Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
Add more filters

Publication year range
1.
Sensors (Basel) ; 23(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687982

ABSTRACT

Prostate cancer (PC) is one of the major causes of death among elderly men. PC is often diagnosed later in progression due to asymptomatic early stages. Early detection of PC is thus crucial for effective PC treatment. The aim of this study is the simultaneous highly sensitive detection of a palette of PC-associated microRNAs (miRNAs) in human plasma samples. With this aim, a nanoribbon biosensor system based on "silicon-on-insulator" structures (SOI-NR biosensor) has been employed. In order to provide biospecific detection of the target miRNAs, the surface of individual nanoribbons has been sensitized with DNA oligonucleotide probes (oDNA probes) complementary to the target miRNAs. The lowest concentration of nucleic acids, detectable with our biosensor, has been found to be 1.1 × 10-17 M. The successful detection of target miRNAs, isolated from real plasma samples of PC patients, has also been demonstrated. We believe that the development of highly sensitive nanotechnology-based biosensors for the detection of PC markers is a step towards personalized medicine.


Subject(s)
MicroRNAs , Nanotubes, Carbon , Nucleic Acids , Prostatic Neoplasms , Aged , Male , Humans , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Nanotechnology
2.
Int J Mol Sci ; 24(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675249

ABSTRACT

In metabolomics, many metabolites are measured simultaneously in a single run. Such analytical performance opens up prospects for clinical laboratory diagnostics. In this work, a mass spectrometric metabogram was developed as a simplified and clinically applicable way of measuring the blood plasma metabolome. To develop the metabogram, blood plasma samples from healthy male volunteers (n = 48) of approximately the same age, direct infusion mass spectrometry (DIMS) of the low molecular fraction of samples, and principal component analysis (PCA) of the mass spectra were used. The seven components of the metabogram defined by PCA, which cover ~70% of blood plasma metabolome variability, were characterized using a metabolite set enrichment analysis (MSEA) and clinical test results of participating volunteers. It has been established that the components of the metabogram are functionally related groups of the blood metabolome associated with regulation, lipid-carbohydrate, and lipid-amine blood components, eicosanoids, lipid intake into the organism, and liver function thereby providing a lot of clinically relevant information. Therefore, metabogram provides the possibility to apply the metabolomics performance in the clinic. The features of the metabogram are also discussed in comparison with the thin-layer chromatography and with the analysis of blood metabolome by liquid chromatography combined with mass spectrometry.


Subject(s)
Metabolome , Metabolomics , Male , Humans , Mass Spectrometry/methods , Metabolomics/methods , Chromatography, Liquid/methods , Lipids
3.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768195

ABSTRACT

The beginning of the twenty-first century witnessed novel breakthrough research directions in the life sciences, such as genomics, transcriptomics, translatomics, proteomics, metabolomics, and bioinformatics. A newly developed single-molecule approach addresses the physical and chemical properties and the functional activity of single (individual) biomacromolecules and viral particles. Within the alternative approach, the combination of "single-molecule approaches" is opposed to "omics approaches". This new approach is fundamentally unique in terms of its research object (a single biomacromolecule). Most studies are currently performed using postgenomic technologies that allow the properties of several hundreds of millions or even billions of biomacromolecules to be analyzed. This paper discusses the relevance and theoretical, methodological, and practical issues related to the development potential of a single-molecule approach using methods based on molecular detectors.


Subject(s)
Genomics , Viruses , Genomics/methods , Proteomics/methods , Computational Biology , Metabolomics/methods
4.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614211

ABSTRACT

A meta-analysis of the results of targeted quantitative screening of human blood plasma was performed to generate a reference standard kit that can be used for health analytics. The panel included 53 of the 296 proteins that form a "stable" part of the proteome of a healthy individual; these proteins were found in at least 70% of samples and were characterized by an interindividual coefficient of variation <40%. The concentration range of the selected proteins was 10−10−10−3 M and enrichment analysis revealed their association with rare familial diseases. The concentration of ceruloplasmin was reduced by approximately three orders of magnitude in patients with neurological disorders compared to healthy volunteers, and those of gelsolin isoform 1 and complement factor H were abruptly reduced in patients with lung adenocarcinoma. Absolute quantitative data of the individual proteome of a healthy and diseased individual can be used as the basis for personalized medicine and health monitoring. Storage over time allows us to identify individual biomarkers in the molecular landscape and prevent pathological conditions.


Subject(s)
Blood Proteins , Plasma , Proteome , Humans , Blood Proteins/metabolism , Ceruloplasmin/metabolism , Mass Spectrometry/methods , Plasma/metabolism , Proteomics
5.
Int J Mol Sci ; 24(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958620

ABSTRACT

Currently, nanopore-based technology for the determination of the functional activity of single enzyme molecules continues its development. The use of natural nanopores for studying single enzyme molecules is known. At that, the approach utilizing artificial solid-state nanopores is also promising but still understudied. Herein, we demonstrate the use of a nanotechnology-based approach for the investigation of the enzymatic activity of a single molecule of horseradish peroxidase with a solid-state nanopore. The artificial 5 nm solid-state nanopore has been formed in a 40 nm thick silicon nitride structure. A single molecule of HRP has been entrapped into the nanopore. The activity of the horseradish peroxidase (HRP) enzyme molecule inserted in the nanopore has been monitored by recording the time dependence of the ion current through the nanopore in the course of the reaction of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) oxidation reaction. We have found that in the process of ABTS oxidation in the presence of 2.5 mM hydrogen peroxide, individual HRP enzyme molecules are able to retain activity for approximately 700 s before a decrease in the ion current through the nanopore, which can be explained by structural changes of the enzyme.


Subject(s)
Nanopores , Horseradish Peroxidase/chemistry , Sulfonic Acids/chemistry , Benzothiazoles/chemistry , Macromolecular Substances
6.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37240343

ABSTRACT

Mass spectrometry (MS) is one of the main techniques for protein identification. Herein, MS has been employed for the identification of bovine serum albumin (BSA), which was covalently immobilized on the surface of a mica chip intended for investigation by atomic force microscopy (AFM). For the immobilization, two different types of crosslinkers have been used: 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) and dithiobis(succinimidyl propionate) (DSP). According to the data obtained by using an AFM-based molecular detector, the SuccBB crosslinker was more efficient in BSA immobilization than the DSP. The type of crosslinker used for protein capturing has been found to affect the results of MS identification. The results obtained herein can be applied in the development of novel systems intended for the highly sensitive analysis of proteins with molecular detectors.


Subject(s)
Serum Albumin, Bovine , Microscopy, Atomic Force/methods , Serum Albumin, Bovine/chemistry , Mass Spectrometry/methods
7.
Int J Mol Sci ; 25(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38203578

ABSTRACT

This work demonstrates the use of a modified mica to concentrate proteins, which is required for proteomic profiling of blood plasma by mass spectrometry (MS). The surface of mica substrates, which are routinely used in atomic force microscopy (AFM), was modified with a photocrosslinker to allow "irreversible" binding of proteins via covalent bond formation. This modified substrate was called the AFM chip. This study aimed to determine the role of the surface and crosslinker in the efficient concentration of various types of proteins in plasma over a wide concentration range. The substrate surface was modified with a 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) photocrosslinker, activated by UV irradiation. AFM chips were incubated with plasma samples from a healthy volunteer at various dilution ratios (102X, 104X, and 106X). Control experiments were performed without UV irradiation to evaluate the contribution of physical protein adsorption to the concentration efficiency. AFM imaging confirmed the presence of protein layers on the chip surface after incubation with the samples. MS analysis of different samples indicated that the proteomic profile of the AFM-visualized layers contained common and unique proteins. In the working series of experiments, 228 proteins were identified on the chip surface for all samples, and 21 proteins were not identified in the control series. In the control series, a total of 220 proteins were identified on the chip surface, seven of which were not found in the working series. In plasma samples at various dilution ratios, a total of 146 proteins were identified without the concentration step, while 17 proteins were not detected in the series using AFM chips. The introduction of a concentration step using AFM chips allowed us to identify more proteins than in plasma samples without this step. We found that AFM chips with a modified surface facilitate the efficient concentration of proteins owing to the adsorption factor and the formation of covalent bonds between the proteins and the chip surface. The results of our study can be applied in the development of highly sensitive analytical systems for determining the complete composition of the plasma proteome.


Subject(s)
Blood Proteins , Proteomics , Humans , Aluminum Silicates , Mass Spectrometry
8.
Molecules ; 27(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35209175

ABSTRACT

The three-dimensional structure of monomers and homodimers of CYP102A1/WT (wild-type) proteins and their A83F and A83I mutant forms was predicted using the AlphaFold2 (AF2) and AlphaFold Multimer (AFMultimer) programs, which were compared with the rate constants of hydroxylation reactions of these enzyme forms to determine the efficiency of intra- and interprotein electron transport in the CYP102A1 hydroxylase system. The electron transfer rate constants (ket), which determine the rate of indole hydroxylation by the CYP102A1 system, were calculated based on the distances (R) between donor-acceptor prosthetic groups (PG) FAD→FMN→HEME of these proteins using factor ß, which describes an exponential decay from R the speed of electron transport (ET) according to the tunnelling mechanism. It was shown that the structure of monomers in the homodimer, calculated using the AlpfaFold Multimer program, is in good agreement with the experimental structures of globular domains (HEME-, FMN-, and FAD-domains) in CYP102A1/WT obtained by X-ray structural analysis, and the structure of isolated monomers predicted in AF2 does not coincide with the structure of monomers in the homodimer, although a high level of similarity in individual domains remains. The structures of monomers and homodimers of A83F and A83I mutants were also calculated, and their structures were compared with the wild-type protein. Significant differences in the structure of all isolated monomers with respect to the structures of monomers in homodimers were also found for them, and at the same time, insignificant differences were revealed for all homodimers. Comparative analysis for CYP102A1/WT between the calculated intra- and interprotein distances FAD→FMN→HEME and the rate constants of hydroxylation in these proteins showed that the distance between prosthetic groups both in the monomer and in the dimer allows the implementation of electron transfer between PGs, which is consistent with experimental literature data about kcat. For the mutant form of monomer A83I, an increase in the distance between PGs was obtained, which can restrict electron transportation compared to WT; however, for the dimer of this protein, a decrease in the distance between PGs was observed compared to the WT form, which can lead to an increase in the electron transfer rate constant and, accordingly, kcat. For the monomer and homodimer of the A83F mutant, the calculations showed an increase in the distance between the PGs compared to the WT form, which should have led to a decrease in the electron transfer rate, but at the same time, for the homodimer, the approach of the aromatic group F262 with heme can speed up transportation for this form and, accordingly, the rate of hydroxylation.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Electron Transport , Models, Molecular , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/metabolism , Protein Conformation , Protein Multimerization , Bacterial Proteins/genetics , Cytochrome P-450 Enzyme System/genetics , NADPH-Ferrihemoprotein Reductase/genetics , Point Mutation , Protein Binding , Structure-Activity Relationship
9.
Sensors (Basel) ; 21(4)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668578

ABSTRACT

Application of micro-Raman spectroscopy for the monitoring of quality of nanowire sensor chips fabrication has been demonstrated. Nanowire chips have been fabricated on the basis of «silicon-on-insulator¼ (SOI) structures (SOI-NW chips). The fabrication of SOI-NW chips was performed by optical litography with gas-phase etching. The so-fabricated SOI-NW chips are intended for highly sensitive detection of brain cancer biomarkers in humans. In our present study, two series of experiments have been conducted. In the first experimental series, detection of a synthetic DNA oligonucleotide (oDNA) analogue of brain cancer-associated microRNA miRNA-363 in purified buffer solution has been performed in order to demonstrate the high detection sensitivity. The second experimental series has been performed in order to reveal miRNA-363 itself in real human plasma samples. To provide detection biospecificity, the SOI-NW chip surface was modified by covalent immobilization of probe oligonucleotides (oDNA probes) complementary to the target biomolecules. Using the SOI-NW sensor chips proposed herein, the concentration detection limit of the target biomolecules at the level of 3.3 × 10-17 M has been demonstrated. Thus, the approach employing the SOI-NW chips proposed herein represents an attractive tool in biomedical practice, aimed at the early revelation of oncological diseases in humans.


