Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Mol Genet ; 32(9): 1511-1523, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36579833

ABSTRACT

At the neuromuscular junction, the downstream of tyrosine kinase 7 (DOK7) enhances the phosphorylation of muscle-specific kinase (MuSK) and induces clustering of acetylcholine receptors (AChRs). We identified a patient with congenital myasthenic syndrome (CMS) with two heteroallelic mutations in DOK7, c.653-1G>C in intron 5 and c.190G>A predicting p.G64R in the pleckstrin homology domain. iPS cells established from the patient (CMS-iPSCs) showed that c.653-1G>C caused in-frame skipping of exon 6 (120 bp) and frame-shifting activation of a cryptic splice site deleting seven nucleotides in exon 6. p.G64R reduced the expression of DOK7 to 10% of wild-type DOK7, and markedly compromised AChR clustering in transfected C2C12 myotubes. p.G64R-DOK7 made insoluble aggresomes at the juxtanuclear region in transfected C2C12 myoblasts and COS7 cells, which were co-localized with molecules in the autophagosome system. A protease inhibitor MG132 reduced the soluble fraction of p.G64R-DOK7 and enhanced the aggresome formation of p.G64R-DOK7. To match the differentiation levels between patient-derived and control induced pluripotent stem cells (iPSCs), we corrected c.190G>A (p.G64R) by CRISPR/Cas9 to make isogenic iPSCs while retaining c.653-1G>C (CMS-iPSCsCas9). Myogenically differentiated CMS-iPSCs showed juxtanuclear aggregates of DOK7, reduced expression of endogenous DOK7 and reduced phosphorylation of endogenous MuSK. Another mutation, p.T77M, also made aggresome to a less extent compared with p.G64R in transfected COS7 cells. These results suggest that p.G64R-DOK7 makes aggresomes in cultured cells and is likely to compromise MuSK phosphorylation for AChR clustering.


Subject(s)
Induced Pluripotent Stem Cells , Myasthenic Syndromes, Congenital , Humans , Cells, Cultured , Induced Pluripotent Stem Cells/metabolism , Muscle Proteins/genetics , Mutation , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/metabolism , Phosphorylation , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism
2.
PLoS Genet ; 15(4): e1008108, 2019 04.
Article in English | MEDLINE | ID: mdl-31017896

ABSTRACT

RASopathies are a family of related syndromes caused by mutations in regulators of the RAS/Extracellular Regulated Kinase 1/2 (ERK1/2) signaling cascade that often result in neurological deficits. RASopathy mutations in upstream regulatory components, such as NF1, PTPN11/SHP2, and RAS have been well-characterized, but mutation-specific differences in the pathogenesis of nervous system abnormalities remain poorly understood, especially those involving mutations downstream of RAS. Here, we assessed cellular and behavioral phenotypes in mice expressing a Raf1L613V gain-of-function mutation associated with the RASopathy, Noonan Syndrome. We report that Raf1L613V/wt mutants do not exhibit a significantly altered number of excitatory or inhibitory neurons in the cortex. However, we observed a significant increase in the number of specific glial subtypes in the forebrain. The density of GFAP+ astrocytes was significantly increased in the adult Raf1L613V/wt cortex and hippocampus relative to controls. OLIG2+ oligodendrocyte progenitor cells were also increased in number in mutant cortices, but we detected no significant change in myelination. Behavioral analyses revealed no significant changes in voluntary locomotor activity, anxiety-like behavior, or sociability. Surprisingly, Raf1L613V/wt mice performed better than controls in select aspects of the water radial-arm maze, Morris water maze, and cued fear conditioning tasks. Overall, these data show that increased astrocyte and oligodendrocyte progenitor cell (OPC) density in the cortex coincides with enhanced cognition in Raf1L613V/wt mutants and further highlight the distinct effects of RASopathy mutations on nervous system development and function.


Subject(s)
Cerebral Cortex/metabolism , Learning , Mutation , Neuroglia/metabolism , Noonan Syndrome/genetics , Noonan Syndrome/psychology , Proto-Oncogene Proteins c-raf/genetics , Animals , Biomarkers , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , MAP Kinase Signaling System , Maze Learning , Memory , Mice , Mice, Transgenic , Neurons/metabolism , Noonan Syndrome/metabolism , Oligodendroglia/metabolism , Proto-Oncogene Proteins c-raf/metabolism
3.
Hum Mol Genet ; 27(13): 2276-2289, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29659837

ABSTRACT

Growth retardation is a constant feature of Noonan syndrome (NS) but its physiopathology remains poorly understood. We previously reported that hyperactive NS-causing SHP2 mutants impair the systemic production of insulin-like growth factor 1 (IGF1) through hyperactivation of the RAS/extracellular signal-regulated kinases (ERK) signalling pathway. Besides endocrine defects, a direct effect of these mutants on growth plate has not been explored, although recent studies have revealed an important physiological role for SHP2 in endochondral bone growth. We demonstrated that growth plate length was reduced in NS mice, mostly due to a shortening of the hypertrophic zone and to a lesser extent of the proliferating zone. These histological features were correlated with decreased expression of early chondrocyte differentiation markers, and with reduced alkaline phosphatase staining and activity, in NS murine primary chondrocytes. Although IGF1 treatment improved growth of NS mice, it did not fully reverse growth plate abnormalities, notably the decreased hypertrophic zone. In contrast, we documented a role of RAS/ERK hyperactivation at the growth plate level since 1) NS-causing SHP2 mutants enhance RAS/ERK activation in chondrocytes in vivo (NS mice) and in vitro (ATDC5 cells) and 2) inhibition of RAS/ERK hyperactivation by U0126 treatment alleviated growth plate abnormalities and enhanced chondrocyte differentiation. Similar effects were obtained by chronic treatment of NS mice with statins. In conclusion, we demonstrated that hyperactive NS-causing SHP2 mutants impair chondrocyte differentiation during endochondral bone growth through a local hyperactivation of the RAS/ERK signalling pathway, and that statin treatment may be a possible therapeutic approach in NS.


Subject(s)
Chondrocytes/metabolism , Insulin-Like Growth Factor I/genetics , Noonan Syndrome/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Animals , Butadienes/administration & dosage , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Chondrocytes/drug effects , Disease Models, Animal , Growth Plate/abnormalities , Growth Plate/drug effects , Humans , Insulin-Like Growth Factor I/administration & dosage , MAP Kinase Signaling System , Nitriles/administration & dosage , Noonan Syndrome/drug therapy , Noonan Syndrome/pathology
4.
Acta Neuropathol ; 140(5): 695-713, 2020 11.
Article in English | MEDLINE | ID: mdl-32803350

ABSTRACT

Mislocalization and abnormal deposition of TDP-43 into the cytoplasm (TDP-43 proteinopathy) is a hallmark in neurons of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the pathogenic mechanism of the diseases linked to TDP-43 is largely unknown. We hypothesized that the failure of mRNA transport to neuronal axons by TDP-43 may contribute to neurodegeneration in ALS and FTLD, and sought to examine the function of TDP-43 by identifying its target mRNA for axonal transport. We found that mRNAs related to translational function including ribosomal proteins (RPs) were decreased by shRNA-based TDP-43 knock-down in neurites of cortical neurons. TDP-43 binds to and transports the RP mRNAs through their 5' untranslated region, which contains a common 5' terminal oligopyrimidine tract motif and a downstream GC-rich region. We showed by employing in vitro and in vivo models that the RP mRNAs were translated and incorporated into native ribosomes locally in axons to maintain functionality of axonal ribosomes, which is required for local protein synthesis in response to stimulation and stress to axons. We also found that RP mRNAs were reduced in the pyramidal tract of sporadic ALS cases harboring TDP-43 pathology. Our results elucidated a novel function of TDP-43 to control transport of RP mRNAs and local translation by ribosomes to maintain morphological integrity of neuronal axons, and proved the influence of this function of TDP-43 on neurodegeneration in ALS and FTLD associated with TDP-43 proteinopathy.


Subject(s)
DNA-Binding Proteins/metabolism , Protein Biosynthesis/physiology , Protein Transport/physiology , RNA, Messenger/metabolism , Ribosomal Proteins/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Axons/metabolism , Axons/pathology , Humans , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology
5.
Biochem Biophys Res Commun ; 514(4): 1037-1039, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31097218

ABSTRACT

Axonal degeneration occurs in patients with various neurological diseases and traumatic nerve injuries, and Wallerian degeneration is a phenomenon in the prototypical axonal degradation that is observed after injury. Collapsin response mediator protein 2 (CRMP2) is phosphorylated by glycogen synthase kinase 3ß (GSK3ß), and it is involved in Wallerian degeneration after optic nerve injury. We previously developed a CRMP2 knock-in (CRMP2 KI) mouse line, in which CRMP2 phosphorylation by GSK3ß is inhibited; however, Wallerian degeneration in CRMP2 KI mice has not yet been examined. In this study, we examined whether Wallerian degeneration of the optic nerve is suppressed in CRMP2 KI mice. Using one eye removal model, we compared Wallerian degeneration of the optic nerve based on histological and biochemical analyses. Our experimental results indicated that the genetic inhibition of CRMP2 phosphorylation delays Wallerian degeneration after optic nerve injury.


Subject(s)
Intercellular Signaling Peptides and Proteins/genetics , Nerve Tissue Proteins/genetics , Optic Nerve Injuries/genetics , Wallerian Degeneration/genetics , Animals , Disease Models, Animal , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Phosphorylation/drug effects , Phosphorylation/genetics , Semaphorin-3A/pharmacology
6.
J Neuroinflammation ; 16(1): 199, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31666085

ABSTRACT

BACKGROUND: Macrophage-derived high mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) protein, plays a key role in the development of chemotherapy-induced peripheral neuropathy (CIPN) caused by paclitaxel in rodents. Endothelial thrombomodulin (TM) promotes thrombin-induced degradation of HMGB1, and TMα, a recombinant human soluble TM, abolishes peripheral HMGB1-induced allodynia in mice. We thus examined whether HMGB1, particularly derived from macrophages, contributes to oxaliplatin-induced neuropathy in mice and analyzed the anti-neuropathic activity of the TM/thrombin system. METHODS: CIPN models were created by the administration of oxaliplatin in mice and rats, and the nociceptive threshold was assessed by von Frey test or paw pressure test. Macrophage-like RAW264.7 cells were stimulated with oxaliplatin in vitro. Proteins were detected and/or quantified by Western blotting, immunostaining, or enzyme-linked immunosorbent assay. RESULTS: Intraperitoneal administration of an anti-HMGB1-neutralizing antibody (AB) at 1 mg/kg prevented the oxaliplatin-induced allodynia in mice and rats. Antagonists of Toll-like receptor (TLR) 4, receptor for advanced glycation end products (RAGE) and CXCR4 among the HMGB1-targeted pro-nociceptive receptors, also mimicked the anti-neuropathic activity of AB in mice. Macrophage accumulation in the sciatic nerve was observed in mice treated with paclitaxel, but not oxaliplatin, and neither macrophage depletion nor inhibitors of macrophage activation affected oxaliplatin-induced allodynia. Oxaliplatin was 10- to 100-fold less potent than paclitaxel in releasing HMGB1 from macrophage-like RAW264.7 cells. Like AB, TMα at 10 mg/kg prevented the oxaliplatin-induced allodynia in mice as well as rats, an effect abolished by argatroban at 10 mg/kg, a thrombin inhibitor. The anti-neuropathic activity of TMα in oxaliplatin-treated mice was suppressed by oral anticoagulants such as warfarin at 1 mg/kg, dabigatran at 75 mg/kg, and rivaroxaban at 10 mg/kg, but not antiplatelet agents such as aspirin at 50 mg/kg and clopidogrel at 10 mg/kg. Repeated administration of the anticoagulants gradually developed neuropathic allodynia and elevated plasma HMGB1 levels in mice treated with a subeffective dose of oxaliplatin. CONCLUSIONS: Our data thus suggests a causative role of HMGB1 derived from non-macrophage cells in oxaliplatin-induced peripheral neuropathy and a thrombin-dependent anti-neuropathic activity of exogenous TMα and, most probably, endogenous TM.


Subject(s)
Anticoagulants/administration & dosage , HMGB1 Protein/metabolism , Oxaliplatin/toxicity , Peripheral Nervous System Diseases/prevention & control , Thrombin/metabolism , Thrombomodulin/metabolism , Animals , Anticoagulants/adverse effects , Antineoplastic Agents/toxicity , Male , Mice , Peripheral Nervous System Diseases/chemically induced , RAW 264.7 Cells , Rats , Rats, Wistar , Rodentia
7.
Neuropathology ; 39(4): 268-278, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31124187

ABSTRACT

ErbB4 is the protein implicated in familial amyotrophic lateral sclerosis (ALS), designated as ALS19. ErbB4 is a receptor tyrosine kinase activated by its ligands, neuregulins (NRG), and plays an essential role in the function and viability of motor neurons. Mutations in the ALS19 gene lead to the reduced autophosphorylation capacity of the ErbB4 protein upon stimulation with NRG-1, suggesting that the disruption of the NRG-ErbB4 pathway causes motor neuron degeneration. We used immunohistochemistry to study ErbB4 in the spinal cord of patients with sporadic ALS (SALS) to test the hypothesis that ErbB4 may be involved in the pathogenesis of SALS. ErbB4 was specifically immunoreactive in the cytoplasm of motor neurons in the anterior horns of the spinal cord. In patients with SALS, some of the motor neurons lost immunoreactivity with ErbB4, with the proportion of motor neurons with a loss of immunoreactivity correlated with the severity of motor neuron loss. The subcellular localization was altered, demonstrating nucleolar or nuclear localization, threads/dots and spheroids. The ectopic glial immunoreactivity was observed, mainly in the oligodendrocytes of the lateral columns and anterior horns. The reduction in the ErbB4 immunoreactivity was significantly correlated with the cytoplasmic mislocalization of transactivation response DNA-binding protein 43 kDa (TDP-43) in the motor neurons. No alteration in immunoreactivity was observed in the motor neurons of mice carrying atransgene for mutant form of the superoxide dismutase 1 gene (SOD1). This study provided compelling evidence that ErbB4 is also involved in the pathophysiology of SALS, and that the disruption of the NRG-ErbB4 pathway may underlie the TDP-43-dependent motor neuron degeneration in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Receptor, ErbB-4/genetics , Spinal Cord/metabolism , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/metabolism , Animals , DNA-Binding Proteins/metabolism , Female , Humans , Immunohistochemistry , Male , Mice, Transgenic , Middle Aged , Motor Cortex/metabolism , Receptor, ErbB-4/metabolism , Superoxide Dismutase-1/genetics
8.
Adv Exp Med Biol ; 1190: 23-31, 2019.
Article in English | MEDLINE | ID: mdl-31760635

ABSTRACT

Regulation of differentiation and proliferation of Schwann cells is an essential part of the regulation of peripheral nerve development, degeneration, and regeneration. ZNRF1, a ubiquitin ligase, is expressed in undifferentiated/repair Schwann cells, directs glutamine synthetase to proteasomal degradation, and thereby increase glutamate levels in Schwann cell environment. Glutamate elicits subcellular signaling in Schwann cells via mGluR2 to modulate Neuregulin-1/ErbB2/3 signaling and thereby promote undifferentiated phenotype of Schwann cell.


Subject(s)
Glutamic Acid/physiology , Myelin Sheath/physiology , Peripheral Nerves/physiology , Signal Transduction , Carrier Proteins/physiology , Cell Differentiation , Humans , Receptors, AMPA/physiology , Schwann Cells , Ubiquitin-Protein Ligases
9.
Circulation ; 135(19): 1832-1847, 2017 May 09.
Article in English | MEDLINE | ID: mdl-28167635

ABSTRACT

BACKGROUND: Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. METHODS: We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. RESULTS: EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to ß-adrenergic stimulation mediated via canonical ß1- and ß2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. CONCLUSIONS: We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions.


Subject(s)
Embryonic Stem Cells/transplantation , Heart Failure/therapy , Induced Pluripotent Stem Cells/transplantation , Myocytes, Cardiac/transplantation , Tissue Engineering/methods , Ventricular Remodeling/physiology , Animals , Cell Differentiation/physiology , Embryonic Stem Cells/physiology , Heart Failure/pathology , Humans , Induced Pluripotent Stem Cells/physiology , Myocardium/cytology , Myocardium/pathology , Myocytes, Cardiac/physiology , Printing, Three-Dimensional , Rats , Rats, Nude
10.
Hum Mol Genet ; 24(12): 3427-39, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25762155

ABSTRACT

We previously showed by in vitro experiments that the cysteine residue (Cys111) near the dimer interface is critical for monomerization and resultant aggregate formation of mutant Cu, Zn-superoxide dismutase (SOD1) protein, which is toxic to motor neurons in familial amyotrophic lateral sclerosis (ALS). To verify the importance of Cys111 in the mutant SOD1-associated ALS pathogenesis in vivo, we analyzed the disease phenotype of SOD1 transgenic mice harboring H46R mutation alone (H46R mice) or H46R/C111S double mutations (H46R/C111S mice). Behavioral, histological and biochemical analyses of the spinal cord showed that the onset and progression of the disease phenotype were delayed in H46R/C111S mice compared with H46R mice. We found that peroxidized Cys111 of H46R SOD1 plays a role in promoting formation of high molecular weight insoluble SOD1 species that is correlated with the progression of the motor neuron disease phenotype. These results support that Cys111 is a critical residue for the neuronal toxicity of mutant SOD1 in vivo, and the blockage of peroxidation of this residue in mutant SOD1 may constitute a future target for developing ALS treatment.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Cysteine , Motor Neurons/metabolism , Mutation , Protein Conformation , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Amino Acid Substitution , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/mortality , Animals , Disease Models, Animal , Gene Dosage , Humans , Mice , Mice, Transgenic , Motor Neurons/pathology , Oxidation-Reduction , Phenotype , Physical Exertion , Protein Aggregation, Pathological , Protein Folding , Spinal Cord/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Transgenes
11.
Nat Genet ; 39(1): 70-4, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17143285

ABSTRACT

Noonan syndrome, the most common single-gene cause of congenital heart disease, is characterized by short stature, characteristic facies, learning problems and leukemia predisposition. Gain-of-function mutations in PTPN11, encoding the tyrosine phosphatase SHP2, cause approximately 50% of Noonan syndrome cases. SHP2 is required for RAS-ERK MAP kinase (MAPK) cascade activation, and Noonan syndrome mutants enhance ERK activation ex vivo and in mice. KRAS mutations account for <5% of cases of Noonan syndrome, but the gene(s) responsible for the remainder are unknown. We identified missense mutations in SOS1, which encodes an essential RAS guanine nucleotide-exchange factor (RAS-GEF), in approximately 20% of cases of Noonan syndrome without PTPN11 mutation. The prevalence of specific cardiac defects differs in SOS1 mutation-associated Noonan syndrome. Noonan syndrome-associated SOS1 mutations are hypermorphs encoding products that enhance RAS and ERK activation. Our results identify SOS1 mutants as a major cause of Noonan syndrome, representing the first example of activating GEF mutations associated with human disease and providing new insights into RAS-GEF regulation.


Subject(s)
Germ-Line Mutation , Noonan Syndrome/genetics , SOS1 Protein/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Genetic Testing , Humans , Infant , Intracellular Signaling Peptides and Proteins/genetics , Male , Models, Biological , Models, Molecular , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatases/genetics , SOS1 Protein/chemistry
12.
Genes Cells ; 19(1): 66-77, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24256316

ABSTRACT

After peripheral nerve injury, Schwann cells gain a migratory phenotype and remodel their extracellular matrix to provide a supportive environment for axonal regeneration. The soluble neuregulin-1 isoform, that is, glial growth factor (GGF), is expressed in regenerating axons of injured peripheral nerves and regulates Schwann cell motility by activating the ErbB family of tyrosine kinase receptors, but how GGF/ErbB signaling contributes to Schwann cell motility remains unclear. Here, we show that GGF stimulates Schwann cell migration by inducing the formation of a protein complex containing the fibronectin receptor α5ß1 integrin, ErbB2, and focal adhesion kinase (FAK). ErbB2 co-localizes and co-immunoprecipitates with the focal complex members including α5ß1 integrin and FAK after GGF treatment. These effects of GGF appear to involve FAK activation, which occurs downstream of ErbB2 stimulation. RNAi-mediated down-regulation of α5 integrin expression in primary cultured Schwann cells resulted in significantly decreased interaction between FAK and ErbB2, as well as decreased GGF-induced migration. An increase in the α5ß1 integrin-ErbB2-FAK complex formation was observed in injured nerve Schwann cells, but not uninjured control. Taken together, these data suggest that GGF plays an important modulatory role in Schwann cell migration after nerve crush by inducing α5ß1 integrin-ErbB2-FAK complex formation.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/metabolism , Integrin alpha5beta1/metabolism , Neuregulin-1/metabolism , Receptor, ErbB-2/metabolism , Schwann Cells/physiology , Animals , Cell Movement , Female , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Rats , Rats, Sprague-Dawley , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Sciatic Nerve/pathology
13.
Proc Natl Acad Sci U S A ; 109(11): 4257-62, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22371576

ABSTRACT

Noonan syndrome (NS), a genetic disease caused in half of cases by activating mutations of the tyrosine phosphatase SHP2 (PTPN11), is characterized by congenital cardiopathies, facial dysmorphic features, and short stature. How mutated SHP2 induces growth retardation remains poorly understood. We report here that early postnatal growth delay is associated with low levels of insulin-like growth factor 1 (IGF-1) in a mouse model of NS expressing the D61G mutant of SHP2. Conversely, inhibition of SHP2 expression in growth hormone (GH)-responsive cell lines results in increased IGF-1 release upon GH stimulation. SHP2-deficient cells display decreased ERK1/2 phosphorylation and rat sarcoma (RAS) activation in response to GH, whereas expression of NS-associated SHP2 mutants results in ERK1/2 hyperactivation in vitro and in vivo. RAS/ERK1/2 inhibition in SHP2-deficient cells correlates with impaired dephosphorylation of the adaptor Grb2-associated binder-1 (GAB1) on its RAS GTPase-activating protein (RASGAP) binding sites and is rescued by interfering with RASGAP recruitment or function. We demonstrate that inhibition of ERK1/2 activation results in an increase of IGF-1 levels in vitro and in vivo, which is associated with significant growth improvement in NS mice. In conclusion, NS-causing SHP2 mutants inhibit GH-induced IGF-1 release through RAS/ERK1/2 hyperactivation, a mechanism that could contribute to growth retardation. This finding suggests that, in addition to its previously shown beneficial effect on NS-linked cardiac and craniofacial defects, RAS/ERK1/2 modulation could also alleviate the short stature phenotype in NS caused by PTPN11 mutations.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Growth Hormone/pharmacology , Insulin-Like Growth Factor I/metabolism , Mutation/genetics , Noonan Syndrome/enzymology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Adaptor Proteins, Signal Transducing , Animals , Animals, Newborn , Binding Sites , Biometry , Enzyme Activation/drug effects , Insulin-Like Growth Factor I/biosynthesis , Janus Kinase 2/metabolism , Mice , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Noonan Syndrome/blood , Noonan Syndrome/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/metabolism , Phosphorylation/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , STAT5 Transcription Factor/metabolism , ras Proteins/metabolism
14.
Neurol Int ; 16(3): 653-662, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921953

ABSTRACT

The tau protein is a microtubule-associated protein that promotes microtubule stabilization. The phosphorylation of the tau protein has been linked to its dissociation from microtubules. Here, we examined the relationship between neuronal depolarization activity and tau protein phosphorylation by employing model systems in culture as well as in vivo. The KCl-evoked depolarization of cultured neurons has often been used to investigate the effects of neuronal activity. We found dephosphorylation at AT8 sites (S202, T205), T212, AT180 sites (T231, S235), and S396 in KCl-simulated cultured neurons. We also found that the KCl-induced tau protein dephosphorylation increases the level of the tau protein fractionated with stable microtubules. In an in vivo experiment, we demonstrated that the exposure of mice to a new environment activates protein phosphatase 1 in the mouse hippocampus and induces tau protein dephosphorylation. We also found an increased amount of the tau protein in a stable microtubule fraction, suggesting that the dephosphorylation of the tau protein may lead to its increased microtubule association in vivo. These results suggest that the association of microtubules with tau proteins may be regulated by the tau protein phosphorylation status affected by neuronal electrical activity.

15.
Neurosci Res ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508957

ABSTRACT

Sleep apnea is regarded as an important risk factor in the pathogenesis of Alzheimer disease (AD). Chronic intermittent hypoxia treatment (IHT) given during the sleep period of the circadian cycle in experimental animals is a well-established sleep apnea model. Here we report that transient IHT for 4 days on AD model mice causes Aß overproduction 2 months after IHT presumably via upregulation of synaptic BACE1, side-by-side with tau hyperphosphorylation. These results suggest that even transient IHT may be sufficient to cause long-lasting changes in the molecules measured as AD biomarkers in the brain.

16.
Elife ; 122024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529532

ABSTRACT

Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.


Subject(s)
Cognitive Dysfunction , Endophenotypes , Animals , Mice , Humans , Brain/metabolism , Cognitive Dysfunction/metabolism , Disease Models, Animal , Lactates/metabolism , Hydrogen-Ion Concentration
17.
Neural Regen Res ; 18(4): 746-749, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36204830

ABSTRACT

Neurite degeneration, a major component of many neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis, is not part of the typical apoptosis signaling mechanism, but rather it appears that a self-destructive process is in action. Oxidative stress is a well-known inducer of neurodegenerative pathways: neuronal cell death and neurite degeneration. Although oxidative stress exerts cytotoxic effects leading to neuronal loss, the pathogenic mechanisms and precise signaling pathways by which oxidative stress causes neurite degeneration have remained entirely unknown. We previously reported that reactive oxygen species generated by NADPH oxidases induce activation of the E3 ubiquitin ligase ZNRF1 in neurons, which promotes neurite degeneration. In this process, the phosphorylation of an NADPH oxidase subunit p47-phox at the 345th serine residue serves as an important checkpoint to initiate the ZNRF1-dependent neurite degeneration. Evidence provides new insights into the mechanism of reactive oxygen species-mediated neurodegeneration. In this review, we focus specifically on reactive oxygen species-induced neurite degeneration by highlighting a phosphorylation-dependent regulation of the molecular interaction between ZNRF1 and the NADPH oxidase complex.

