Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Nat Immunol ; 24(3): 516-530, 2023 03.
Article in English | MEDLINE | ID: mdl-36732424

ABSTRACT

How lipidome changes support CD8+ effector T (Teff) cell differentiation is not well understood. Here we show that, although naive T cells are rich in polyunsaturated phosphoinositides (PIPn with 3-4 double bonds), Teff cells have unique PIPn marked by saturated fatty acyl chains (0-2 double bonds). PIPn are precursors for second messengers. Polyunsaturated phosphatidylinositol bisphosphate (PIP2) exclusively supported signaling immediately upon T cell antigen receptor activation. In late Teff cells, activity of phospholipase C-γ1, the enzyme that cleaves PIP2 into downstream mediators, waned, and saturated PIPn became essential for sustained signaling. Saturated PIP was more rapidly converted to PIP2 with subsequent recruitment of phospholipase C-γ1, and loss of saturated PIPn impaired Teff cell fitness and function, even in cells with abundant polyunsaturated PIPn. Glucose was the substrate for de novo PIPn synthesis, and was rapidly utilized for saturated PIP2 generation. Thus, separate PIPn pools with distinct acyl chain compositions and metabolic dependencies drive important signaling events to initiate and then sustain effector function during CD8+ T cell differentiation.


Subject(s)
Phosphatidylinositol Phosphates , Phosphatidylinositols , Phosphatidylinositols/metabolism , Signal Transduction , Type C Phospholipases/metabolism , CD8-Positive T-Lymphocytes/metabolism
2.
Trends Immunol ; 43(12): 969-977, 2022 12.
Article in English | MEDLINE | ID: mdl-36319537

ABSTRACT

Lactic acid production has been regarded as a mechanism by which malignant cells escape immunosurveillance. Recent technological advances in mass spectrometry and the use of cell culture media with a physiological nutrient composition have shed new light on the role of lactic acid and its conjugate lactate in the tumor microenvironment. Here, we review novel work identifying lactate as a physiological carbon source for mammalian tumors and immune cells. We highlight evidence that its use as a substrate is distinct from the immunosuppressive acidification of the extracellular milieu by lactic acid protons. Together, data suggest that neutralizing the effects of intratumoral acidity while maintaining physiological lactate metabolism in cytotoxic CD8+ T cells should be pursued to boost anti-tumor immunity.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Animals , Lactic Acid/metabolism , CD8-Positive T-Lymphocytes/metabolism , Mammals
3.
Blood ; 140(10): 1167-1181, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35853161

ABSTRACT

Patients with acute myeloid leukemia (AML) often achieve remission after allogeneic hematopoietic cell transplantation (allo-HCT) but subsequently die of relapse driven by leukemia cells resistant to elimination by allogeneic T cells based on decreased major histocompatibility complex II (MHC-II) expression and apoptosis resistance. Here we demonstrate that mouse-double-minute-2 (MDM2) inhibition can counteract immune evasion of AML. MDM2 inhibition induced MHC class I and II expression in murine and human AML cells. Using xenografts of human AML and syngeneic mouse models of leukemia, we show that MDM2 inhibition enhanced cytotoxicity against leukemia cells and improved survival. MDM2 inhibition also led to increases in tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2 (TRAIL-R1/2) on leukemia cells and higher frequencies of CD8+CD27lowPD-1lowTIM-3low T cells, with features of cytotoxicity (perforin+CD107a+TRAIL+) and longevity (bcl-2+IL-7R+). CD8+ T cells isolated from leukemia-bearing MDM2 inhibitor-treated allo-HCT recipients exhibited higher glycolytic activity and enrichment for nucleotides and their precursors compared with vehicle control subjects. T cells isolated from MDM2 inhibitor-treated AML-bearing mice eradicated leukemia in secondary AML-bearing recipients. Mechanistically, the MDM2 inhibitor-mediated effects were p53-dependent because p53 knockdown abolished TRAIL-R1/2 and MHC-II upregulation, whereas p53 binding to TRAILR1/2 promotors increased upon MDM2 inhibition. The observations in the mouse models were complemented by data from human individuals. Patient-derived AML cells exhibited increased TRAIL-R1/2 and MHC-II expression on MDM2 inhibition. In summary, we identified a targetable vulnerability of AML cells to allogeneic T-cell-mediated cytotoxicity through the restoration of p53-dependent TRAIL-R1/2 and MHC-II production via MDM2 inhibition.


Subject(s)
Leukemia, Myeloid, Acute , Tumor Suppressor Protein p53 , Animals , Apoptosis , Humans , Leukemia, Myeloid, Acute/genetics , Major Histocompatibility Complex , Mice , Proto-Oncogene Proteins c-mdm2/metabolism , Transplantation, Homologous , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation
4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161266

ABSTRACT

Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Fever/immunology , Mitochondria/metabolism , Protein Biosynthesis , Animals , Antineoplastic Agents/metabolism , CD8-Positive T-Lymphocytes/ultrastructure , Cytokines/biosynthesis , Glucose/metabolism , Leukemia, Myeloid/immunology , Leukemia, Myeloid/pathology , Leukemia, Myeloid/prevention & control , Mice, Inbred BALB C , Mice, Inbred C57BL , Mitochondria/ultrastructure , Models, Biological , Temperature
5.
Br J Haematol ; 203(2): 264-281, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37539479

ABSTRACT

Acute myeloid leukaemia (AML) relapse after allogeneic haematopoietic cell transplantation (allo-HCT) is often driven by immune-related mechanisms and associated with poor prognosis. Immune checkpoint inhibitors combined with hypomethylating agents (HMA) may restore or enhance the graft-versus-leukaemia effect. Still, data about using this combination regimen after allo-HCT are limited. We conducted a prospective, phase II, open-label, single-arm study in which we treated patients with haematological AML relapse after allo-HCT with HMA plus the anti-PD-1 antibody nivolumab. The response was correlated with DNA-, RNA- and protein-based single-cell technology assessments to identify biomarkers associated with therapeutic efficacy. Sixteen patients received a median number of 2 (range 1-7) nivolumab applications. The overall response rate (CR/PR) at day 42 was 25%, and another 25% of the patients achieved stable disease. The median overall survival was 15.6 months. High-parametric cytometry documented a higher frequency of activated (ICOS+ , HLA-DR+ ), low senescence (KLRG1- , CD57- ) CD8+ effector T cells in responders. We confirmed these findings in a preclinical model. Single-cell transcriptomics revealed a pro-inflammatory rewiring of the expression profile of T and myeloid cells in responders. In summary, the study indicates that the post-allo-HCT HMA/nivolumab combination induces anti-AML immune responses in selected patients and could be considered as a bridging approach to a second allo-HCT. Trial-registration: EudraCT-No. 2017-002194-18.

6.
Blood ; 136(12): 1442-1455, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32542357

ABSTRACT

Acute graft-versus-host disease (GVHD) is a life-threatening complication after allogeneic hematopoietic cell transplantation (allo-HCT). Although currently used GVHD treatment regimens target the donor immune system, we explored here an approach that aims at protecting and regenerating Paneth cells (PCs) and intestinal stem cells (ISCs). Glucagon-like-peptide-2 (GLP-2) is an enteroendocrine tissue hormone produced by intestinal L cells. We observed that acute GVHD reduced intestinal GLP-2 levels in mice and patients developing GVHD. Treatment with the GLP-2 agonist, teduglutide, reduced de novo acute GVHD and steroid-refractory GVHD, without compromising graft-versus-leukemia (GVL) effects in multiple mouse models. Mechanistically GLP-2 substitution promoted regeneration of PCs and ISCs, which enhanced production of antimicrobial peptides and caused microbiome changes. GLP-2 expanded intestinal organoids and reduced expression of apoptosis-related genes. Low numbers of L cells in intestinal biopsies and high serum levels of GLP-2 were associated with a higher incidence of nonrelapse mortality in patients undergoing allo-HCT. Our findings indicate that L cells are a target of GVHD and that GLP-2-based treatment of acute GVHD restores intestinal homeostasis via an increase of ISCs and PCs without impairing GVL effects. Teduglutide could become a novel combination partner for immunosuppressive GVHD therapy to be tested in clinical trials.


Subject(s)
Glucagon-Like Peptide 2/therapeutic use , Graft vs Host Disease/drug therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Intestines/drug effects , Paneth Cells/drug effects , Peptides/therapeutic use , Stem Cells/drug effects , Animals , Female , Gastrointestinal Agents/therapeutic use , Graft vs Host Disease/pathology , Humans , Intestines/cytology , Intestines/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Paneth Cells/pathology , Stem Cells/pathology , Transplantation, Homologous/adverse effects
7.
Haematologica ; 107(7): 1538-1554, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34407601

ABSTRACT

Acute graft-versus-host disease (GvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT), a potentially curative treatment for leukemia. Endoplasmic reticulum (ER) stress occurs when the protein folding capacity of the ER is oversaturated. How ER stress modulates tissue homeostasis in the context of alloimmunity is not well understood. We show that ER stress contributes to intestinal tissue injury during GvHD and can be targeted pharmacologically. We observed high levels of ER stress upon GvHD onset in a murine allo- HCT model and in human biopsies. These levels correlated with GvHD severity, underscoring a novel therapeutic potential. Elevated ER stress resulted in increased cell death of intestinal organoids. In a conditional knockout model, deletion of the ER stress regulator transcription factor Xbp1 in intestinal epithelial cells induced a general ER stress signaling disruption and aggravated GvHD lethality. This phenotype was mediated by changes in the production of antimicrobial peptides and the microbiome composition as well as activation of pro-apoptotic signaling. Inhibition of inositol-requiring enzyme 1α (IRE1α), the most conserved signaling branch in ER stress, reduced GvHD development in mice. IRE1α blockade by the small molecule inhibitor 4m8c improved intestinal cell viability, without impairing hematopoietic regeneration and T-cell activity against tumor cells. Our findings in patient samples and mice indicate that excessive ER stress propagates tissue injury during GvHD. Reducing ER stress could improve the outcome of patients suffering from GvHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Endoplasmic Reticulum Stress , Endoribonucleases/genetics , Endoribonucleases/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Mice , Protein Serine-Threonine Kinases
8.
Allergy ; 77(3): 966-978, 2022 03.
Article in English | MEDLINE | ID: mdl-34314538

ABSTRACT

BACKGROUND: Contact sensitizers may interfere with correct protein folding. Generation of un-/misfolded proteins can activate the IRE-1 or PERK signaling pathways initiating the unfolded protein response (UPR) and thereby determine inflammatory immune responses. We have analyzed the effect of sensitizers with different potencies on the induction of UPR activation/inhibition and the subsequent generation of a pro-inflammatory micromilieu in vitro as well as the effect of UPR modulation on the inflammatory response in the murine contact hypersensitivity (CHS) in vivo. METHODS: Semi-quantitative and quantitative PCR, fluorescence microscopy, ELISA, NF-κB activation and translocation assays, DC/keratinocyte co-culture assay, FACS, and in vivo CHS experiments were performed. RESULTS: Sensitizers and irritants activate IRE-1 and PERK in murine and human keratinocytes. Synergistic effects occur after combination of different weak sensitizers / addition of irritants. Moreover, tolerogenic dinitrothiocyanobenzene can be converted into a strong sensitizer by pre-activation of the UPR. Blocking UPR signaling results in decreased NF-κB activation and cytokine production in keratinocytes and in activation marker downregulation in a HaCaT/THP-1 co-culture. Interestingly, not only systemic but also topical application of UPR inhibitors abrogates CHS responses in vivo. CONCLUSION: These observations highlight an important role of the UPR in determination of the inflammatory response in vitro and in vivo further underlining the importance of tissue stress and damage responses in the development of ACD and provide mechanistically based concepts as a basis for the development of new therapeutic approaches to treat allergic contact dermatitis.


Subject(s)
Dermatitis, Allergic Contact , Irritants , Animals , Dermatitis, Allergic Contact/metabolism , Disease Models, Animal , Humans , Mice , NF-kappa B , Protein Serine-Threonine Kinases
9.
Proc Natl Acad Sci U S A ; 116(41): 20700-20706, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31527267

ABSTRACT

Microbial invasion into the intestinal mucosa after allogeneic hematopoietic cell transplantation (allo-HCT) triggers neutrophil activation and requires antibiotic interventions to prevent sepsis. However, antibiotics lead to a loss of microbiota diversity, which is connected to a higher incidence of acute graft-versus-host disease (aGVHD). Antimicrobial therapies that eliminate invading bacteria and reduce neutrophil-mediated damage without reducing the diversity of the microbiota are therefore highly desirable. A potential solution would be the use of antimicrobial antibodies that target invading pathogens, ultimately leading to their elimination by innate immune cells. In a mouse model of aGVHD, we investigated the potency of active and passive immunization against the conserved microbial surface polysaccharide poly-N-acetylglucosamine (PNAG) that is expressed on numerous pathogens. Treatment with monoclonal or polyclonal antibodies to PNAG (anti-PNAG) or vaccination against PNAG reduced aGVHD-related mortality. Anti-PNAG treatment did not change the intestinal microbial diversity as determined by 16S ribosomal DNA sequencing. Anti-PNAG treatment reduced myeloperoxidase activation and proliferation of neutrophil granulocytes (neutrophils) in the ileum of mice developing GVHD. In vitro, anti-PNAG treatment showed high antimicrobial activity. The functional role of neutrophils was confirmed by using neutrophil-deficient LysMcreMcl1fl/fl mice that had no survival advantage under anti-PNAG treatment. In summary, the control of invading bacteria by anti-PNAG treatment could be a novel approach to reduce the uncontrolled neutrophil activation that promotes early GVHD and opens a new avenue to interfere with aGVHD without affecting commensal intestinal microbial diversity.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Bacteria/immunology , Graft vs Host Disease/prevention & control , Immunization, Passive/methods , Intestines/immunology , Neutrophil Activation/immunology , Polysaccharides, Bacterial/antagonists & inhibitors , Animals , Antibodies, Monoclonal/immunology , Bacteria/classification , Bacteria/drug effects , Female , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Intestines/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutrophil Activation/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Polysaccharides, Bacterial/immunology
11.
Haematologica ; 106(8): 2131-2146, 2021 08 01.
Article in English | MEDLINE | ID: mdl-32675222

ABSTRACT

Acute graft-versus-host disease causes significant mortality in patients undergoing allogeneic hematopoietic cell transplantation. Immunosuppressive treatment for graft-versus-host disease can impair the beneficial graft-versus-leukemia effect and facilitate malignancy relapse. Therefore, novel approaches that protect and regenerate injured tissues without impeding the donor immune system are needed. Bile acids regulate multiple cellular processes and are in close contact with the intestinal epithelium, a major target of acute graft-versus-host disease. Here, we found that the bile acid pool is reduced following graft-versus-host disease induction in a preclinical model. We evaluated the efficacy of bile acids to protect the intestinal epithelium without reducing anti-tumor immunity. We observed that application of bile acids decreased cytokine-induced cell death in intestinal organoids and cell lines. Systemic prophylactic administration of tauroursodeoxycholic acid, the most potent compound in our in vitro studies, reduced graft-versus-host disease severity in three different murine transplantation models. This effect was mediated by decreased activity of the antigen presentation machinery and subsequent prevention of apoptosis of the intestinal epithelium. Moreover, bile acid administration did not alter the bacterial composition in the intestine suggesting that its effects are cell-specific and independent of the microbiome. Treatment of human and murine leukemic cell lines with tauroursodeoxycholic acid did not interfere with the expression of antigen presentation-related molecules. Systemic T cell expansion and especially their cytotoxic capacity against leukemic cells remained intact. This study establishes a role for bile acids in the prevention of acute graft-versus-host disease without impairing the graft-versus-leukemia effect. In particular, we provide a scientific rationale for the systematic use of tauroursodeoxycholic acid in patients undergoing allogeneic hematopoietic cell transplantation.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Animals , Antigen Presentation , Bile Acids and Salts , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Intestines , Mice , Transplantation, Homologous
12.
Blood ; 141(13): 1507-1508, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36995707
14.
Blood ; 127(15): 1930-9, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26837700

ABSTRACT

Caveolin-1 (Cav-1) is a key organizer of membrane specializations and a scaffold protein that regulates signaling in multiple cell types. We found increased Cav-1 expression in human and murine T cells after allogeneic hematopoietic cell transplantation. Indeed, Cav-1(-/-)donor T cells caused less severe acute graft-versus-host disease (GVHD) and yielded higher numbers of regulatory T cells (Tregs) compared with controls. Depletion of Tregs from the graft abrogated this protective effect. Correspondingly, Treg frequencies increased when Cav-1(-/-)T cells were exposed to transforming growth factor-ß/T-cell receptor (TCR)/CD28 activation or alloantigen stimulation in vitro compared with wild-type T cells. Mechanistically, we found that the phosphorylation of Cav-1 is dispensable for the control of T-cell fate by using a nonphosphorylatable Cav-1 (Y14F/Y14F) point-mutation variant. Moreover, the close proximity of lymphocyte-specific protein tyrosine kinase (Lck) to the TCR induced by TCR-activation was reduced in Cav-1(-/-)T cells. Therefore, less TCR/Lck clustering results in suboptimal activation of the downstream signaling events, which correlates with the preferential development into a Treg phenotype. Overall, we report a novel role for Cav-1 in TCR/Lck spatial distribution upon TCR triggering, which controls T-cell fate toward a regulatory phenotype. This alteration translated into a significant increase in the frequency of Tregs and reduced GVHD in vivo.


Subject(s)
Caveolin 1/metabolism , Caveolin 1/physiology , Gene Expression Regulation , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/cytology , Adaptor Proteins, Signal Transducing/genetics , Animals , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/cytology , Caveolin 1/genetics , Cell Differentiation , Forkhead Transcription Factors/metabolism , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation , Humans , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phosphorylation , Prospective Studies , Signal Transduction , T-Lymphocytes, Regulatory/cytology , Transforming Growth Factor beta/metabolism , Transplantation, Homologous
15.
Blood ; 128(15): 1979-1986, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27549307

ABSTRACT

Graft-versus-host disease (GVHD) is among the most challenging complications in unrelated donor hematopoietic cell transplantation (HCT). The highly polymorphic MHC class I chain-related gene A, MICA, encodes a stress-induced glycoprotein expressed primarily on epithelia. MICA interacts with the invariant activating receptor NKG2D, expressed by cytotoxic lymphocytes, and is located in the MHC, next to HLA-B Hence, MICA has the requisite attributes of a bona fide transplantation antigen. Using high-resolution sequence-based genotyping of MICA, we retrospectively analyzed the clinical effect of MICA mismatches in a multicenter cohort of 922 unrelated donor HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 10/10 allele-matched HCT pairs. Among the 922 pairs, 113 (12.3%) were mismatched in MICA MICA mismatches were significantly associated with an increased incidence of grade III-IV acute GVHD (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.50-2.23; P < .001), chronic GVHD (HR, 1.50; 95% CI, 1.45-1.55; P < .001), and nonelapse mortality (HR, 1.35; 95% CI, 1.24-1.46; P < .001). The increased risk for GVHD was mirrored by a lower risk for relapse (HR, 0.50; 95% CI, 0.43-0.59; P < .001), indicating a possible graft-versus-leukemia effect. In conclusion, when possible, selecting a MICA-matched donor significantly influences key clinical outcomes of HCT in which a marked reduction of GVHD is paramount. The tight linkage disequilibrium between MICA and HLA-B renders identifying a MICA-matched donor readily feasible in clinical practice.


Subject(s)
Graft vs Host Disease , HLA Antigens/genetics , Hematopoietic Stem Cell Transplantation , Histocompatibility Antigens Class I/genetics , Histocompatibility Testing , Linkage Disequilibrium , Acute Disease , Adolescent , Adult , Aged , Allografts , Child , Child, Preschool , Chronic Disease , Female , Graft vs Host Disease/epidemiology , Graft vs Host Disease/etiology , Graft vs Host Disease/genetics , Graft vs Host Disease/prevention & control , Humans , Incidence , Infant , Infant, Newborn , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily K/genetics , Retrospective Studies
16.
Blood ; 126(13): 1621-8, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26265697

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a naturally occurring immune regulatory population associated with inhibition of ongoing inflammatory responses. In vitro generation of MDSCs from bone marrow has been shown to enhance survival in an acute model of lethal graft-versus-host disease (GVHD). However, donor MDSC infusion only partially ameliorates GVHD lethality. In order to improve the potential therapeutic benefit and ultimately survival outcomes, we set out to investigate the fate of MDSCs after transfer in the setting of acute GVHD (aGVHD). MDSCs transferred to lethally irradiated recipients of allogeneic donor hematopoietic grafts are exposed to an intense inflammatory environment associated with aGVHD, which we now show directly undermines their suppressive capacity. Under a conditioning regimen and GVHD inflammatory settings, MDSCs rapidly lose suppressor function and their potential to inhibit GVHD lethality, which is associated with their induced conversion toward a mature inflammasome-activated state. We find even brief in vitro exposure to inflammasome-activating mediators negates the suppressive potential of cultured murine and human-derived MDSCs. Consistent with a role for the inflammasome, donor MDSCs deficient in the adaptor ASC (apoptosis-associated speck-like protein containing a CARD), which assembles inflammasome complexes, conferred improved survival of mice developing GVHD compared with wild-type donor MDSCs. These data suggest the use of MDSCs as a therapeutic approach for preventing GVHD and other systemic inflammatory conditions will be more effective when combined with approaches limiting in vivo MDSC inflammasome activation, empowering MDSCs to maintain their suppressive potential.


Subject(s)
Adoptive Transfer , Graft vs Host Disease/immunology , Graft vs Host Disease/therapy , Inflammasomes/immunology , Myeloid Cells/immunology , Myeloid Cells/transplantation , Animals , Bone Marrow Cells/cytology , CD11 Antigens/immunology , Cell Differentiation , Cells, Cultured , Graft vs Host Disease/pathology , Humans , Interleukin-1beta/immunology , Mice , Myeloid Cells/cytology , Myeloid Cells/pathology
17.
J Immunol ; 195(12): 5795-804, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26538394

ABSTRACT

Acute graft-versus-host disease (GvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation. During the initiation phase of acute GvHD, endogenous danger signals such as ATP are released and inform the innate immune system via activation of the purinergic receptor P2X7 that a noninfectious damage has occurred. A second ATP-activated purinergic receptor involved in inflammatory diseases is P2Y2. In this study, we used P2y2(-/-) mice to test the role of this receptor in GvHD. P2y2(-/-) recipients experienced reduced GvHD-related mortality, IL-6 levels, enterocyte apoptosis, and histopathology scores. Chimeric mice with P2y2 deficiency restricted to hematopoietic tissues survived longer after GvHD induction than did wild-type mice. P2y2 deficiency of the recipient was connected to lower levels of myeloperoxidase in the intestinal tract of mice developing GvHD and a reduced myeloid cell signature. Selective deficiency of P2Y2 in inflammatory monocytes decreased GvHD severity. Mechanistically, P2y2(-/-) inflammatory monocytes displayed defective ERK activation and reactive oxygen species production. Compatible with a role of P2Y2 in human GvHD, the frequency of P2Y2(+) cells in inflamed GvHD lesions correlated with histopathological GvHD severity. Our findings indicate a novel function for P2Y2 in ATP-activated recipient myeloid cells during GvHD, which could be exploited when targeting danger signals to prevent GvHD.


Subject(s)
Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation , Myeloid Cells/metabolism , Receptors, Purinergic P2Y2/metabolism , Adenosine Triphosphate/metabolism , Animals , Graft vs Host Disease/drug therapy , Humans , Interleukin-6/metabolism , Intestines/immunology , MAP Kinase Signaling System/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Myeloid Cells/immunology , Reactive Oxygen Species/metabolism , Receptors, Purinergic P2Y2/genetics
18.
Front Immunol ; 15: 1347492, 2024.
Article in English | MEDLINE | ID: mdl-38500877

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) is frequently performed to cure hematological malignancies, such as acute myeloid leukemia (AML), through the graft-versus-leukemia (GVL) effect. In this immunological process, donor immune cells eliminate residual cancer cells in the patient and exert tumor control through immunosurveillance. However, GVL failure and subsequent leukemia relapse are frequent and associated with a dismal prognosis. A better understanding of the mechanisms underlying AML immune evasion is essential for developing novel therapeutic strategies to boost the GVL effect. Cellular metabolism has emerged as an essential regulator of survival and cell fate for both cancer and immune cells. Leukemia and T cells utilize specific metabolic programs, including the orchestrated use of glucose, amino acids, and fatty acids, to support their growth and function. Besides regulating cell-intrinsic processes, metabolism shapes the extracellular environment and plays an important role in cell-cell communication. This review focuses on recent advances in the understanding of how metabolism might affect the anti-leukemia immune response. First, we provide a general overview of the mechanisms of immune escape after allo-HCT and an introduction to leukemia and T cell metabolism. Further, we discuss how leukemia and myeloid cell metabolism contribute to an altered microenvironment that impairs T cell function. Next, we review the literature linking metabolic processes in AML cells with their inhibitory checkpoint ligand expression. Finally, we focus on recent findings concerning the role of systemic metabolism in sustained GVL efficacy. While the majority of evidence in the field still stems from basic and preclinical studies, we discuss translational findings and propose further avenues for bridging the gap between bench and bedside.


Subject(s)
Graft vs Host Disease , Hematologic Neoplasms , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/therapy , T-Lymphocytes , Graft vs Leukemia Effect , Tumor Microenvironment
19.
Cancer Res Commun ; 4(9): 2359-2373, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39186002

ABSTRACT

Chimeric antigen receptor (CAR) T cells can effectively treat leukemias, but sustained antitumor responses can be hindered by a lack of CAR T-cell persistence. Cytotoxic effector T cells are short-lived, and establishment of CAR-T cells with memory to ensure immune surveillance is important. Memory T cells depend on cytokine support, with IL7 activation of the IL7 receptor (IL7R) being critical. However, IL7R surface expression is negatively regulated by exposure to IL7. We aimed to support CAR T-cell persistence by equipping CAR-T cells with a sustained IL7Rα signal. We engineered T cells to constitutively secrete IL7 or to express an anti-acute myeloid leukemia-targeted IL7Rα-chimeric cytokine receptor (CCR) and characterized the phenotype of these cell types. Canonical downstream signaling was activated in CCR-T cells with IL7R activation. When coexpressed with a cytotoxic CAR, functionality of both the CCR and CAR was maintained. We designed hybrid CAR-CCR and noted membrane proximity of the intracellular domains as vital for signaling. These data show cell-intrinsic cytokine support with canonical signaling, and functionality can be provided via expression of an IL7Rα domain whether independently expressed or incorporated into a cytotoxic CAR for use in anticancer therapy. SIGNIFICANCE: To improve the phenotype of tumor-directed T-cell therapy, we show that provision of cell-intrinsic IL7R-mediated signaling is preferable to activation of cells with exogenous IL7. We engineer this signaling via independent receptor engineering and incorporation into a CAR and validate maintained antigen-specific cytotoxic activity.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Signal Transduction , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Interleukin-7/metabolism , Interleukin-7/genetics , Receptors, Interleukin-7/metabolism , Receptors, Interleukin-7/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Interleukin-7 Receptor alpha Subunit
20.
Nat Commun ; 15(1): 451, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200005

ABSTRACT

Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8+ T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8+ T cell pool. CD8+ T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8+ T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E2 (PGE2), which drives mitochondrial depolarization in CD8+ T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE2 sensing promotes CD8+ T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE2-autophagy-glutathione axis defines the metabolic adaptation of CD8+ T cells to the intestinal microenvironment, to ultimately influence the T cell pool.


Subject(s)
Autophagy , CD8-Positive T-Lymphocytes , Humans , Animals , Mice , Dinoprostone , Genes, Mitochondrial , Glutathione
SELECTION OF CITATIONS
SEARCH DETAIL