Subject(s)
Biosensing Techniques , Brain Neoplasms , MicroRNAs , Nanowires , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Humans , MicroRNAs/genetics , Plasma , Quality Control , Silicon , Spectrum Analysis, Raman
10.
Int J Mol Sci ; 22(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406706

ABSTRACT

An approach to highly-sensitive mass spectrometry detection of proteins after surface-enhanced concentrating has been elaborated. The approach is based on a combination of mass spectrometry and atomic force microscopy to detect target proteins. (1) Background: For this purpose, a technique for preliminary preparation of molecular relief surfaces formed as a result of a chemical or biospecific concentration of proteins from solution was developed and tested on several types of chip surfaces. (2) Methods: mass spectrometric identification of proteins using trailing detectors: ion trap, time of flight, orbital trap, and triple quadrupole. We used the electrospray type of ionization and matrix-assisted laser desorption/ionization. (3) Results: It is shown that when using locally functionalized atomically smooth surfaces, the sensitivity of the mass spectrometric method increases by two orders of magnitude as compared with measurements in solution. Conclusions: It has been demonstrated that the effective concentration of target proteins on specially prepared surfaces increases the concentration sensitivity of mass spectrometric detectors-time-of-flight, ion trap, triple quadrupole, and orbital ion trap in the concentration range from up to 10-15 M.


Subject(s)
Microscopy, Atomic Force/methods , Proteins/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Humans , Surface Properties
11.
Molecules ; 26(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207397

ABSTRACT

The review covers some research conducted in the field of medical and biomedical application of devices based on silicon sensor elements (Si-NW-sensors). The use of Si-NW-sensors is one of the key methods used in a whole range of healthcare fields. Their biomedical use is among the most important ones as they offer opportunities for early diagnosis of oncological pathologies, for monitoring the prescribed therapy and for improving the people's quality of life.


Subject(s)
Biosensing Techniques/instrumentation , Early Detection of Cancer/instrumentation , Nanowires/chemistry , Neoplasms/diagnosis , Silicon/chemistry , Humans , Quality of Life
12.
Molecules ; 26(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34641523

ABSTRACT

MicroRNAs, which circulate in blood, are characterized by high diagnostic value; in biomedical research, they can be considered as candidate markers of various diseases. Mature microRNAs of glial cells and neurons can cross the blood-brain barrier and can be detected in the serum of patients with autism spectrum disorders (ASD) as components of macrovesicles, macromolecular protein and low-density lipoprotein particles. In our present study, we have proposed an approach, in which microRNAs in protein complexes can be concentrated on the surface of AFM chips with oligonucleotide molecular probes, specific against the target microRNAs. MicroRNAs, associated with the development of ASD in children, were selected as targets. The chips with immobilized molecular probes were incubated in serum samples of ASD patients and healthy volunteers. By atomic force microscopy (AFM), objects on the AFM chip surface have been revealed after incubation in the serum samples. The height of these objects amounted to 10 nm and 6 nm in the case of samples of ASD patients and healthy volunteers, respectively. MALDI-TOF-MS analysis of protein components on the chip surface allowed us to identify several cell proteins. These proteins are involved in the binding of nucleic acids (GBG10, RT24, RALYL), in the organization of proteasomes and nucleosomes (PSA4, NP1L4), and participate in the functioning of the channel of active potassium transport (KCNE5, KCNV2).


Subject(s)
Autism Spectrum Disorder/blood , Blood Proteins/genetics , Circulating MicroRNA/blood , Microscopy, Atomic Force/instrumentation , Adult , Blood Proteins/metabolism , Child , Circulating MicroRNA/metabolism , Female , Humans , Male , Microscopy, Atomic Force/methods , Middle Aged , Potassium Channels, Voltage-Gated/blood , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
13.
Molecules ; 26(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207029

ABSTRACT

The application of micro-Raman spectroscopy was used for characterization of structural features of the high-k stack (h-k) layer of "silicon-on-insulator" (SOI) nanowire (NW) chip (h-k-SOI-NW chip), including Al2O3 and HfO2 in various combinations after heat treatment from 425 to 1000 °C. After that, the NW structures h-k-SOI-NW chip was created using gas plasma etching optical lithography. The stability of the signals from the monocrine phase of HfO2 was shown. Significant differences were found in the elastic stresses of the silicon layers for very thick (>200 nm) Al2O3 layers. In the UV spectra of SOI layers of a silicon substrate with HfO2, shoulders in the Raman spectrum were observed at 480-490 cm-1 of single-phonon scattering. The h-k-SOI-NW chip created in this way has been used for the detection of DNA-oligonucleotide sequences (oDNA), that became a synthetic analog of circular RNA-circ-SHKBP1 associated with the development of glioma at a concentration of 1.1 × 10-16 M. The possibility of using such h-k-SOI NW chips for the detection of circ-SHKBP1 in blood plasma of patients diagnosed with neoplasm of uncertain nature of the brain and central nervous system was shown.