18.
PLoS One ; 18(5): e0285897, 2023.
Article in English | MEDLINE | ID: mdl-37224113

ABSTRACT

Peripheral nerves conducting motor and somatosensory signals in vertebrate consist of myelinated and unmyelinated axons. In vitro myelination culture, generated by co-culturing Schwann cells (SCs) and dorsal root ganglion (DRG) neurons, is an indispensable tool for modeling physiological and pathological conditions of the peripheral nervous system (PNS). This technique allows researchers to overexpress or downregulate molecules investigated in neurons or SCs to evaluate the effect of such molecules on myelination. In vitro myelination experiments are usually time-consuming and labor-intensive to perform. Here we report an optimized protocol for in vitro myelination using DRG explant culture. We found that our in vitro myelination using DRG explant (IVMDE) culture not only achieves myelination with higher efficiency than conventional in vitro myelination methods, but also can be used to observe Remak bundle and non-myelinating SCs, which were unrecognizable in conventional methods. Because of these characteristics, IVMDE may be useful in modeling PNS diseases, including Charcot Marie Tooth disease (CMT), in vitro. These results suggest that IVMDE may achieve a condition more similar to peripheral nerve myelination observed during physiological development.


Subject(s)
Ganglia, Spinal , Peripheral Nervous System , Schwann Cells , Axons , Cell Differentiation
19.
J Cell Sci ; 123(Pt 22): 3893-900, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20980393

ABSTRACT

Mutations in LMNA, which encodes A-type nuclear lamins, cause various human diseases, including myopathy, cardiomyopathy, lipodystrophy and progeria syndrome. To date, little is known about how mutations in a single gene cause a wide variety of diseases. Here, by characterizing an antibody that specifically recognizes the phosphorylation of Ser458 of A-type lamins, we uncover findings that might contribute to our understanding of laminopathies. This antibody only reacts with nuclei in muscle biopsies from myopathy patients with mutations in the Ig-fold motif of A-type lamins. Ser458 phosphorylation is not seen in muscles from control patients or patients with any other neuromuscular diseases. In vitro analysis confirmed that only lamin A mutants associated with myopathy induce phosphorylation of Ser458, whereas lipodystrophy- or progeria-associated mutants do not. We also found that Akt1 directly phosphorylates Ser458 of lamin A with myopathy-related mutations in vitro. These results suggest that Ser458 phosphorylation of A-type lamins correlates with striated muscle laminopathies; this might be useful for the early diagnosis of LMNA-associated myopathies. We propose that disease-specific phosphorylation of A-type lamins by Akt1 contributes to myopathy caused by LMNA mutations.


Subject(s)
Lamin Type A/metabolism , Muscular Dystrophies/metabolism , Adult , Animals , COS Cells , Child , Child, Preschool , Chlorocebus aethiops , Female , Humans , Immunohistochemistry , Lamin Type A/genetics , Male , Mice , Middle Aged , Muscular Dystrophies/genetics , Phosphorylation , Transfection
20.
J Neurosci Res ; 90(3): 664-71, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22183770

ABSTRACT

Ischemia elicits a variety of stress responses in neuronal cells, which result in cell death. wld(S) Mice bear a mutation that significantly delays Wallerian degeneration. This mutation also protects all neuronal cells against other types of stresses resulting in cell death, including ischemia. To clarify the types of stresses that neuronal cell bodies derived from wld(S) mice are protected from, we exposed primary cultured neurons derived from wld(S) mice to various components of hypoxic stress. We found that wld(S) mouse neurons are protected against cellular injury induced by reoxygenation following hypoxic stress. Furthermore, we found that wld(S) mouse neurons are protected against functional impairment of the mitochondrial electron transport chain. These data suggest that Wld(S) protein expression may provide protection against neuronal cell death caused by mechanisms involving mitochondrial electron transport dysfunction.


Subject(s)
Electron Transport/physiology , Mitochondria/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Wallerian Degeneration/metabolism , Animals , Cell Death/genetics , Cells, Cultured , Mice , Mice, Knockout , Mitochondria/genetics , Nerve Degeneration/genetics , Nerve Degeneration/metabolism , Nerve Degeneration/physiopathology , Nerve Tissue Proteins/genetics , Wallerian Degeneration/genetics , Wallerian Degeneration/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL