans , Immunologic Memory/immunology , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-2/genetics , Interleukin-2/metabolism , Jurkat Cells , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology
13.
J Biol Chem ; 288(37): 26775-84, 2013 Sep 13.
Article in English | MEDLINE | ID: mdl-23918926

ABSTRACT

Protein phosphatase 2A (PP2A) is a heterotrimeric serine/threonine phosphatase involved in essential cellular functions. T cells from patients with systemic lupus erythematosus (SLE) express high levels of the catalytic subunit of PP2A (PP2Ac). A mouse overexpressing PP2Ac in T cells develops glomerulonephritis in an IL-17-dependent manner. Here, using microarray analyses, we demonstrate that increased expression of PP2Ac grants T cells the capacity to produce an array of proinflammatory effector molecules. Because IL-17 is important in the expression of glomerulonephritis, we studied the mechanism through which PP2Ac dysregulation facilitates its production. We report that PP2Ac is involved in the regulation of the Il17 locus by enhancing histone 3 acetylation through a mechanism that involves activation of interferon regulatory factor 4. Increased histone 3 acetylation of the Il17 locus is shared between T cells of PP2Ac transgenic mice and patients with SLE. We propose that, by promoting the inflammatory capacity of T cells, PP2Ac dysregulation contributes to the pathogenesis of SLE.


Subject(s)
Chromatin Assembly and Disassembly/physiology , Chromatin/metabolism , Gene Expression Regulation , Interleukin-17/metabolism , Protein Phosphatase 2/metabolism , Animals , Catalytic Domain , Histones/metabolism , Inflammation , Lupus Erythematosus, Systemic/enzymology , Lupus Erythematosus, Systemic/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , rho-Associated Kinases/metabolism
14.
J Immunol ; 188(8): 3567-71, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22422882

ABSTRACT

The contribution of individual molecular aberrations to the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease that affects multiple organs, is often difficult to evaluate because of the presence of abundant confounding factors. To assess the effect of increased expression of the phosphatase protein phosphatase 2A (PP2A) in T cells, as recorded in SLE patients, we generated a transgenic mouse that overexpresses the PP2Ac subunit in T cells. The transgenic mouse displays a heightened susceptibility to immune-mediated glomerulonephritis in the absence of other immune defects. CD4(+) T cells produce increased amounts of IL-17 while the number of neutrophils in the peripheral blood is increased. IL-17 neutralization abrogated the development of glomerulonephritis. We conclude that increased PP2Ac expression participates in SLE pathogenesis by promoting inflammation through unchecked IL-17 production and facilitating the development of end-organ damage.


Subject(s)
Gene Expression/immunology , Glomerulonephritis/immunology , Interleukin-17/immunology , Lupus Erythematosus, Systemic/immunology , Protein Phosphatase 2/immunology , Animals , Antibodies, Neutralizing/pharmacology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Disease Susceptibility , Glomerulonephritis/chemically induced , Humans , Interleukin-17/biosynthesis , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Protein Subunits/genetics , Protein Subunits/immunology , Protein Subunits/metabolism
15.
Proc Natl Acad Sci U S A ; 108(30): 12443-8, 2011 Jul 26.
Article in English | MEDLINE | ID: mdl-21746932

ABSTRACT

The activity and substrate specificity of the ubiquitously expressed phosphatase PP2A is determined by the type of regulatory (B) subunit that couples to the catalytic/scaffold core of the enzyme. We determined that the Bß subunit (PPP2R2B) is expressed in resting T cells, its transcription is down-regulated during T-cell activation, and up-regulated in conditions of low IL-2. Specifically, high levels of PP2A Bß were produced during IL-2 deprivation-induced apoptosis, whereas Fas ligation had no effect. Forced expression of the Bß subunit in primary human T cells was sufficient to induce apoptosis, whereas silencing using siRNA protected activated T cells from IL-2 withdrawal-induced cell death. Because T-cell apoptosis is known to be altered in T cells from patients with systemic lupus erythematosus, we analyzed the regulation of PP2A Bß in this autoimmune disease. We found that levels of PP2A Bß did not increase upon IL-2 deprivation in 50% of the patients. Remarkably, this defect was accompanied by resistance to apoptosis. Importantly, kinetics of cell death were normal in cells of patients that up-regulated PP2A Bß in a normal manner. We have identified a unique role for the phosphatase PP2A, particularly the holoenzyme formed by PP2A Bß. Bß appears to trigger apoptosis of T cells in the absence of IL-2 and probably contributes to the termination of a no-longer-needed immune response. We propose that defective production of PP2A Bß upon IL-2 deprivation results in apoptosis resistance and longer survival of autoreactive T cells, in a subset of SLE patients.


Subject(s)
Interleukin-2/metabolism , Lupus Erythematosus, Systemic/enzymology , Nerve Tissue Proteins/deficiency , Protein Phosphatase 2/deficiency , T-Lymphocytes/enzymology , T-Lymphocytes/immunology , Adult , Apoptosis/immunology , Apoptosis/physiology , Case-Control Studies , Down-Regulation , Female , Humans , In Vitro Techniques , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Lymphocyte Activation , Male , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , T-Lymphocytes/pathology , Up-Regulation , Young Adult
16.
bioRxiv ; 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36798171

ABSTRACT

SARS-CoV-2 infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened Spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific CD4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production, and primary responses to non-Spike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.

17.
Cell Rep ; 41(3): 111496, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36261003

ABSTRACT

It is important to determine if severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and SARS-CoV-2 mRNA vaccinations elicit different types of antibodies. Here, we characterize the magnitude and specificity of SARS-CoV-2 spike-reactive antibodies from 10 acutely infected health care workers with no prior SARS-CoV-2 exposure history and 23 participants who received SARS-CoV-2 mRNA vaccines. We found that infection and primary mRNA vaccination elicit S1- and S2-reactive antibodies, while secondary vaccination boosts mostly S1 antibodies. Using absorption assays, we found that SARS-CoV-2 infections elicit a large proportion of original antigenic sin-like antibodies that bind efficiently to the spike of common seasonal human coronaviruses but poorly to the spike of SARS-CoV-2. In converse, vaccination modestly boosts antibodies reactive to the spike of common seasonal human coronaviruses, and these antibodies cross-react more efficiently to the spike of SARS-CoV-2. Our data indicate that SARS-CoV-2 infections and mRNA vaccinations elicit fundamentally different antibody responses.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral , Vaccination , RNA, Messenger/genetics
18.
Front Immunol ; 13: 834988, 2022.
Article in English | MEDLINE | ID: mdl-35309299

ABSTRACT

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibited higher basal levels of activation measured by P-selectin surface expression and had poor functional reserve upon in vitro stimulation. To investigate this question in more detail, we developed an assay to assess the capacity of plasma from COVID-19 patients to activate platelets from healthy donors. Platelet activation was a common feature of plasma from COVID-19 patients and correlated with key measures of clinical outcome including kidney and liver injury, and APACHEIII scores. Further, we identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions. These data identified these potentially actionable pathways as central for platelet activation and/or vascular complications and clinical outcomes in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect.


Subject(s)
Blood Platelets/immunology , COVID-19/immunology , Complement C5a/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/physiology , Thromboembolism/immunology , Adult , Aminopyridines/pharmacology , Cells, Cultured , Female , Hospitalization , Humans , Male , Morpholines/pharmacology , Platelet Activation , Pyrimidines/pharmacology , Severity of Illness Index , Signal Transduction , Syk Kinase/antagonists & inhibitors
19.
bioRxiv ; 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35233575

ABSTRACT

Despite a clear role in protective immunity, the durability and quality of antibody and memory B cell responses induced by mRNA vaccination, particularly by a 3 rd dose of vaccine, remains unclear. Here, we examined antibody and memory B cell responses in a cohort of individuals sampled longitudinally for ∼9-10 months after the primary 2-dose mRNA vaccine series, as well as for ∼3 months after a 3 rd mRNA vaccine dose. Notably, antibody decay slowed significantly between 6- and 9-months post-primary vaccination, essentially stabilizing at the time of the 3 rd dose. Antibody quality also continued to improve for at least 9 months after primary 2-dose vaccination. Spike- and RBD-specific memory B cells were stable through 9 months post-vaccination with no evidence of decline over time, and ∼40-50% of RBD-specific memory B cells were capable of simultaneously recognizing the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells induced by the first 2 doses of mRNA vaccine were boosted significantly by a 3rd dose and the magnitude of this boosting was similar to memory B cells specific for other variants. Pre-3 rd dose memory B cell frequencies correlated with the increase in neutralizing antibody titers after the 3 rd dose. In contrast, pre-3 rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit reactivation of immunological memory and constrain further antibody boosting by mRNA vaccines. These data provide a deeper understanding of how the quantity and quality of antibody and memory B cell responses change over time and number of antigen exposures. These data also provide insight into potential immune dynamics following recall responses to additional vaccine doses or post-vaccination infections.

20.
Crit Care Explor ; 3(11): e0578, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765984

ABSTRACT

The U.S. Food and Drug Administration has to date granted approval or emergency use authorization to three vaccines against severe acute respiratory syndrome coronavirus 2 and coronavirus disease 2019. In clinical trials and real-use observational studies, the Pfizer-BioNTech BNT162b2 messenger RNA coronavirus disease 2019 vaccine, as well as the Moderna mRNA-1273 messenger RNA coronavirus disease 2019 vaccine, have demonstrated high efficacy and few adverse events. CASE SUMMARY: A 20-year-old male college student in good health developed tinnitus and hematuria shortly after vaccination and progressed swiftly to a syndrome of: systemic inflammation; acute kidney injury requiring hemodialysis; acute, bilateral, complete sensorineural hearing loss; radiographic evidence of acute multifocal ischemic strokes; pericardial effusion complicated by tamponade physiology requiring pericardial evacuation; pleural effusions requiring evacuation; and systemic capillary leak. An extensive clinical and research investigation, including cytokine analysis, whole blood cytometry by time of flight, and whole exome sequencing, did not reveal a definitive explanatory mechanism. CONCLUSION: While the overall safety profile of the BNT162b2 coronavirus disease 2019 vaccine remains excellent for the general population, rare serious events have been reported. In this report, we describe a case of multisystem inflammation and organ dysfunction of unknown mechanism beginning shortly after administration of the first dose of BNT162b2 coronavirus disease 2019 vaccine in a previously healthy recipient.

SELECTION OF CITATIONS
SEARCH DETAIL