Subject(s)
Glioma/genetics , Nanowires/chemistry , RNA, Circular/chemistry , RNA, Circular/genetics , Silicon/chemistry , Aged , Biosensing Techniques/methods , Brain/drug effects , Female , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis/methods , Spectrum Analysis, Raman/methods
14.
J Proteome Res ; 19(12): 4901-4906, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33202127

ABSTRACT

One of the main goals of the Chromosome-Centric Human Proteome Project (C-HPP) is detection of "missing proteins" (PE2-PE4). Using the UPS2 (Universal proteomics standard 2) set as a model to simulate the range of protein concentrations in the cell, we have previously shown that 2D fractionation enables the detection of more than 95% of UPS2 proteins in a complex biological mixture. In this study, we propose a novel experimental workflow for protein detection during the analysis of biological samples. This approach is extremely important in the context of the C-HPP and the neXt-MP50 Challenge, which can be solved by increasing the sensitivity and the coverage of the proteome encoded by a particular human chromosome. In this study, we used 2D fractionation for in-depth analysis of the proteins encoded by human chromosome 18 (Chr 18) in the HepG2 cell line. Use of 2D fractionation increased the sensitivity of the SRM SIS method by 1.3-fold (68 and 88 proteins were identified by 1D fractionation and 2D fractionation, respectively) and the shotgun MS/MS method by 2.5-fold (21 and 53 proteins encoded by Chr 18 were detected by 1D fractionation and 2D fractionation, respectively). The results of all experiments indicate that 111 proteins encoded by human Chr 18 have been identified; this list includes 42% of the Chr 18 protein-coding genes and 67% of the Chr 18 transcriptome species (Illumina RNaseq) in the HepG2 cell line obtained using a single sample. Corresponding mRNAs were not registered for 13 of the detected proteins. The combination of 2D fractionation technology with SRM SIS and shotgun mass spectrometric analysis did not achieve full coverage, i.e., identification of at least one protein product for each of the 265 protein-coding genes of the selected chromosome. To further increase the sensitivity of the method, we plan to use 5-10 crude synthetic peptides for each protein to identify the proteins and select one of the peptides based on the obtained mass spectra for the synthesis of an isotopically labeled standard for subsequent quantitative analysis. Data are available via ProteomeXchange with the identifier PXD019263.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Chromosomes, Human , Humans , Proteome/genetics , Transcriptome
15.
Int J Mol Sci ; 21(2)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952343

ABSTRACT

Scientists currently use only a small portion of the information contained in the blood metabolome. The identification of metabolites is a huge challenge because only highly abundant and well-separated compounds can be easily identified in complex samples. However, new approaches that enhance the identification of compounds have emerged; among them, the identification of compounds based on their involvement in a particular biological context is a recent development. In this work, this approach was first applied to identify metabolites in complex samples and, together with metabolite set enrichment analysis, was used for the evaluation of blood plasma from obese patients. The proposed approach was found to provide a statistically sound overview of the biochemical pathways, thus presenting additional information on obesity. Obesity progression was demonstrated to be accompanied by marked alterations in steroidogenesis, androstenedione metabolism, and androgen and estrogen metabolism. The findings of this study suggest that the workflow used for blood analysis is sufficient to demonstrate obesity at the biochemical pathway level as well as to monitor the response to treatment. This workflow is also expected to be suitable for studying other metabolic diseases.


Subject(s)
Metabolomics/methods , Obesity/blood , Obesity/metabolism , Tandem Mass Spectrometry/methods , Adult , Body Mass Index , Female , Humans , Male , Metabolome , Reproducibility of Results , Workflow , Young Adult
16.
J Proteome Res ; 18(12): 4273-4276, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31621326

ABSTRACT

The Chromosome-centric Human Proteome Project aims at characterizing the expression of proteins encoded in each chromosome at the tissue, cell, and subcellular levels. The proteomic profiling of a particular tissue or cell line commonly results in a substantial portion of proteins that are not observed (the "missing" proteome). The concurrent transcriptome profiling of the analyzed tissue/cells samples may help define the set of untranscribed genes in a given type of tissue or cell, thus narrowing the size of the "missing" proteome and allowing us to focus on defining the reasons behind undetected proteins, namely, whether they are technical (insufficient sensitivity of protein detection) or biological (correspond to not-translated transcripts). We believe that the quantitative polymerase chain reaction (qPCR) can provide an efficient approach to studying low-abundant transcripts related to undetected proteins due to its high sensitivity and the possibility of ensuring the specificity of detection via the simple Sanger sequencing of PCR products. Here we illustrated the feasibility of such an approach on a set of low-abundant transcripts. Although inapplicable to the analysis of whole transcriptome, qPCR can successfully be utilized to profile a limited cohort of transcripts encoded on a particular chromosome, as we previously demonstrated for human chromosome 18.


Subject(s)
Proteome/genetics , Proteomics/methods , Chromosomes, Human , Chromosomes, Human, Pair 18 , Gene Expression Profiling , Hep G2 Cells , Humans , Polymerase Chain Reaction/methods
17.
J Proteome Res ; 18(12): 4206-4214, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31599598

ABSTRACT

This manuscript collects all the efforts of the Russian Consortium, bottlenecks revealed in the course of the C-HPP realization, and ways of their overcoming. One of the main bottlenecks in the C-HPP is the insufficient sensitivity of proteomic technologies, hampering the detection of low- and ultralow-copy number proteins forming the "dark part" of the human proteome. In the frame of MP-Challenge, to increase proteome coverage we suggest an experimental workflow based on a combination of shotgun technology and selected reaction monitoring with two-dimensional alkaline fractionation. Further, to detect proteins that cannot be identified by such technologies, nanotechnologies such as combined atomic force microscopy with molecular fishing and/or nanowire detection may be useful. These technologies provide a powerful tool for single molecule analysis, by analogy with nanopore sequencing during genome analysis. To systematically analyze the functional features of some proteins (CP50 Challenge), we created a mathematical model that predicts the number of proteins differing in amino acid sequence: proteoforms. According to our data, we should expect about 100 000 different proteoforms in the liver tissue and a little more in the HepG2 cell line. The variety of proteins forming the whole human proteome significantly exceeds these results due to post-translational modifications (PTMs). As PTMs determine the functional specificity of the protein, we propose using a combination of gene-centric transcriptome-proteomic analysis with preliminary fractionation by two-dimensional electrophoresis to identify chemically modified proteoforms. Despite the complexity of the proposed solutions, such integrative approaches could be fruitful for MP50 and CP50 Challenges in the framework of the C-HPP.


Subject(s)
Proteins/analysis , Proteome , Proteomics/methods , Biosensing Techniques , Electrophoresis, Gel, Two-Dimensional , Genome, Human , Humans , Microscopy, Atomic Force/methods , Nanotechnology/methods , Protein Processing, Post-Translational , Proteins/isolation & purification , Russia , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Workflow
18.
J Proteome Res ; 18(1): 120-129, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30480452

ABSTRACT

This work continues the series of the quantitative measurements of the proteins encoded by different chromosomes in the blood plasma of a healthy person. Selected Reaction Monitoring with Stable Isotope-labeled peptide Standards (SRM SIS) and a gene-centric approach, which is the basis for the implementation of the international Chromosome-centric Human Proteome Project (C-HPP), were applied for the quantitative measurement of proteins in human blood plasma. Analyses were carried out in the frame of C-HPP for each protein-coding gene of the four human chromosomes: 18, 13, Y, and mitochondrial. Concentrations of proteins encoded by 667 genes were measured in 54 blood plasma samples of the volunteers, whose health conditions were consistent with requirements for astronauts. The gene list included 276, 329, 47, and 15 genes of chromosomes 18, 13, Y, and the mitochondrial chromosome, respectively. This paper does not make claims about the detection of missing proteins. Only 205 proteins (30.7%) were detected in the samples. Of them, 84, 106, 10, and 5 belonged to chromosomes 18, 13, and Y and the mitochondrial chromosome, respectively. Each detected protein was found in at least one of the samples analyzed. The SRM SIS raw data are available in the ProteomeXchange repository (PXD004374, PASS01192).


Subject(s)
Chromosomes, Human/chemistry , Plasma/chemistry , Proteome , Chromosomes, Human/genetics , Chromosomes, Human, Pair 13/chemistry , Chromosomes, Human, Pair 18/chemistry , Chromosomes, Human, Y/chemistry , Databases, Protein , Healthy Volunteers , Humans , Mitochondria/ultrastructure , Proteome/genetics
19.
Sensors (Basel) ; 19(23)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795306

ABSTRACT

Information about the characteristics of measuring chips according to their storage conditions is of great importance for clinical diagnosis. In our present work, we have studied the capability of chips to detect nanowire biosensors when they are either freshly prepared or have been stored for either one or two years in a clean room. Potential to detect DNA oligonucleotides (oDNAs)-synthetic analogues of microRNAs (miRNAs) 198 and 429 that are associated with the development of prostate cancer (PCa)-in buffer solution was demonstrated using a nanowire biosensor based on silicon-on-insulator structures (SOI-NW biosensor). To provide biospecific detection, nanowire surfaces were sensitized with oligonucleotide probes (oDNA probes) complimentary to the known sequences of miRNA 183 and 484. In this study it is demonstrated that freshly prepared SOI-NW biosensor chips with n-type conductance and immobilized oDNA probes exhibit responses to the addition of complimentary oDNAs in buffer, leading to decreases in chips' conductance at a concentration of 3.3 × 10-16 M. The influence of storage time on the characteristics of SOI-NW biosensor chips is also studied herein. It is shown that a two-year storage of the chips leads to significant changes in their characteristics, resulting in "inverse" sensitivity toward negatively charged oDNA probes (i.e., through an increase in chips' conductance). It is concluded that the surface layer makes the main contribution to conductance of the biosensor chip. Our results indicate that the detection of target nucleic acid molecules can be carried out with high sensitivity using sensor chips after long-term storage, but that changes in their surface properties, which lead to inversed detection signals, must be taken into account. Examples of the applications of such chips for the detection of cancer-associated microRNAs in plasma samples of patients with diagnosed prostate cancer are given. The results obtained herein are useful for the development of highly sensitive nanowire-based diagnostic systems for the revelation of (prostate) cancer-associated microRNAs in human plasma.


Subject(s)
Biomarkers, Tumor/blood , Biosensing Techniques/methods , MicroRNAs/blood , Prostatic Neoplasms/blood , Humans , Male , Nanowires/chemistry , Nucleic Acids/blood , Nucleic Acids/isolation & purification , Silicon/chemistry
20.
J Proteome Res ; 17(12): 4085-4096, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30238754

ABSTRACT

In the boundaries of the chromosome-centric Human Proteome Project (c-HPP) to obtain information about proteoforms coded by chromosome 18, several cell lines (HepG2, glioblastoma, LEH), normal liver, and plasma were analyzed. In our study, we have been using proteoform separation by two-dimensional electrophoresis (2DE) (a sectional analysis) and a semivirtual 2DE with following shotgun mass spectrometry using LC-ESI-MS/MS. Previously, we published a first draft of this research, where only HepG2 cells were tested. Here, we present the next step using more detailed analysis and more samples. Altogether, confident (2 significant sequences minimum) information about proteoforms of 117 isoforms coded by 104 genes of chromosome 18 was obtained. The 3D-graphs showing distribution of different proteoforms from the same gene in the 2D map were generated. Additionally, a semivirtual 2DE approach has allowed for detecting more proteoforms and estimating their pI more precisely. Data are available via ProteomeXchange with identifier PXD010142.


Subject(s)
Chromosomes, Human, Pair 18/chemistry , Electrophoresis, Gel, Two-Dimensional/methods , Protein Isoforms/analysis , Proteome/analysis , Cell Line , Chromatography, Liquid , Computer Simulation , Humans , Proteomics/methods , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL