Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Microbiol Rev ; 37(2): e0007423, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38602408

ABSTRACT

SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.


Subject(s)
Antifungal Agents , Drug Resistance, Fungal , Invasive Fungal Infections , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Humans , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/microbiology , Fungi/drug effects , Animals , Treatment Outcome
2.
Emerg Infect Dis ; 30(8)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935978

ABSTRACT

Azole-resistant Aspergillus fumigatus (ARAf) fungi have been found inconsistently in the environment in Denmark since 2010. During 2018-2020, nationwide surveillance of clinical A. fumigatus fungi reported environmental TR34/L98H or TR46/Y121F/T289A resistance mutations in 3.6% of isolates, prompting environmental sampling for ARAf and azole fungicides and investigation of selected ARAf in field and microcosmos experiments. ARAf was ubiquitous (20% of 366 samples; 16% TR34/L98H- and 4% TR46/Y121F/T289A-related mechanisms), constituting 4.2% of 4,538 A. fumigatus isolates. The highest proportions were in flower- and compost-related samples but were not correlated with azole-fungicide application concentrations. Genotyping showed clustering of tandem repeat-related ARAf and overlaps with clinical isolates in Denmark. A. fumigatus fungi grew poorly in the field experiment with no postapplication change in ARAf proportions. However, in microcosmos experiments, a sustained complete (tebuconazole) or partial (prothioconazole) inhibition against wild-type A. fumigatus but not ARAf indicated that, under some conditions, azole fungicides may favor growth of ARAf in soil.

3.
J Clin Microbiol ; 61(11): e0087323, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37882528

ABSTRACT

The rapid pace of name changes of medically important fungi is creating challenges for clinical laboratories and clinicians involved in patient care. We describe two sources of name change which have different drivers, at the species versus the genus level. Some suggestions are made here to reduce the number of name changes. We urge taxonomists to provide diagnostic markers of taxonomic novelties. Given the instability of phylogenetic trees due to variable taxon sampling, we advocate to maintain genera at the largest possible size. Reporting of identified species in complexes or series should where possible comprise both the name of the overarching species and that of the molecular sibling, often cryptic species. Because the use of different names for the same species will be unavoidable for many years to come, an open access online database of the names of all medically important fungi, with proper nomenclatural designation and synonymy, is essential. We further recommend that while taxonomic discovery continues, the adaptation of new name changes by clinical laboratories and clinicians be reviewed routinely by a standing committee for validation and stability over time, with reference to an open access database, wherein reasons for changes are listed in a transparent way.


Subject(s)
Fungi , Humans , Phylogeny , Databases, Factual , Fungi/genetics
4.
J Antimicrob Chemother ; 78(4): 1102-1110, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36879499

ABSTRACT

BACKGROUND: Rezafungin is a novel, once-weekly echinocandin. EUCAST rezafungin MIC testing has been associated with a good separation of WT and target gene mutant isolates in single-centre studies, but an unacceptable inter-laboratory MIC variation has prevented EUCAST breakpoint setting. This has been attributed to non-specific binding to surfaces across microtitre plates, pipettes, reservoirs, etc. used, as previously encountered for some antibiotics. OBJECTIVES: To investigate use of a surfactant to mitigate non-specific binding of rezafungin in EUCAST E.Def 7.3 MIC testing. METHODS: Surfactants including Tween 20 (T20), Tween 80 (T80) and Triton X-100 (TX100) were evaluated for stand-alone or synergistic antifungal activity via checkerboard assays in combination with rezafungin. Subsequent T20 studies defined an optimized assay concentration, validated in up to four microtitre plate types for WT and fks mutant Candida strains (seven species total) and the six-strain EUCAST Candida quality control (QC) panel. Lastly, T20 inter-manufacturer variability, thermostability and best handling practices were investigated. RESULTS: T20 and T80 performed equivalently, with characteristics slightly preferable to TX100. Due to existing use in EUCAST mould susceptibility testing, T20 was pursued. An optimized concentration of 0.002% T20 normalized rezafungin MIC values across plate types for all Candida spp. evaluated, maintained differentiation of WT versus fks mutants and generated robust QC ranges. Additionally, T20 performance was consistent across manufacturers and temperatures. T20 can be reliably transferred utilizing a syringe, wide-orifice pipette tip and/or by mass. CONCLUSIONS: Supplementation of RPMI (Roswell Park Memorial Institute) 1640 medium with 0.002% T20 generated a highly reproducible EUCAST yeast MIC methodology for rezafungin.


Subject(s)
Polysorbates , Saccharomyces cerevisiae , Polysorbates/pharmacology , Echinocandins/pharmacology , Antifungal Agents/pharmacology , Candida , Dietary Supplements , Microbial Sensitivity Tests
5.
J Antimicrob Chemother ; 77(6): 1655-1661, 2022 05 29.
Article in English | MEDLINE | ID: mdl-35323941

ABSTRACT

BACKGROUND: Increased fluconazole and echinocandin resistance in Candida glabrata requires prompt detection in routine settings. A phenotypic test based on the EUCAST E.DEF 7.3.2 protocol was developed for the detection of fluconazole- and anidulafungin-resistant isolates utilizing the colorimetric dye XTT. METHODS: Thirty-one clinical C. glabrata isolates, 11 anidulafungin resistant and 14 fluconazole resistant, were tested. After optimization studies, 0.5-2.5 × 105 cfu/mL of each isolate in RPMI 1640 + 2% d-glucose medium containing 100 mg/L XTT + 0.78 µΜ menadione and 0.06 mg/L anidulafungin (S breakpoint) or 16 mg/L fluconazole (I breakpoint) in 96-well flat-bottom microtitration plates were incubated at 37°C for 18 h; we also included drug-free wells. XTT absorbance was measured at 450 nm every 15 min. Differences between the drug-free and the drug-treated wells were assessed using Student's t-test at different timepoints. ROC curves were used in order to identify the best timepoint and cut-off. RESULTS: The XTT absorbance differences between fluconazole-containing and drug-free wells were significantly lower for the resistant isolates compared with susceptible increased exposure isolates (0.08 ±â€Š0.05 versus 0.25 ±â€Š0.06, respectively, P = 0.005) at 7.5 h, with a difference of <0.157 corresponding to 100% sensitivity and 94% specificity for detection of resistance. The XTT absorbance differences between anidulafungin-containing and drug-free wells were significantly lower for the resistant isolates compared with susceptible isolates (0.08 ±â€Š0.07 versus 0.200 ±â€Š0.03, respectively, P < 0.001) at 5 h, with a difference of <0.145 corresponding to 91% sensitivity and 100% specificity, irrespective of underlying mutations. CONCLUSIONS: A simple, cheap and fast phenotypic test was developed for detection of fluconazole- and anidulafungin-resistant C. glabrata isolates.


Subject(s)
Candida glabrata , Fluconazole , Anidulafungin/pharmacology , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Echinocandins/pharmacology , Fluconazole/pharmacology , Humans , Microbial Sensitivity Tests
6.
J Antimicrob Chemother ; 77(8): 2053-2073, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35703391

ABSTRACT

The increasing incidence and changing epidemiology of invasive fungal infections continue to present many challenges to their effective management. The repertoire of antifungal drugs available for treatment is still limited although there are new antifungals on the horizon. Successful treatment of invasive mycoses is dependent on a mix of pathogen-, host- and antifungal drug-related factors. Laboratories need to be adept at detection of fungal pathogens in clinical samples in order to effectively guide treatment by identifying isolates with acquired drug resistance. While there are international guidelines on how to conduct in vitro antifungal susceptibility testing, these are not performed as widely as for bacterial pathogens. Furthermore, fungi generally are recovered in cultures more slowly than bacteria, and often cannot be cultured in the laboratory. Therefore, non-culture-based methods, including molecular tests, to detect fungi in clinical specimens are increasingly important in patient management and are becoming more reliable as technology improves. Molecular methods can also be used for detection of target gene mutations or other mechanisms that predict antifungal drug resistance. This review addresses acquired antifungal drug resistance in the principal human fungal pathogens and describes known resistance mechanisms and what in-house and commercial tools are available for their detection. It is emphasized that this approach should be complementary to culture-based susceptibility testing, given the range of mutations, resistance mechanisms and target genes that may be present in clinical isolates, but may not be included in current molecular assays.


Subject(s)
Antifungal Agents , Invasive Fungal Infections , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Resistance, Fungal , Fungi/genetics , Humans , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/drug therapy , Laboratories , Microbial Sensitivity Tests
7.
J Antimicrob Chemother ; 78(1): 185-195, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36329639

ABSTRACT

OBJECTIVES: Rezafungin EUCAST MIC testing has been associated with notable inter-laboratory variation, which prevented ECOFF setting for C. albicans. We assessed in vitro susceptibility and reproducibility for a modified EUCAST methodology and established associated wild-type upper limits (WT-ULs). METHODS: MICs against 150 clinical Candida isolates (six species), molecularly characterized fks mutants (n = 13), and QC strains (n = 6) were determined at six laboratories according to E.Def 7.3 but using Tween 20 supplemented medium. WT-ULs were determined using the derivatization method, the ECOFFinder programme and visual inspection. Consensus WT-ULs were determined. RESULTS: The laboratory- and species-specific MIC distributions were Gaussian with >99.5% MICs within four 2-fold dilutions except for C. parapsilosis (92.8%). The following consensus WT-UL were determined: C. albicans 0.008 mg/L; C. dubliniensis and C. glabrata 0.016 mg/L; C. krusei and C. tropicalis 0.03 mg/L; and C. parapsilosis 4 mg/L. Adopting these WT-UL, six clinical isolates were non-wild-type, five of which harboured Fks alterations. For 11/13 mutants, all 670 MICs were categorized as non-wild-type whereas MICs for C. glabrata Fks2 D666Y and C. tropicalis Fks1 R656R/G overlapped with the corresponding wild-type distributions. Repeat testing of six reference strains yielded 98.3%-100% of MICs within three 2-fold dilutions except for C. albicans CNM-CL-F8555 (96%) and C. parapsilosis ATCC 22019 (93.3%). CONCLUSIONS: The modified EUCAST method significantly improved inter-laboratory variation, identified wild-type populations and allowed perfect separation of wild-type and fks mutants except for two isolates harbouring weak mutations. These consensus WT-UL have been accepted as ECOFFs and will be used for rezafungin breakpoint setting.


Subject(s)
Antifungal Agents , Echinocandins , Antifungal Agents/pharmacology , Reproducibility of Results , Echinocandins/pharmacology , Candida albicans , Candida glabrata , Candida tropicalis , Candida parapsilosis , Microbial Sensitivity Tests , Drug Resistance, Fungal
8.
J Antimicrob Chemother ; 77(5): 1296-1300, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35194639

ABSTRACT

OBJECTIVES: Current reference susceptibility testing methods of Aspergillus require visual reading, which is subjective and necessitates experienced staff. We compared spectrophotometric and visual MIC reading of EUCAST E.Def 9.3.2 susceptibility testing of Aspergillus fumigatus for a large collection of isolates with different azole resistance mechanisms. METHODS: A. fumigatus (n = 200) were examined, including 62 WT and 138 non-WT with the following alterations: TR34/L98H (n = 57), TR46/Y121F/T289A (n = 54) or single point mutations (n = 27). EUCAST E.Def 9.3.2 susceptibility testing was performed for amphotericin B, itraconazole, voriconazole, posaconazole and isavuconazole. MICs were determined after 48 h of incubation visually and spectrophotometrically, as the lowest concentration corresponding to a 1%, 3%, 5%, 10% or 15% OD increase above the background OD. The best spectrophotometric endpoint (SPE) was identified based on the highest essential agreement (EA; ±1 two-fold dilution) and categorical agreement (CA) and fewer very major errors (VMEs) and major errors (MEs). RESULTS: Τhe best SPEs were 5% and 10% for all drugs. The best agreement between visual and spectrophotometric MICs was found with the 10% growth endpoint, which resulted in identical median MICs with 90% of differences being ≤1 two-fold and higher EA (91%-100%) and CA (100%) and no VMEs and MEs compared with the 5% endpoint (77%-100%, 96%-98%, 0% and 0%-4%, respectively). CONCLUSIONS: Spectrophotometric MIC reading can be used for A. fumigatus susceptibility testing and for detecting azole resistance. A visual inspection of the plate should be performed to confirm equal inoculation, absence of well contamination and proper growth, and to identify potential uncommon phenotypes or subpopulations.


Subject(s)
Aspergillus fumigatus , Azoles , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillus , Azoles/pharmacology , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Microbial Sensitivity Tests , Reading
9.
Mycoses ; 65(7): 741-746, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35535729

ABSTRACT

BACKGROUND: Treatment of tinea pedis and onychomycosis is complicated by high rates of reinfection and the emergence of terbinafine-resistant strains of Trichophyton spp. Effective disinfection of contaminated socks is an important measure. Appropriate washing reduces the risk of reinfection and is paramount in treating tinea pedis and onychomycosis. OBJECTIVES: The aim of this study was to describe the effect of commonplace disinfection methods using socks pieces inoculated with terbinafine-resistant or terbinafine-susceptible isolates of Trichophyton spp. METHODS: Sock pieces were inoculated with seven terbinafine-resistant isolates of Trichophyton spp. with known mutations in the SQLE-gene (T. rubrum (n = 3), T. interdigitale (n = 1) and T. indotineae (n = 3)) and six terbinafine-susceptible isolates of Trichophyton spp. (T. rubrum (n = 3) and T. interdigitale (n = 3)). Methods of disinfection included soaking in a quaternary ammonium (QAC) detergent (0.5, 2 and 24 h), freezing at -20°C (0.5, 12 and 24 h), domestic and steam washing (both at 40°C with detergent). Sock pieces were cultured for 4 weeks following disinfection. The primary end point was no growth at the end of week 4. RESULTS: Soaking in a QAC-detergent for 24 h procured at disinfectant rate of 100% (13/13), whilst soaking in 0.5 and 2 h had a disinfectant rate of 46.2% (6/13) and 84.6% (11/13), respectively. Domestic washing (40°C with detergent) produced a disinfectant rate of 7.7% (1/13). Freezing at -20°C (0.5, 12 and 24 h) and steam washing (40°C with detergent) had no disinfectant properties. CONCLUSIONS: Soaking in a QAC-detergent for 24 h effectively disinfected sock pieces contaminated with dermatophytes.


Subject(s)
Arthrodermataceae , Disinfectants , Onychomycosis , Antifungal Agents/pharmacology , Arthrodermataceae/genetics , Detergents , Disinfectants/pharmacology , Disinfection , Drug Resistance, Fungal/genetics , Humans , Microbial Sensitivity Tests , Onychomycosis/drug therapy , Onychomycosis/prevention & control , Reinfection , Steam , Terbinafine/pharmacology , Tinea Pedis/prevention & control , Trichophyton
10.
Mycoses ; 65(4): 419-428, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35104010

ABSTRACT

BACKGROUND: Azole resistance complicates treatment of patients with invasive aspergillosis with an increased mortality. Azole resistance in Aspergillus fumigatus is a growing problem and associated with human and environmental azole use. Denmark has a considerable and highly efficient agricultural sector. Following reports on environmental azole resistance in A. fumigatus from Danish patients, the ministry of health requested a prospective national surveillance of azole-resistant A. fumigatus and particularly that of environmental origin. OBJECTIVES: To present the data from the first 2 years of the surveillance programme. METHODS: Unique isolates regarded as clinically relevant and any A. fumigatus isolated on a preferred weekday (background samples) were included. EUCAST susceptibility testing was performed and azole-resistant isolates underwent cyp51A gene sequencing. RESULTS: The azole resistance prevalence was 6.1% (66/1083) at patient level. The TR34 /L98H prevalence was 3.6% (39/1083) and included the variants TR34 /L98H, TR34 3 /L98H and TR34 /L98H/S297T/F495I. Resistance caused by other Cyp51A variants accounted for 1.3% (14/1083) and included G54R, P216S, F219L, G54W, M220I, M220K, M220R, G432S, G448S and Y121F alterations. Non-Cyp51A-mediated resistance accounted for 1.2% (13/1083). Proportionally, TR34 /L98H, other Cyp51A variants and non-Cyp51A-mediated resistance accounted for 59.1% (39/66), 21.2% (14/66) and 19.7% (13/66), respectively, of all resistance. Azole resistance was detected in all five regions in Denmark, and TR34 /L98H specifically, in four of five regions during the surveillance period. CONCLUSION: The azole resistance prevalence does not lead to a change in the initial treatment of aspergillosis at this point, but causes concern and leads to therapeutic challenges in the affected patients.


Subject(s)
Aspergillus fumigatus , Azoles , Antifungal Agents/pharmacology , Aspergillus fumigatus/genetics , Azoles/pharmacology , Denmark/epidemiology , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Humans , Microbial Sensitivity Tests , Prospective Studies
11.
Article in English | MEDLINE | ID: mdl-33468486

ABSTRACT

Posaconazole is more active than fluconazole against Candida albicansin vitro and is approved for the treatment of oropharyngeal candidiasis but not for that of invasive candidiasis (IC). Here, we explored the efficacy of posaconazole against C. albicans in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model of IC and determined the probability of pharmacodynamic target attainment for the oral solution and intravenous (i.v.)/tablet formulations. Three clinical C. albicans isolates (posaconazole MICs, 0.008 to 0.25 mg/liter) were studied in the in vitro PK/PD dilution model simulating steady-state posaconazole PK. The in vitro exposure-effect relationship, area under the 24-h free drug concentration curve (fAUC0-24)/MIC, was described and compared with in vivo outcome in animals with IC. PK/PD susceptibility breakpoints and trough levels required for optimal treatment were determined for EUCAST and CLSI 24-h/48-h (CLSI24h/CLSI48h) methods using the fAUC0-24/MIC associated with half-maximal activity (EI50) and Monte Carlo simulation analysis for oral solution (400 mg every 12 hours [q12h]) and i.v./tablet formulations (300 mg q24h). The in vitro mean (95% confidence interval [CI]) EI50 was 330 (183 to 597) fAUC0-24/MIC for CLSI24h and 169 (92 to 310) for EUCAST/CLSI48h methods, which are close to the near-stasis in vivo effect. The probability of target attainment for EI50 was estimated; for the wild-type isolates (MIC ≤ 0.06 mg/liter), it was low for the oral solution and higher than 95% for the i.v./tablet formulations for the EUCAST/CLSI48h methods but not for the CLSI 24-h method. Non-wild-type isolates with EUCAST/CLSI48h MICs of 0.125 and 0.25 mg/liter would require trough levels of >1.2 and >2.4 mg/liter, respectively. Posaconazole i.v./tablet formulations may have a role in the therapy of invasive infections by wild-type C. albicans isolates, provided that a steady state is reached quickly. A PK/PD susceptibility breakpoint at the epidemiological cutoff (ECV/ECOFF) of 0.06 mg/liter was determined.


Subject(s)
Antifungal Agents , Candida albicans , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida , Microbial Sensitivity Tests , Triazoles/pharmacology
12.
J Antimicrob Chemother ; 76(7): 1793-1799, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33734364

ABSTRACT

BACKGROUND: Since the ISO standard 20776-1 and serial dilution procedures were compared in 2010 for fluconazole and itraconazole, several new antifungals that are hydrophobic and highly potent have been introduced. OBJECTIVES: To investigate the impact of the number of tip changes during serial dilution, and ISO and serial dilution for nine antifungals. METHODS: EUCAST E.Def 7.3.2 with serial (0-10 tip changes) and ISO dilution. Candida parapsilosis ATCC 22019, Candida albicans ATCC 64548, C. albicans CNM CL-F8555, Candida krusei ATCC 6258, Aspergillus flavus ATCC 204304 and clinical isolates (n = 5) of C. albicans, Candida dubliniensis, Candida glabrata, C. krusei, A. flavus and Aspergillus terreus were included. GM MICs were compared for ISO and serial dilution and with QC values where available. RESULTS: Increasing the number of tip changes (0/1/2/10 times) during serial dilution for plate preparation increased the MICs 1 to >2 dilutions for amphotericin B, anidulafungin, micafungin, fluconazole, voriconazole and isavuconazole against C. albicans ATCC 64548 but only isavuconazole MICs against C. parapsilosis ATCC 22019 (3 dilutions). ISO and serial dilution (two tip changes) were compared for eight compounds and four Candida QC strains (352 MICs). Six/41 GM MIC pairs deviated with 1-1.8 dilution (14.6%). Comparing the GM MIC with the QC values, the ISO method GM MIC was closest to the target in 30.8%, the serial dilution in 34.6% and the methods identical in 34.6% of the cases. Finally, ISO and serial dilution MICs were compared for clinical isolates (920 MICs). Five/23 GM MIC pairs (21.7%) deviated 1.0-1.1 dilutions. CONCLUSIONS: The ISO and serial dilution (two tip changes) method were in acceptable agreement and thus equally applicable for EUCAST testing.


Subject(s)
Antifungal Agents , Candida , Antifungal Agents/pharmacology , Aspergillus , Microbial Sensitivity Tests , Pichia
13.
Article in English | MEDLINE | ID: mdl-32366708

ABSTRACT

Manogepix (APX001A) is the active moiety of the novel drug candidate fosmanogepix (APX001). We previously reported the broad-spectrum activity of manogepix but also observed a correlation between increased manogepix and fluconazole MICs. Here, we extended this study and included isolates with acquired fluconazole resistance. Isolates (n = 835) were identified using CHROMagar, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and, when needed, internal transcribed spacer (ITS) sequencing. EUCAST E.Def 7.3.1 susceptibility testing included manogepix, amphotericin B, anidulafungin, micafungin, fluconazole, and voriconazole. Manogepix wild-type-upper-limit (WT-UL) values were established following EUCAST principles for the epidemiological cutoff value (ECOFF) setting allowing wild-type/non-wild-type classification. Drug-specific MIC correlations were investigated using Pearson's correlation. Manogepix modal MICs were low (range, 0.004 to 0.06 mg/liter against 16/20 included species). Exceptions were Candida krusei and Candida inconspicua and, to a lesser extent, Candida kefyr and Pichia kluyveri The activity was independent of Fks echinocandin hot spot alterations (n = 17). Adopting the WT-UL established for Candida albicans, Candida dubliniensis, Candida glabrata, Candida parapsilosis, and Candida tropicalis, 14/724 (1.9%) isolates were non-wild type for manogepix. Twelve of these (85.7%) were also non-wild type for fluconazole. A statistically significant correlation was observed between manogepix and fluconazole MICs for C. albicans, C. dubliniensis, C. glabrata, C. parapsilosis, and C. tropicalis (Pearson's r = 0.401 to 0.575) but not between manogepix and micafungin or amphotericin B MICs for any species except C. tropicalis (r = 0.519 for manogepix versus micafungin). Broad-spectrum activity was confirmed for manogepix against contemporary yeast. However, a 1 to 4 2-fold dilutions increase in manogepix MICs is observed in a subset of isolates with acquired fluconazole resistance. Further studies on the potential underlying mechanism and implication for optimal dosing are warranted.


Subject(s)
Antifungal Agents , Fluconazole , Aminopyridines , Antifungal Agents/pharmacology , Candida , Drug Resistance, Fungal/genetics , Fluconazole/pharmacology , Humans , Isoxazoles , Kluyveromyces , Microbial Sensitivity Tests , Pichia
14.
Article in English | MEDLINE | ID: mdl-32513793

ABSTRACT

Manogepix (APX001A) is the active moiety of the drug candidate fosmanogepix (APX001), currently in clinical development for the treatment of invasive fungal infections. We compared manogepix EUCAST minimum effective concentrations (MECs) to MICs of five comparators and CLSI MECs and MICs by a colorimetric method against contemporary molds. EUCAST susceptibility testing was performed for 161 isolates. Interlaboratory and intermethod reproducibility were determined by comparison with published manogepix MECs. Colorimetric MICs (measuring metabolic activity) were evaluated using three Aspergillus fumigatus isolates and one Aspergillus flavus isolate with four inocula at 24 to 48 h of incubation and 1 to 3 h 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT)/menadione (MEN) exposure. Manogepix modal MECs (range in mg/liter) against Aspergillus species were 0.03 to 0.06 (0.008 to 0.125) and unaffected by itraconazole resistance. Manogepix was as active against two Fusarium isolates but inactive against Trichophyton interdigitale, Lichtheimia ramosa, and Rhizomucor pusillus isolates (MECs >0.5). Modal MEC/MICs were ≥3 2-fold dilutions apart without overlapping ranges comparing manogepix with amphotericin B, isavuconazole, and voriconazole against Aspergillus isolates. Manogepix and posaconazole MECs/MICs correlated for Aspergillus niger (Pearson's r = 0.711; P = 0.0044). The MEC at which 50% of the isolates tested are inhibited (MEC50), mode, and MEC90 values were within ±1 dilution in all cases compared with published EUCAST and CLSI data. The colorimetric method showed excellent agreement with the MECs when plates were inoculated with the lowest inoculum (1 × 102 CFU/ml to 2.5 × 102 CFU/ml), incubated for 24 h, and exposed for 1 to 3 h to XTT/MEN. Broad-spectrum in vitro activity of manogepix against clinically relevant molds was confirmed with excellent agreement across EUCAST and CLSI methods reported from experienced mycology laboratories. Colorimetric MIC determination warrants further investigation as a potential alternative that is less dependent on mycology expertise.


Subject(s)
Antifungal Agents , Colorimetry , Aminopyridines , Antifungal Agents/pharmacology , Arthrodermataceae , Humans , Isoxazoles , Microbial Sensitivity Tests , Mucorales , Reproducibility of Results , Rhizomucor
15.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Article in English | MEDLINE | ID: mdl-32660998

ABSTRACT

Fosmanogepix is a novel prodrug in a new class of antifungal agents. Manogepix is the active moiety. We evaluated the CLSI and EUCAST MICs of manogepix and eight comparators against Candida auris CLSI M27-A3 susceptibility testing of manogepix was performed for 122 C. auris isolates and compared to CLSI and EUCAST MICs for manogepix and eight comparators. Differences and agreement were calculated for each compound. Wild-type upper limits (WT-ULs; the upper MIC where the wild-type distribution ends) for manogepix and correlations with other drugs' MICs were determined. Manogepix MICs (CLSI/EUCAST [mg/liter]) and WT-ULs were as follows: MIC50s, 0.008/0.016; MIC90s, 0.03/0.03; ranges, 0.001 to 0.25/0.001 to 0.125; 97.5% and 99% WT-ULs, 0.03/0.125 and 0.06/0.125, respectively. The manogepix CLSI/EUCAST MIC distributions spanned 9/8 dilutions, respectively. Significant correlation was found for all azoles, particularly fluconazole (r = 0.22 to 0.74, P < 0.05). Isolates with EUCAST manogepix MICs of ≤0.004 had 7.6-/10.2-fold-lower fluconazole CLSI/EUCAST MICs than the remaining isolates that had higher manogepix MICs. The highest essential agreement between CLSI and EUCAST results was observed for manogepix and fluconazole, with a median difference of -1 to 0 2-fold dilutions, 90th percentile absolute difference of 1, and 90 to 92% and 98 to 100% agreement within ±1 and ±2 dilutions. The lowest agreements within ±1 and ±2 dilutions were found for isavuconazole and anidulafungin (44 to 50% and 69 to 76%). The correlation between CLSI and EUCAST manogepix MICs against C. auris was excellent. Differential MICs were found, and these correlated with fluconazole MICs, suggesting that the C. auris population is a mix of wild-type isolates and non-wild-type isolates with low-grade manogepix MIC elevation, probably involving efflux pump expression. However, manogepix was the most potent agent against C. auris in this in vitro study.


Subject(s)
Candida , Isoxazoles , Aminopyridines , Antifungal Agents/pharmacology , Microbial Sensitivity Tests
16.
Article in English | MEDLINE | ID: mdl-31844005

ABSTRACT

Ibrexafungerp (SCY-078) is a novel first-in-class antifungal agent targeting glucan synthase. Candida auris is an emerging multidrug-resistant species that has caused outbreaks on five continents. We investigated the in vitro activity of ibrexafungerp against C. auris by applying EUCAST E.Def 7.3.1 methodology. C. albicans and C. glabrata, as well as anidulafungin, micafungin, amphotericin B, fluconazole, voriconazole, and isavuconazole, were included as comparators. Three C. auris reference strains (CBS12372, CBS12373, and CBS10913) and 122 C. auris, 16 C. albicans, and 16 C. glabrata isolates were evaluated. C. albicans ATCC 64548, C. parapsilosis ATCC 22019, and C. krusei ATCC 6258 served as quality control strains. Echinocandin-resistant isolates were fks sequenced. MIC ranges and modal MIC and MIC50 values were determined. Wild-type upper limits (the upper MIC value where the wild-type distribution ends) were determined according to EUCAST principles for setting ECOFFs. Nine repetitions of three QC strains and MICs for C. albicans and C. glabrata yielded narrow MIC ranges with modal MICs in agreement with established EUCAST modal MICs, confirming a robust test performance. The ibrexafungerp MICs against C. auris isolates displayed a Gaussian distribution with a modal MIC (range) of 0.5 mg/liter (0.06 to 2 mg/liter), suggesting uniform susceptibility. Of 122 isolates, 8 were echinocandin resistant and harbored the S639F Fks1 alteration. All but one were fluconazole resistant, and the MIC distributions for voriconazole and isavuconazole were multimodal confirming variable susceptibility. Ibrexafungerp demonstrated promising activity against C. auris, including isolates resistant to echinocandins and/or other agents. The MICs were similar to those reported for the Clinical and Laboratory Standards Institute method, suggesting that a common clinical breakpoint may be appropriate.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida glabrata/drug effects , Candida/drug effects , Echinocandins/pharmacology , Glycosides/pharmacology , Triterpenes/pharmacology , Candida/genetics , Candida albicans/genetics , Candida glabrata/genetics , Microbial Sensitivity Tests , Mutation/genetics
17.
Article in English | MEDLINE | ID: mdl-33020160

ABSTRACT

Olorofim is a novel antifungal drug in phase 2 trials. It has shown promising in vitro activity against various molds, except for Mucorales. Initially, we observed a broad range of EUCAST MICs for Aspergillus fumigatus Here, we explored the MIC variability in more detail and prospectively investigated the susceptibility of contemporary clinical mold isolates, as population data are needed for future epidemiological cutoff (ECOFF) settings. Fifteen A. fumigatus isolates previously found with low/medium/high MICs (≤0.002 to 0.25 mg/liter) were tested repeatedly and EUCAST MICs read in a blinded fashion by three observers. pyrE, encoding the olorofim target enzyme dihydroorotate dehydrogenase (DHODH), was sequenced. A total of 1,423 mold isolates (10 Aspergillus species complexes [including 1,032 A. fumigatus isolates] and 105 other mold/dermatophyte isolates) were examined. Olorofim susceptibility (modal MIC, MIC50, MIC90, and wild-type upper limits [WT-ULs] [species complexes with ≥15 isolates]) was determined and compared to that of four comparators. MICs (mg/liter) were within two 2-fold dilutions (0.016 to 0.03) for 473/476 determinations. The MIC range spanned four dilutions (0.008 to 0.06). No significant pyrE mutations were found. Modal MIC/WT-UL97.5 (mg/liter) values were 0.03/0.06 (A. terreus and A. flavus), 0.06/0.125 (A. fumigatus and Trichophyton rubrum), and 0.06/0.25 (A. niger and A. nidulans). The MIC range for Scedosporium spp. was 0.008 to 0.25. Olorofim susceptibility was similar for azole-resistant and -susceptible isolates of A. fumigatus but reduced for A. montevidensis and A. chevalieri (MICs of >1). With experience, olorofim susceptibility testing is robust. The testing of isolates from our center showed uniform and broad-spectrum activity. Single-center WT-ULs are suggested.


Subject(s)
Pyrimidines , Triazoles , Acetamides , Antifungal Agents/pharmacology , Arthrodermataceae , Aspergillus fumigatus/genetics , Denmark , Drug Resistance, Fungal/genetics , Microbial Sensitivity Tests , Piperazines , Pyrimidines/pharmacology , Pyrroles , Triazoles/pharmacology
18.
Article in English | MEDLINE | ID: mdl-32015032

ABSTRACT

Rezafungin (formerly CD101) is a novel echinocandin in clinical development. EUCAST epidemiological cutoff values (ECOFFs) have not yet been established. We determined the in vitro activity of rezafungin and comparators against 1,293 Nordic yeast isolates and 122 Indian Candida auris isolates and established single-center wild-type upper limits (WT-UL). The isolates (19 Candida spp. and 13 other yeast species) were identified using Chromagar; matrix-assisted laser desorption ionization-time of flight (MALDI-TOF); and, when needed, internal transcribed spacer sequencing. EUCAST E.Def 7.3.1 susceptibility testing included rezafungin, anidulafungin, micafungin, amphotericin B, and fluconazole. WT-UL were established following EUCAST principles for visual and statistical ECOFF setting. fks target genes were sequenced for rezafungin non-wild-type isolates. EUCAST clinical breakpoints for fungi version 9.0 were adopted for susceptibility classification. Rezafungin had species-specific activity similar to that of anidulafungin and micafungin. On a milligram-per-liter basis, rezafungin was overall less active than anidulafungin and micafungin but equally or more active than fluconazole and amphotericin B against the most common Candida species, except C. parapsilosis We identified 37 (3.1%) rezafungin non-wild-type isolates of C. albicans (1.9%), C. glabrata (3.0%), C. tropicalis (2.7%), C. dubliniensis (2.9%), C. krusei (1.2%), and C. auris (14.8%). Alterations in Fks hot spots were found in 26/26 Nordic and 8/18 non-wild-type C. auris isolates. Rezafungin displayed broad in vitro activity against Candida spp., including C. auris Adopting WT-UL established here, few Nordic strains, but a significant proportion of C. auris isolates, had elevated MICs with mutations in fks target genes that conferred echinocandin cross-resistance. fks1 mutations raised rezafungin MICs notably less than anidulafungin and micafungin MICs in C. auris.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Candidiasis/microbiology , Echinocandins/pharmacology , Microbial Sensitivity Tests/methods , Candida/genetics , Drug Resistance, Fungal/drug effects , Drug Resistance, Fungal/genetics , Humans , India , Mutation , Scandinavian and Nordic Countries , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Article in English | MEDLINE | ID: mdl-32229492

ABSTRACT

CLSI and EUCAST susceptibility breakpoints for voriconazole and Candida albicans differ by one dilution (≤0.125 and ≤0.06 mg/liter, respectively) whereas the epidemiological cutoff values for EUCAST (ECOFF) and CLSI (ECV) are the same (0.03 mg/liter). We therefore determined the pharmacokinetic/pharmacodynamic (PK/PD) breakpoints of voriconazole against C. albicans for both methodologies with an in vitro PK/PD model, which was validated using existing animal PK/PD data. Four clinical wild-type and non-wild-type C. albicans isolates (voriconazole MICs, 0.008 to 0.125 mg/liter) were tested in an in vitro PK/PD model. For validation purposes, mouse PK were simulated and in vitro PD were compared with in vivo outcomes. Human PK were simulated, and the exposure-effect relationship area under the concentration-time curve for the free, unbound fraction of a drug from 0 to 24 h (fAUC0-24)/MIC was described for EUCAST and CLSI 24/48-h methods. PK/PD breakpoints were determined using the fAUC0-24/MIC associated with half-maximal activity (EI50) and Monte Carlo simulation analysis. The in vitro 24-h PD EI50 values of voriconazole against C. albicans were 2.5 to 5 (1.5 to 17) fAUC/MIC. However, the 72-h PD were higher at 133 (51 to 347) fAUC/MIC for EUCAST and 94 (35 to 252) fAUC/MIC for CLSI. The mean (95% confidence interval) probability of target attainment (PTA) was 100% (95 to 100%), 97% (72 to 100%), 83% (35 to 99%), and 49% (8 to 91%) for EUCAST and 100% (97 to 100%), 99% (85 to 100%), 91% (52 to 100%), and 68% (17 to 96%) for CLSI for MICs of 0.03, 0.06, 0.125, and 0.25 mg/liter, respectively. Significantly, >95% PTA values were found for EUCAST/CLSI MICs of ≤0.03 mg/liter. For MICs of 0.06 to 0.125 mg/liter, trough levels 1 to 4 mg/liter would be required to attain the PK/PD target. A PK/PD breakpoint of C. albicans voriconazole at the ECOFF/ECV of 0.03 mg/liter was determined for both the EUCAST and CLSI methods, indicating the need for breakpoint harmonization for the reference methodologies.


Subject(s)
Antifungal Agents , Candida albicans , Animals , Antifungal Agents/pharmacology , Candida , Mice , Microbial Sensitivity Tests , Voriconazole/pharmacology
20.
J Antimicrob Chemother ; 75(9): 2573-2581, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32556315

ABSTRACT

BACKGROUND: EUCAST recently revised the definition of the 'I' category from 'intermediate' to 'susceptible, increased exposure'. Consequently, all current antifungal breakpoints have been reviewed and revised breakpoints (v 10.0) have been released. OBJECTIVES: We investigated isavuconazole and comparator MICs (mg/L) against contemporary moulds and the consequences of the breakpoint revision for susceptibility classification. METHODS: Six hundred and ninety-six Aspergillus and 46 other moulds were included. EUCAST E.Def 10.1 azole resistance screening was performed for Aspergillus fumigatus and E.Def 9.3.1 testing of non-susceptible A. fumigatus and other moulds. Most non-wildtype/resistant isolates underwent cyp51A sequencing. RESULTS: Isavuconazole MIC50/MIC90s were ≤1/≤2 mg/L for Aspergillus flavus, A. fumigatus and Aspergillus nidulans versus 2/4 mg/L for Aspergillus niger and 2/16 mg/L for Aspergillus terreus. For the remaining moulds, MICs were highest for Fusarium (16 to >16 mg/L), lowest for dermatophytes (0.06-0.5 mg/L) and in between for Mucorales and others (1 to >16 mg/L). A very strong isavuconazole-voriconazole MIC correlation was found for A. fumigatus (Pearson r = 0.888) and itraconazole-posaconazole correlation for A. fumigatus (r = 0.905) and A. terreus (r = 0.848). For A. fumigatus, the revised breakpoints lowered isavuconazole resistance (22.6% to 7.7%, P < 0.0001) and increased voriconazole resistance (3.8% to 6.7%, P = 0.025), resulting in similar resistance rates across the four azoles (range: 6.7%-7.7%). For A. terreus, isavuconazole resistance remained unchanged (81.3%) and higher than itraconazole (43.8%, P = 0.004) and posaconazole (53.1%, P = 0.03) resistance. Azole cross-resistance was found in 24/24, 13/20 and 4/90 isolates, and Cyp51A alterations in 16/18, 1/7 and 2/4 sequenced isolates with isavuconazole MICs of >4, 4 and 2 mg/L, respectively. CONCLUSIONS: Isavuconazole displays broad anti-mould activity. The revised breakpoints result in fewer misclassifications of wildtype isolates without compromising detection of resistant mutants.


Subject(s)
Antifungal Agents , Nitriles , Antifungal Agents/pharmacology , Aspergillus , Aspergillus fumigatus/genetics , Denmark , Drug Resistance, Fungal , Microbial Sensitivity Tests , Nitriles/pharmacology , Pyridines , Triazoles , Voriconazole
SELECTION OF CITATIONS
SEARCH DETAIL