Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Neurosci ; 44(17)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38423764

ABSTRACT

Pavlovian conditioning is thought to involve the formation of learned associations between stimuli and values, and between stimuli and specific features of outcomes. Here, we leveraged human single neuron recordings in ventromedial prefrontal, dorsomedial frontal, hippocampus, and amygdala while patients of both sexes performed an appetitive Pavlovian conditioning task probing both stimulus-value and stimulus-stimulus associations. Ventromedial prefrontal cortex encoded predictive value along with the amygdala, and also encoded predictions about the identity of stimuli that would subsequently be presented, suggesting a role for neurons in this region in encoding predictive information beyond value. Unsigned error signals were found in dorsomedial frontal areas and hippocampus, potentially supporting learning of non-value related outcome features. Our findings implicate distinct human prefrontal and medial temporal neuronal populations in mediating predictive associations which could partially support model-based mechanisms during Pavlovian conditioning.


Subject(s)
Conditioning, Classical , Neurons , Prefrontal Cortex , Humans , Conditioning, Classical/physiology , Male , Female , Prefrontal Cortex/physiology , Neurons/physiology , Adult , Temporal Lobe/physiology , Young Adult , Appetitive Behavior/physiology , Association Learning/physiology
2.
J Neurosci ; 40(24): 4761-4772, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32376780

ABSTRACT

The amygdala plays an important role in many aspects of social cognition and reward learning. Here, we aimed to determine whether human amygdala neurons are involved in the computations necessary to implement learning through observation. We performed single-neuron recordings from the amygdalae of human neurosurgical patients (male and female) while they learned about the value of stimuli through observing the outcomes experienced by another agent interacting with those stimuli. We used a detailed computational modeling approach to describe patients' behavior in the task. We found a significant proportion of amygdala neurons whose activity correlated with both expected rewards for oneself and others, and in tracking outcome values received by oneself or other agents. Additionally, a population decoding analysis suggests the presence of information for both observed and experiential outcomes in the amygdala. Encoding and decoding analyses suggested observational value coding in amygdala neurons occurred in a different subset of neurons than experiential value coding. Collectively, these findings support a key role for the human amygdala in the computations underlying the capacity for learning through observation.SIGNIFICANCE STATEMENT Single-neuron studies of the human brain provide a unique window into the computational mechanisms of cognition. In this study, epilepsy patients implanted intracranially with hybrid depth electrodes performed an observational learning (OL) task. We measured single-neuron activity in the amygdala and found a representation for observational rewards as well as observational expected reward values. Additionally, distinct subsets of amygdala neurons represented self-experienced and observational values. This study provides a rare glimpse into the role of human amygdala neurons in social cognition.


Subject(s)
Amygdala/physiology , Learning/physiology , Models, Neurological , Neurons/physiology , Cognition/physiology , Female , Humans , Male , Social Perception
3.
Nat Hum Behav ; 7(6): 970-985, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36959327

ABSTRACT

Adaptive behaviour in real-world environments requires that choices integrate several variables, including the novelty of the options under consideration, their expected value and uncertainty in value estimation. Here, to probe how integration over decision variables occurs during decision-making, we recorded neurons from the human pre-supplementary motor area (preSMA), ventromedial prefrontal cortex and dorsal anterior cingulate. Unlike the other areas, preSMA neurons not only represented separate pre-decision variables for each choice option but also encoded an integrated utility signal for each choice option and, subsequently, the decision itself. Post-decision encoding of variables for the chosen option was more widely distributed and especially prominent in the ventromedial prefrontal cortex. Our findings position the human preSMA as central to the implementation of value-based decisions.


Subject(s)
Choice Behavior , Motor Cortex , Humans , Choice Behavior/physiology , Prefrontal Cortex/physiology , Gyrus Cinguli/physiology , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL