Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell ; 160(1-2): 324-38, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25557080

ABSTRACT

Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Models, Biological , Organ Culture Techniques , Organoids/pathology , Pancreatic Neoplasms/pathology , Animals , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Pancreas/metabolism , Pancreas/pathology
2.
J Pathol ; 236(2): 142-154, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25561062

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a nearly lethal neoplasm. It is a remarkably stroma-rich, vascular-poor and hypo-perfused tumour, which prevents efficient drug delivery. Paradoxically, the neoplastic cells have robust glucose uptake, suggesting that the microvasculature has adopted an alternative method for nutrient uptake and cellular trafficking. Using adapted thick tumour section immunostaining and three-dimensional (3D) construction imaging in human tissue samples, we identified an undiscovered feature of the mature microvasculature in advanced PDAC tumours; long, hair-like projections on the basal surface of microvessels that we refer to as 'basal microvilli'. Functionally, these basal microvilli have an actin-rich cytoskeleton and endocytic and exocytic properties, and contain glucose transporter-1 (GLUT-1)-positive vesicles. Clinically, as demonstrated by PET-CT, the tumour microvasculature with the longest and most abundant basal microvilli correlated with high glucose uptake of the PDAC tumour itself. In addition, these basal microvilli were found in regions of the tumour with low GLUT-1 expression, suggesting that their presence could be dependent upon the glucose concentration in the tumour milieu. Similar microvasculature features were also observed in a K-Ras-driven model of murine PDAC. Altogether, these basal microvilli mark a novel pathological feature of PDAC microvasculature. Because basal microvilli are pathological features with endo- and exocytic properties, they may provide a non-conventional method for cellular trafficking in PDAC tumours.


Subject(s)
Carcinoma, Pancreatic Ductal/blood supply , Pancreatic Neoplasms/blood supply , Adaptation, Physiological/physiology , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Movement/physiology , Glucose Transporter Type 1/metabolism , Humans , Microvessels/pathology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL