Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nucleic Acids Res ; 50(10): 5443-5466, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35061895

ABSTRACT

Although recent regulatory approval of splice-switching oligonucleotides (SSOs) for the treatment of neuromuscular disease such as Duchenne muscular dystrophy has been an advance for the splice-switching field, current SSO chemistries have shown limited clinical benefit due to poor pharmacology. To overcome limitations of existing technologies, we engineered chimeric stereopure oligonucleotides with phosphorothioate (PS) and phosphoryl guanidine-containing (PN) backbones. We demonstrate that these chimeric stereopure oligonucleotides have markedly improved pharmacology and efficacy compared with PS-modified oligonucleotides, preventing premature death and improving median survival from 49 days to at least 280 days in a dystrophic mouse model with an aggressive phenotype. These data demonstrate that chemical optimization alone can profoundly impact oligonucleotide pharmacology and highlight the potential for continued innovation around the oligonucleotide backbone. More specifically, we conclude that chimeric stereopure oligonucleotides are a promising splice-switching modality with potential for the treatment of neuromuscular and other genetic diseases impacting difficult to reach tissues such as the skeletal muscle and heart.


Subject(s)
Muscular Dystrophy, Duchenne , Oligonucleotides, Antisense/chemistry , Phosphorothioate Oligonucleotides/chemistry , Animals , Exons , Mice , Muscle, Skeletal , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/therapy , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Phosphorothioate Oligonucleotides/pharmacology , RNA Splicing/drug effects
2.
Mol Cell ; 45(1): 132-9, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22244335

ABSTRACT

Histone H2B ubiquitylation is a transcription-dependent modification that not only regulates nucleosome dynamics but also controls the trimethylation of histone H3 on lysine 4 by promoting ubiquitylation of Swd2, a component of both the histone methyltransferase COMPASS complex and the cleavage and polyadenylation factor(CPF). We show that preventing either H2B ubiquitylation or H2B-dependent modification of Swd2 results in nuclear accumulation of poly(A) RNA due to a defect in the integrity and stability of APT, a subcomplex of the CPF. Ubiquitin-regulated APT complex dynamics is required for the correct recruitment of the mRNA export receptor Mex67 to nuclear mRNPs. While H2B ubiquitylation controls the recruitment of the different Mex67 adaptors to mRNPs, the effect of Swd2 ubiquitylation is restricted to Yra1 and Nab2, which, in turn, controls poly(A) tail length. Modification of H2B thus participates in the crosstalk between cotranscriptional events and assembly of mRNPs linking nuclear processing and mRNA export.


Subject(s)
Histones/metabolism , Ribonucleoproteins/metabolism , Ubiquitination , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Nuclear Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism
3.
Hum Mol Genet ; 26(17): 3235-3252, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28575395

ABSTRACT

Oculopharyngeal muscular dystrophy (OPMD) is a late onset disease caused by polyalanine expansion in the poly(A) binding protein nuclear 1 (PABPN1). Several mouse models have been generated to study OPMD; however, most of these models have employed transgenic overexpression of alanine-expanded PABPN1. These models do not recapitulate the OPMD patient genotype and PABPN1 overexpression could confound molecular phenotypes. We have developed a knock-in mouse model of OPMD (Pabpn1+/A17) that contains one alanine-expanded Pabpn1 allele under the control of the native promoter and one wild-type Pabpn1 allele. This mouse is the closest available genocopy of OPMD patients. We show that Pabpn1+/A17 mice have a mild myopathic phenotype in adult and aged animals. We examined early molecular and biochemical phenotypes associated with expressing native levels of A17-PABPN1 and detected shorter poly(A) tails, modest changes in poly(A) signal (PAS) usage, and evidence of mitochondrial damage in these mice. Recent studies have suggested that a loss of PABPN1 function could contribute to muscle pathology in OPMD. To investigate a loss of function model of pathology, we generated a heterozygous Pabpn1 knock-out mouse model (Pabpn1+/Δ). Like the Pabpn1+/A17 mice, Pabpn1+/Δ mice have mild histologic defects, shorter poly(A) tails, and evidence of mitochondrial damage. However, the phenotypes detected in Pabpn1+/Δ mice only partially overlap with those detected in Pabpn1+/A17 mice. These results suggest that loss of PABPN1 function could contribute to but may not completely explain the pathology detected in Pabpn1+/A17 mice.


Subject(s)
Muscular Dystrophy, Oculopharyngeal/genetics , Muscular Dystrophy, Oculopharyngeal/metabolism , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism , Animals , Disease Models, Animal , Gene Knock-In Techniques , Genotype , Mice , Mice, Knockout , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Oculopharyngeal/pathology , Peptides , Phenotype
4.
Mol Ther ; 24(4): 770-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26758691

ABSTRACT

Primary hyperoxaluria type 1 (PH1) is an autosomal recessive, metabolic disorder caused by mutations of alanine-glyoxylate aminotransferase (AGT), a key hepatic enzyme in the detoxification of glyoxylate arising from multiple normal metabolic pathways to glycine. Accumulation of glyoxylate, a precursor of oxalate, leads to the overproduction of oxalate in the liver, which accumulates to high levels in kidneys and urine. Crystalization of calcium oxalate (CaOx) in the kidney ultimately results in renal failure. Currently, the only treatment effective in reduction of oxalate production in patients who do not respond to high-dose vitamin B6 therapy is a combined liver/kidney transplant. We explored an alternative approach to prevent glyoxylate production using Dicer-substrate small interfering RNAs (DsiRNAs) targeting hydroxyacid oxidase 1 (HAO1) mRNA which encodes glycolate oxidase (GO), to reduce the hepatic conversion of glycolate to glyoxylate. This approach efficiently reduces GO mRNA and protein in the livers of mice and nonhuman primates. Reduction of hepatic GO leads to normalization of urine oxalate levels and reduces CaOx deposition in a preclinical mouse model of PH1. Our results support the use of DsiRNA to reduce liver GO levels as a potential therapeutic approach to treat PH1.


Subject(s)
Alcohol Oxidoreductases/genetics , Calcium Oxalate/metabolism , Hyperoxaluria, Primary/therapy , RNA, Small Interfering/administration & dosage , Animals , DEAD-box RNA Helicases/metabolism , Disease Models, Animal , Glyoxylates/urine , Humans , Hyperoxaluria, Primary/enzymology , Hyperoxaluria, Primary/urine , Liver/metabolism , Mice , Nanoparticles/chemistry , RNA, Small Interfering/pharmacology , Ribonuclease III/metabolism
5.
Am J Physiol Cell Physiol ; 308(11): C919-31, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25810257

ABSTRACT

Myoblast fusion is critical for proper muscle growth and regeneration. During myoblast fusion, the localization of some molecules is spatially restricted; however, the exact reason for such localization is unknown. Creatine kinase B (CKB), which replenishes local ATP pools, localizes near the ends of cultured primary mouse myotubes. To gain insights into the function of CKB, we performed a yeast two-hybrid screen to identify CKB-interacting proteins. We identified molecules with a broad diversity of roles, including actin polymerization, intracellular protein trafficking, and alternative splicing, as well as sarcomeric components. In-depth studies of α-skeletal actin and α-cardiac actin, two predominant muscle actin isoforms, demonstrated their biochemical interaction and partial colocalization with CKB near the ends of myotubes in vitro. In contrast to other cell types, specific knockdown of CKB did not grossly affect actin polymerization in myotubes, suggesting other muscle-specific roles for CKB. Interestingly, knockdown of CKB resulted in significantly increased myoblast fusion and myotube size in vitro, whereas knockdown of creatine kinase M had no effect on these myogenic parameters. Our results suggest that localized CKB plays a key role in myotube formation by limiting myoblast fusion during myogenesis.


Subject(s)
Creatine Kinase, BB Form/genetics , Muscle Development/genetics , Muscle Fibers, Skeletal/enzymology , Myoblasts/enzymology , Actins/genetics , Actins/metabolism , Alternative Splicing , Animals , Cell Fusion , Creatine Kinase, BB Form/antagonists & inhibitors , Creatine Kinase, BB Form/metabolism , Creatine Kinase, MM Form/genetics , Creatine Kinase, MM Form/metabolism , Gene Expression Regulation, Developmental , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Muscle Fibers, Skeletal/cytology , Myoblasts/cytology , Polymerization , Primary Cell Culture , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Two-Hybrid System Techniques
6.
Proc Natl Acad Sci U S A ; 108(30): 12390-5, 2011 Jul 26.
Article in English | MEDLINE | ID: mdl-21734151

ABSTRACT

Here we report a human intellectual disability disease locus on chromosome 14q31.3 corresponding to mutation of the ZC3H14 gene that encodes a conserved polyadenosine RNA binding protein. We identify ZC3H14 mRNA transcripts in the human central nervous system, and we find that rodent ZC3H14 protein is expressed in hippocampal neurons and colocalizes with poly(A) RNA in neuronal cell bodies. A Drosophila melanogaster model of this disease created by mutation of the gene encoding the ZC3H14 ortholog dNab2, which also binds polyadenosine RNA, reveals that dNab2 is essential for development and required in neurons for normal locomotion and flight. Biochemical and genetic data indicate that dNab2 restricts bulk poly(A) tail length in vivo, suggesting that this function may underlie its role in development and disease. These studies reveal a conserved requirement for ZC3H14/dNab2 in the metazoan nervous system and identify a poly(A) RNA binding protein associated with a human brain disorder.


Subject(s)
Drosophila Proteins/genetics , Drosophila Proteins/physiology , Intellectual Disability/genetics , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/physiology , Adolescent , Adult , Amino Acid Sequence , Animals , Central Nervous System/physiology , Chromosome Mapping , Chromosomes, Human, Pair 14/genetics , Cohort Studies , Consanguinity , Conserved Sequence , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Evolution, Molecular , Female , Flight, Animal/physiology , Gene Knockdown Techniques , Genes, Recessive , Hippocampus/metabolism , Humans , Iran , Male , Models, Animal , Molecular Sequence Data , Pedigree , Poly(A)-Binding Proteins , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Young Adult , Zinc Fingers/genetics
7.
Hum Mol Genet ; 19(6): 1058-65, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20035013

ABSTRACT

The nuclear poly(A)-binding protein 1 (PABPN1) is a ubiquitously expressed protein that plays a critical role in polyadenylation. Short expansions of the polyalanine tract in the N-terminus of PABPN1 lead to oculopharyngeal muscular dystrophy (OPMD), which is an adult onset disease characterized by eyelid drooping, difficulty in swallowing and weakness in the proximal limb muscles. Although significant data from in vitro biochemical assays define the function of PABPN1 in control of poly(A) tail length, little is known about the role of PABPN1 in mammalian cells. To assess the function of PABPN1 in mammalian cells and specifically in cells affected in OPMD, we examined the effects of PABPN1 depletion using siRNA in primary mouse myoblasts from extraocular, pharyngeal and limb muscles. PABPN1 knockdown significantly decreased cell proliferation and myoblast differentiation during myogenesis in vitro. At the molecular level, PABPN1 depletion in myoblasts led to a shortening of mRNA poly(A) tails, demonstrating the cellular function of PABPN1 in polyadenylation control in a mammalian cell. In addition, PABPN1 depletion caused nuclear accumulation of poly(A) RNA, revealing that PABPN1 is required for proper poly(A) RNA export from the nucleus. Together, these experiments demonstrate that PABPN1 plays an essential role in myoblast proliferation and differentiation, suggesting that it is required for muscle regeneration and maintenance in vivo.


Subject(s)
Cell Nucleus/metabolism , Muscle Development , Poly(A)-Binding Protein II/metabolism , Poly(A)-Binding Protein I/metabolism , RNA, Messenger/biosynthesis , Animals , Cell Differentiation , Cell Proliferation , Mice , Mice, Inbred BALB C , Myoblasts/cytology , Myoblasts/metabolism , Poly A/metabolism , Polyadenylation , RNA Transport
8.
J Cell Sci ; 123(Pt 18): 3052-60, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20736301

ABSTRACT

Adult regenerative myogenesis is vital for restoring normal tissue structure after muscle injury. Muscle regeneration is dependent on progenitor satellite cells, which proliferate in response to injury, and their progeny differentiate and undergo cell-cell fusion to form regenerating myofibers. Myogenic progenitor cells must be precisely regulated and positioned for proper cell fusion to occur. Chemokines are secreted proteins that share both leukocyte chemoattractant and cytokine-like behavior and affect the physiology of a number of cell types. We investigated the steady-state mRNA levels of 84 chemokines, chemokine receptors and signaling molecules, to obtain a comprehensive view of chemokine expression by muscle cells during myogenesis in vitro. A large number of chemokines and chemokine receptors were expressed by primary mouse muscle cells, especially during times of extensive cell-cell fusion. Furthermore, muscle cells exhibited different migratory behavior throughout myogenesis in vitro. One receptor-ligand pair, CXCR4-SDF-1alpha (CXCL12), regulated migration of both proliferating and terminally differentiated muscle cells, and was necessary for proper fusion of muscle cells. Given the large number of chemokines and chemokine receptors directly expressed by muscle cells, these proteins might have a greater role in myogenesis than previously appreciated.


Subject(s)
Cell Movement , Chemokines/genetics , Gene Expression Regulation , Muscle Development , Myoblasts/cytology , Animals , Cells, Cultured , Chemokines/metabolism , Mice , Mice, Inbred BALB C , Myoblasts/metabolism , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism
9.
Cytokine ; 60(3): 875-81, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22995210

ABSTRACT

BACKGROUND: Recently, attenuation of anti-inflammatory and increase of pro-inflammatory mediators was demonstrated in individuals with Down syndrome (DS) in comparison with euploid patients during periodontal disease (PD), suggesting a shift to a more aggressive inflammation in DS. AIM: To determine the influence of DS in the modulation of interferons (IFNs) signaling pathway in PD. MATERIALS AND METHODS: Clinical periodontal assessment was performed and gingival tissue samples obtained from a total of 51 subjects, including 19 DS individuals with PD, 20 euploid individuals with PD and 12 euploid individuals without PD. Expression levels of interferon-gamma (IFNG) and interferon-alpha (IFNA), and their receptors IFNGR1, IFNGR2, IFNAR1 and IFNAR2, the signaling intermediates Janus kinase 1 (JAK1), signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF1) were determined using real time quantitative polymerase chain reaction (qPCR). RESULTS: Clinical signs of periodontal disease were markedly more severe in DS and euploid patients with PD in comparison to euploid and periodontally healthy patients. There was no difference on mRNA levels of IFNA, IFNG, INFGR2, IFNAR1 and IFNAR2 between DS and euploid individuals, even though some of these genes are located on chromosome 21. STAT1 and IRF1 mRNA levels were significantly lower in DS patients in comparison with euploid individuals with PD. In euploid individuals, PD was associated with an increased expression of IFNGR1, IFNGR2, IFNAR1, STAT1 and IRF1. CONCLUSIONS: Reduced expression of STAT1 and IRF1 genes indicate an impaired activation of IFNs signaling in individuals with DS and PD. Expression of IFNA, IFNG and IFN receptors was not altered in DS patients, indicating that indirect mechanisms are involved in the reduced activation of IFN signaling.


Subject(s)
Down Syndrome/genetics , Gene Expression Regulation , Interferon-alpha/metabolism , Interferon-gamma/metabolism , Periodontitis/genetics , Adult , Down Syndrome/complications , Down Syndrome/metabolism , Female , Humans , Interferon Regulatory Factor-1/metabolism , Janus Kinase 1/metabolism , Male , Middle Aged , Periodontitis/complications , Periodontitis/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Interferon alpha-beta/analysis , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction , Young Adult , Interferon gamma Receptor
10.
Nat Biotechnol ; 40(7): 1093-1102, 2022 07.
Article in English | MEDLINE | ID: mdl-35256816

ABSTRACT

Technologies that recruit and direct the activity of endogenous RNA-editing enzymes to specific cellular RNAs have therapeutic potential, but translating them from cell culture into animal models has been challenging. Here we describe short, chemically modified oligonucleotides called AIMers that direct efficient and specific A-to-I editing of endogenous transcripts by endogenous adenosine deaminases acting on RNA (ADAR) enzymes, including the ubiquitously and constitutively expressed ADAR1 p110 isoform. We show that fully chemically modified AIMers with chimeric backbones containing stereopure phosphorothioate and nitrogen-containing linkages based on phosphoryl guanidine enhanced potency and editing efficiency 100-fold compared with those with uniformly phosphorothioate-modified backbones in vitro. In vivo, AIMers targeted to hepatocytes with N-acetylgalactosamine achieve up to 50% editing with no bystander editing of the endogenous ACTB transcript in non-human primate liver, with editing persisting for at least one month. These results support further investigation of the therapeutic potential of stereopure AIMers.


Subject(s)
Oligonucleotides , RNA Editing , Animals , Primates/genetics , Primates/metabolism , RNA , RNA Editing/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
11.
J Biol Chem ; 285(34): 26022-32, 2010 Aug 20.
Article in English | MEDLINE | ID: mdl-20554526

ABSTRACT

Proteins bound to the poly(A) tail of mRNA transcripts, called poly(A)-binding proteins (Pabs), play critical roles in regulating RNA stability, translation, and nuclear export. Like many mRNA-binding proteins that modulate post-transcriptional processing events, assigning specific functions to Pabs is challenging because these processing events are tightly coupled to one another. To investigate the role that a novel class of zinc finger-containing Pabs plays in these coupled processes, we defined the mode of polyadenosine RNA recognition for the conserved Saccharomyces cerevisiae Nab2 protein and assessed in vivo consequences caused by disruption of RNA binding. The polyadenosine RNA recognition domain of Nab2 consists of three tandem Cys-Cys-Cys-His (CCCH) zinc fingers. Cells expressing mutant Nab2 proteins with decreased binding to polyadenosine RNA show growth defects as well as defects in poly(A) tail length but do not accumulate poly(A) RNA in the nucleus. We also demonstrate genetic interactions between mutant nab2 alleles and mutant alleles of the mRNA 3'-end processing machinery. Together, these data provide strong evidence that Nab2 binding to RNA is critical for proper control of poly(A) tail length.


Subject(s)
Adenosine/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Polymers/metabolism , RNA 3' Polyadenylation Signals/physiology , RNA, Fungal/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Nucleus , Mutation , Protein Binding , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Zinc Fingers
12.
Transl Vis Sci Technol ; 10(1): 23, 2021 01.
Article in English | MEDLINE | ID: mdl-33510962

ABSTRACT

Purpose: Antisense oligonucleotides have been under investigation as potential therapeutics for many diseases, including inherited retinal diseases. Chemical modifications, such as chiral phosphorothioate (PS) backbone modification, are often used to improve stability and pharmacokinetic properties of these molecules. We aimed to generate a stereopure MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) antisense oligonucleotide as a tool to assess the impact stereochemistry has on potency, efficacy, and durability of oligonucleotide activity when delivered by intravitreal injection to eye. Methods: We generated a stereopure oligonucleotide (MALAT1-200) and assessed the potency, efficacy, and durability of its MALAT1 RNA-depleting activity compared with a stereorandom mixture, MALAT1-181, and other controls in in vitro assays, in vivo mouse and nonhuman primate (NHP) eyes, and ex vivo human retina cultures. Results: The activity of the stereopure oligonucleotide is superior to its stereorandom mixture counterpart with the same sequence and chemical modification pattern in in vitro assays, in vivo mouse and NHP eyes, and ex vivo human retina cultures. Findings in NHPs showed durable activity of the stereopure oligonucleotide in the retina, with nearly 95% reduction of MALAT1 RNA maintained for 4 months postinjection. Conclusions: An optimized, stereopure antisense oligonucleotide shows enhanced potency, efficacy, and durability of MALAT1 RNA depletion in the eye compared with its stereorandom counterpart in multiple preclinical models. Translational Relevance: As novel therapeutics, stereopure oligonucleotides have the potential to enable infrequent administration and low-dose regimens for patients with genetic diseases of the eye.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Animals , Eye , Humans , Mice , Oligonucleotides , Oligonucleotides, Antisense/genetics
13.
Mol Cell Biol ; 27(18): 6569-79, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17636033

ABSTRACT

mRNA stability is modulated by elements in the mRNA transcript and their cognate RNA binding proteins. Poly(U) binding protein 1 (Pub1) is a cytoplasmic Saccharomyces cerevisiae mRNA binding protein that stabilizes transcripts containing AU-rich elements (AREs) or stabilizer elements (STEs). In a yeast two-hybrid screen, we identified nuclear poly(A) binding protein 2 (Nab2) as being a Pub1-interacting protein. Nab2 is an essential nucleocytoplasmic shuttling mRNA binding protein that regulates poly(A) tail length and mRNA export. The interaction between Pub1 and Nab2 was confirmed by copurification and in vitro binding assays. The interaction is mediated by the Nab2 zinc finger domain. Analysis of the functional link between these proteins reveals that Nab2, like Pub1, can modulate the stability of specific mRNA transcripts. The half-life of the RPS16B transcript, an ARE-like sequence-containing Pub1 target, is decreased in both nab2-1 and nab2-67 mutants. In contrast, GCN4, an STE-containing Pub1 target, is not affected. Similar results were obtained for other ARE- and STE-containing Pub1 target transcripts. Further analysis reveals that the ARE-like sequence is necessary for Nab2-mediated transcript stabilization. These results suggest that Nab2 functions together with Pub1 to modulate mRNA stability and strengthen a model where nuclear events are coupled to the control of mRNA turnover in the cytoplasm.


Subject(s)
Nucleocytoplasmic Transport Proteins/metabolism , Poly(A)-Binding Proteins/metabolism , RNA Stability , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , In Situ Hybridization, Fluorescence , Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/isolation & purification , Poly(A)-Binding Proteins/isolation & purification , Protein Binding , Protein Structure, Tertiary , RNA, Fungal/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/isolation & purification , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/isolation & purification , Two-Hybrid System Techniques
14.
FEBS J ; 275(8): 1874-88, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18341589

ABSTRACT

Eukaryotic translation initiation factor 5A (eIF5A) is a protein that is highly conserved and essential for cell viability. This factor is the only protein known to contain the unique and essential amino acid residue hypusine. This work focused on the structural and functional characterization of Saccharomyces cerevisiae eIF5A. The tertiary structure of yeast eIF5A was modeled based on the structure of its Leishmania mexicana homologue and this model was used to predict the structural localization of new site-directed and randomly generated mutations. Most of the 40 new mutants exhibited phenotypes that resulted from eIF-5A protein-folding defects. Our data provided evidence that the C-terminal alpha-helix present in yeast eIF5A is an essential structural element, whereas the eIF5A N-terminal 10 amino acid extension not present in archaeal eIF5A homologs, is not. Moreover, the mutants containing substitutions at or in the vicinity of the hypusine modification site displayed nonviable or temperature-sensitive phenotypes and were defective in hypusine modification. Interestingly, two of the temperature-sensitive strains produced stable mutant eIF5A proteins--eIF5A(K56A) and eIF5A(Q22H,L93F)--and showed defects in protein synthesis at the restrictive temperature. Our data revealed important structural features of eIF5A that are required for its vital role in cell viability and underscored an essential function of eIF5A in the translation step of gene expression.


Subject(s)
Models, Molecular , Peptide Initiation Factors/chemistry , Peptide Initiation Factors/metabolism , Protein Biosynthesis/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Animals , Circular Dichroism , Conserved Sequence , Gene Expression Regulation, Fungal , Humans , Molecular Sequence Data , Mutation/genetics , Peptide Initiation Factors/genetics , Protein Folding , Protein Structure, Tertiary , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae/genetics , Sequence Alignment , Temperature , Eukaryotic Translation Initiation Factor 5A
15.
Protein Expr Purif ; 62(2): 146-52, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18786639

ABSTRACT

The Human Respiratory Syncytial Virus (HRSV) fusion protein (F) was expressed in Escherichia coli BL21A using the pET28a vector at 37 degrees C. The protein was purified from the soluble fraction using affinity resin. The structural quality of the recombinant fusion protein and the estimation of its secondary structure were obtained by circular dichroism. Structural models of the fusion protein presented 46% of the helices in agreement with the spectra by circular dichroism analysis. There are only few studies that succeeded in expressing the HRSV fusion protein in bacteria. This is a report on human fusion protein expression in E. coli and structure analysis, representing a step forward in the development of fusion protein F inhibitors and the production of antibodies.


Subject(s)
Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Respiratory Syncytial Virus, Human/chemistry , Viral Fusion Proteins/isolation & purification , Viral Fusion Proteins/metabolism , Amino Acid Sequence , Circular Dichroism , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Humans , Models, Molecular , Molecular Sequence Data , Protein Subunits/chemistry , Protein Subunits/metabolism , Recombinant Fusion Proteins/chemistry , Sequence Alignment , Structural Homology, Protein , Viral Fusion Proteins/chemistry
16.
Nat Biotechnol ; 35(9): 845-851, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28829437

ABSTRACT

Whereas stereochemical purity in drugs has become the standard for small molecules, stereoisomeric mixtures containing as many as a half million components persist in antisense oligonucleotide (ASO) therapeutics because it has been feasible neither to separate the individual stereoisomers, nor to synthesize stereochemically pure ASOs. Here we report the development of a scalable synthetic process that yields therapeutic ASOs having high stereochemical and chemical purity. Using this method, we synthesized rationally designed stereopure components of mipomersen, a drug comprising 524,288 stereoisomers. We demonstrate that phosphorothioate (PS) stereochemistry substantially affects the pharmacologic properties of ASOs. We report that Sp-configured PS linkages are stabilized relative to Rp, providing stereochemical protection from pharmacologic inactivation of the drug. Further, we elucidated a triplet stereochemical code in the stereopure ASOs, 3'-SpSpRp, that promotes target RNA cleavage by RNase H1 in vitro and provides a more durable response in mice than stereorandom ASOs.


Subject(s)
Genetic Therapy/methods , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacokinetics , Phosphorothioate Oligonucleotides/chemistry , Animals , Drug Stability , Female , Humans , Hydrophobic and Hydrophilic Interactions , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligonucleotides , Oligonucleotides, Antisense/therapeutic use , Rats , Rats, Sprague-Dawley , Ribonuclease H/metabolism , Stereoisomerism
17.
J Neuromuscul Dis ; 2(4): 439-446, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-27858752

ABSTRACT

BACKGROUND: Oculopharyngeal muscular dystrophy (OPMD), a late onset disorder affecting specific skeletal muscles, is caused by a (GCG)n expansion mutation in the gene encoding the mRNA processing protein, polyadenylate binding protein nuclear 1 (PABPN1). The expansion in PABPN1 leads to an increase in a stretch of N-terminal alanine residues in the PABPN1 protein from the normal 10 to 12-18. Given this modest change, detection of mutant protein has not been possible without the use of tagged constructs. OBJECTIVE: We sought to generate a polyclonal antibody that recognizes alanine-expanded but not wild type PABPN1 with the goal of making possible analysis of expression and localization of alanine-expanded PABPN1. METHODS: We immunized rabbits with a GST-tagged alanine peptide and tested the resulting serum against alanine-expanded PABPN1 expressed in cell culture as well as in animal models of OPMD. RESULTS: The resulting α-alanine antibody detected PABPN1 proteins that contained 14 or more alanine residues. Importantly, the α-alanine antibody could be used to detect alanine-expanded PABPN1 in muscles from either a mouse or Drosophila model of OPMD. CONCLUSIONS: This α-alanine antibody provides a new tool that will allow for more in-depth study of how alanine expansion affects aggregation, localization, and steady-state levels of alanine-expanded PABPN1 levels in vivo, providing new insight into the molecular mechanisms underlying OPMD.

18.
Skelet Muscle ; 3(1): 23, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24083404

ABSTRACT

BACKGROUND: The nuclear poly(A) binding protein 1 (PABPN1) is a ubiquitously expressed protein that plays critical roles at multiple steps in post-transcriptional regulation of gene expression. Short expansions of the polyalanine tract in the N-terminus of PABPN1 lead to oculopharyngeal muscular dystrophy (OPMD), which is an adult onset disease characterized by eyelid drooping, difficulty in swallowing, and weakness in the proximal limb muscles. Why alanine-expanded PABPN1 leads to muscle-specific pathology is unknown. Given the general function of PABPN1 in RNA metabolism, intrinsic characteristics of skeletal muscle may make this tissue susceptible to the effects of mutant PABPN1. METHODS: To begin to understand the muscle specificity of OPMD, we investigated the steady-state levels of PABPN1 in different tissues of humans and mice. Additionally, we analyzed the levels of PABPN1 during muscle regeneration after injury in mice. Furthermore, we assessed the dynamics of PABPN1 mRNA decay in skeletal muscle compared to kidney. RESULTS: Here, we show that the steady-state levels of both PABPN1 mRNA and protein are drastically lower in mouse and human skeletal muscle, particularly those impacted in OPMD, compared to other tissues. In contrast, PABPN1 levels are increased during muscle regeneration, suggesting a greater requirement for PABPN1 function during tissue repair. Further analysis indicates that modulation of PABPN1 expression is likely due to post-transcriptional mechanisms acting at the level of mRNA stability. CONCLUSIONS: Our results demonstrate that PABPN1 steady-state levels and likely control of expression differ significantly in skeletal muscle as compared to other tissues, which could have important implications for understanding the muscle-specific nature of OPMD.

19.
FEBS J ; 280(17): 4230-50, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23601051

ABSTRACT

The polyadenosine RNA binding protein polyadenylate-binding nuclear protein 1 (PABPN1) plays key roles in post-transcriptional processing of RNA. Although PABPN1 is ubiquitously expressed and presumably contributes to control of gene expression in all tissues, mutation of the PABPN1 gene causes the disease oculopharyngeal muscular dystrophy (OPMD), in which a limited set of skeletal muscles are affected. A major goal in the field of OPMD research is to understand why mutation of a ubiquitously expressed gene leads to a muscle-specific disease. PABPN1 plays a well-documented role in controlling the poly(A) tail length of RNA transcripts but new functions are emerging through studies that exploit a variety of unbiased screens as well as model organisms. This review addresses (a) the molecular function of PABPN1 incorporating recent findings that reveal novel cellular functions for PABPN1 and (b) the approaches that are being used to understand the molecular defects that stem from expression of mutant PABPN1. The long-term goal in this field of research is to understand the key molecular functions of PABPN1 in muscle as well as the mechanisms that underlie the pathological consequences of mutant PABPN1. Armed with this information, researchers can seek to develop therapeutic approaches to enhance the quality of life for patients afflicted with OPMD.


Subject(s)
Muscle, Skeletal/pathology , Muscular Dystrophy, Oculopharyngeal/etiology , Muscular Dystrophy, Oculopharyngeal/pathology , Poly(A)-Binding Protein I/metabolism , Humans , Muscle, Skeletal/metabolism , Muscular Dystrophy, Oculopharyngeal/metabolism
20.
J Periodontol ; 83(7): 926-35, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22050548

ABSTRACT

BACKGROUND: Individuals with Down syndrome (DS) have a higher prevalence and severity of periodontal disease, which cannot be explained by poor oral hygiene alone and is related to changes in the immune response. The aim of this study is to evaluate whether DS was associated with differential modulation of expression of genes associated with proinflammatory and anti-inflammatory responses in periodontal disease. METHODS: A total of 51 individuals were evaluated: 19 individuals with DS and periodontal disease (group 1), 20 euploid individuals with periodontal disease (group 2; positive control), and 12 euploid individuals without periodontal disease (group 3; negative control). Clinical periodontal evaluation and gingival biopsies were performed. Quantitative reverse transcription-polymerase chain reaction was used to determine expression levels of interleukin-10 (IL-10), the receptors IL-10RA and IL-10RB, intracellular adhesion molecule 1 (ICAM-1), interferon-γ-inducible protein 10 (IP-10), and the signaling intermediates Janus kinase 1, signal transducer and activator of transcription 3 (STAT-3), and suppressor of cytokine signaling 3 (SOCS-3). RESULTS: Expression of IL10, SOCS3, IP10, and ICAM1 mRNA in DS patients was significantly lower compared to euploid individuals with periodontal disease, whereas IL-10RB and STAT-3 mRNA levels were higher in individuals with DS. CONCLUSION: Reduced expression of IL-10 coupled with a possible increase of STAT3 activation (increase of STAT3 and reduction of SOCS3 mRNA) indicates an important modulation of the immune response, with attenuation of anti-inflammatory and increase of proinflammatory mediators. This modulation may be related to the increased prevalence and severity of periodontitis in individuals with DS.


Subject(s)
Down Syndrome/immunology , Interleukin-10/analysis , Periodontitis/immunology , Signal Transduction/immunology , Adult , Aged , Biopsy , Chemokine CXCL10/analysis , Dental Plaque Index , Female , Gingiva/immunology , Gingiva/pathology , Gingival Hemorrhage/immunology , Humans , Inflammation Mediators/analysis , Intercellular Adhesion Molecule-1/analysis , Interleukin-10/genetics , Interleukin-10 Receptor alpha Subunit/analysis , Interleukin-10 Receptor beta Subunit/analysis , Janus Kinase 1/analysis , Male , Middle Aged , Periodontal Attachment Loss/immunology , Periodontal Index , Periodontal Pocket/immunology , STAT3 Transcription Factor/analysis , Signal Transduction/genetics , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL