Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Dev ; 38(7-8): 322-335, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38724209

ABSTRACT

Rare, full-length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envisioned and tested a hypothesis for their formation using Saccharomyces cerevisiae, documenting full-length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full-length and processed circles. Postsplicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.


Subject(s)
Introns , RNA Splicing , Saccharomyces cerevisiae , Spliceosomes , Spliceosomes/metabolism , Spliceosomes/genetics , Introns/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Humans , RNA Splicing/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , RNA/metabolism , RNA/genetics
2.
Cell ; 165(2): 265-7, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27058658

ABSTRACT

Splicing occurs co-transcriptionally, but relative rates of splicing and transcription that might reveal mechanisms of their coordinated control have remained mysterious. Now, Carrillo Oesterreich et al. show that the fastest introns are gone nearly as soon as the 3' splice site is transcribed and that introns have distinct splicing kinetics with respect to polymerase progression along the gene.


Subject(s)
Introns , RNA Splicing , Humans , RNA Splice Sites
3.
RNA ; 30(2): 149-170, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38071476

ABSTRACT

Intron branchpoint (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect the binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after the addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during cotranscriptional splicing in Plad-B using single-molecule intron tracking to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between the binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten the characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Introns/genetics , Ribonucleoprotein, U2 Small Nuclear/chemistry , Saccharomyces cerevisiae Proteins/metabolism , RNA Splicing , Spliceosomes/genetics , Amino Acids/genetics , RNA Precursors/genetics
4.
Proc Natl Acad Sci U S A ; 119(48): e2209766119, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36417430

ABSTRACT

There is massive variation in intron numbers across eukaryotic genomes, yet the major drivers of intron content during evolution remain elusive. Rapid intron loss and gain in some lineages contrast with long-term evolutionary stasis in others. Episodic intron gain could be explained by recently discovered specialized transposons called Introners, but so far Introners are only known from a handful of species. Here, we performed a systematic search across 3,325 eukaryotic genomes and identified 27,563 Introner-derived introns in 175 genomes (5.2%). Species with Introners span remarkable phylogenetic diversity, from animals to basal protists, representing lineages whose last common ancestor dates to over 1.7 billion years ago. Aquatic organisms were 6.5 times more likely to contain Introners than terrestrial organisms. Introners exhibit mechanistic diversity but most are consistent with DNA transposition, indicating that Introners have evolved convergently hundreds of times from nonautonomous transposable elements. Transposable elements and aquatic taxa are associated with high rates of horizontal gene transfer, suggesting that this combination of factors may explain the punctuated and biased diversity of species containing Introners. More generally, our data suggest that Introners may explain the episodic nature of intron gain across the eukaryotic tree of life. These results illuminate the major source of ongoing intron creation in eukaryotic genomes.


Subject(s)
DNA Transposable Elements , Eukaryota , Animals , Introns/genetics , Eukaryota/genetics , DNA Transposable Elements/genetics , Phylogeny , Eukaryotic Cells
5.
Genes Dev ; 31(18): 1894-1909, 2017 09 15.
Article in English | MEDLINE | ID: mdl-29021242

ABSTRACT

Quaking protein isoforms arise from a single Quaking gene and bind the same RNA motif to regulate splicing, translation, decay, and localization of a large set of RNAs. However, the mechanisms by which Quaking expression is controlled to ensure that appropriate amounts of each isoform are available for such disparate gene expression processes are unknown. Here we explore how levels of two isoforms, nuclear Quaking-5 (Qk5) and cytoplasmic Qk6, are regulated in mouse myoblasts. We found that Qk5 and Qk6 proteins have distinct functions in splicing and translation, respectively, enforced through differential subcellular localization. We show that Qk5 and Qk6 regulate distinct target mRNAs in the cell and act in distinct ways on their own and each other's transcripts to create a network of autoregulatory and cross-regulatory feedback controls. Morpholino-mediated inhibition of Qk translation confirms that Qk5 controls Qk RNA levels by promoting accumulation and alternative splicing of Qk RNA, whereas Qk6 promotes its own translation while repressing Qk5. This Qk isoform cross-regulatory network responds to additional cell type and developmental controls to generate a spectrum of Qk5/Qk6 ratios, where they likely contribute to the wide range of functions of Quaking in development and cancer.


Subject(s)
Alternative Splicing , Myoblasts/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Animals , Cell Line, Tumor , Exons , Gene Expression , Humans , Mice , Morpholinos , Neoplasms/genetics , Neoplasms/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Recognition Motif , RNA, Small Interfering/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Rats
7.
Nat Methods ; 17(5): 481-494, 2020 05.
Article in English | MEDLINE | ID: mdl-32251396

ABSTRACT

Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.


Subject(s)
DNA/administration & dosage , Eukaryota/physiology , Green Fluorescent Proteins/metabolism , Marine Biology , Models, Biological , Transformation, Genetic , Biodiversity , Ecosystem , Environment , Eukaryota/classification , Species Specificity
8.
RNA ; 27(12): 1497-1511, 2021 12.
Article in English | MEDLINE | ID: mdl-34446532

ABSTRACT

Understanding transcriptomes requires documenting the structures, modifications, and abundances of RNAs as well as their proximity to other molecules. The methods that make this possible depend critically on enzymes (including mutant derivatives) that act on nucleic acids for capturing and sequencing RNA. We tested two 3' nucleotidyl transferases, Saccharomyces cerevisiae poly(A) polymerase and Schizosaccharomyces pombe Cid1, for the ability to add base and sugar modified rNTPs to free RNA 3' ends, eventually focusing on Cid1. Although unable to polymerize ΨTP or 1meΨTP, Cid1 can use 5meUTP and 4thioUTP. Surprisingly, Cid1 can use inosine triphosphate to add poly(I) to the 3' ends of a wide variety of RNA molecules. Most poly(A) mRNAs efficiently acquire a uniform tract of about 50 inosine residues from Cid1, whereas non-poly(A) RNAs acquire longer, more heterogeneous tails. Here we test these activities for use in direct RNA sequencing on nanopores, and find that Cid1-mediated poly(I)-tailing permits detection and quantification of both mRNAs and non-poly(A) RNAs simultaneously, as well as enabling the analysis of nascent RNAs associated with RNA polymerase II. Poly(I) produces a different current trace than poly(A), enabling recognition of native RNA 3' end sequence lost by in vitro poly(A) addition. Addition of poly(I) by Cid1 offers a broadly useful alternative to poly(A) capture for direct RNA sequencing on nanopores.


Subject(s)
Nanopores , Nucleotides/chemistry , Nucleotidyltransferases/metabolism , Polymers/chemistry , Polynucleotide Adenylyltransferase/metabolism , Saccharomyces cerevisiae/enzymology , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Sequence Analysis, RNA/methods , Nucleotidyltransferases/genetics , Polynucleotide Adenylyltransferase/genetics , Schizosaccharomyces pombe Proteins/genetics
9.
PLoS Genet ; 16(5): e1008854, 2020 05.
Article in English | MEDLINE | ID: mdl-32459805

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pgen.1008249.].

10.
PLoS Genet ; 15(8): e1008249, 2019 08.
Article in English | MEDLINE | ID: mdl-31437148

ABSTRACT

Introns are a prevalent feature of eukaryotic genomes, yet their origins and contributions to genome function and evolution remain mysterious. In budding yeast, repression of the highly transcribed intron-containing ribosomal protein genes (RPGs) globally increases splicing of non-RPG transcripts through reduced competition for the spliceosome. We show that under these "hungry spliceosome" conditions, splicing occurs at more than 150 previously unannotated locations we call protointrons that do not overlap known introns. Protointrons use a less constrained set of splice sites and branchpoints than standard introns, including in one case AT-AC in place of GT-AG. Protointrons are not conserved in all closely related species, suggesting that most are not under positive selection and are fated to disappear. Some are found in non-coding RNAs (e. g. CUTs and SUTs), where they may contribute to the creation of new genes. Others are found across boundaries between noncoding and coding sequences, or within coding sequences, where they offer pathways to the creation of new protein variants, or new regulatory controls for existing genes. We define protointrons as (1) nonconserved intron-like sequences that are (2) infrequently spliced, and importantly (3) are not currently understood to contribute to gene expression or regulation in the way that standard introns function. A very few protointrons in S. cerevisiae challenge this classification by their increased splicing frequency and potential function, consistent with the proposed evolutionary process of "intronization", whereby new standard introns are created. This snapshot of intron evolution highlights the important role of the spliceosome in the expansion of transcribed genomic sequence space, providing a pathway for the rare events that may lead to the birth of new eukaryotic genes and the refinement of existing gene function.


Subject(s)
Alternative Splicing , Evolution, Molecular , Genome, Fungal , Introns/genetics , Saccharomyces cerevisiae/genetics , RNA, Untranslated/genetics , Ribosomal Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Spliceosomes/metabolism
11.
RNA ; 25(8): 1020-1037, 2019 08.
Article in English | MEDLINE | ID: mdl-31110137

ABSTRACT

Stable recognition of the intron branchpoint (BP) by the U2 snRNP to form the pre-spliceosome is the first ATP-dependent step of splicing. Genetic and biochemical data from yeast indicate that Cus2 aids U2 snRNA folding into the stem IIa conformation prior to pre-spliceosome formation. Cus2 must then be removed by an ATP-dependent function of Prp5 before assembly can progress. However, the location from which Cus2 is displaced and the nature of its binding to the U2 snRNP are unknown. Here, we show that Cus2 contains a conserved UHM (U2AF homology motif) that binds Hsh155, the yeast homolog of human SF3b1, through a conserved ULM (U2AF ligand motif). Mutations in either motif block binding and allow pre-spliceosome formation without ATP. A 2.0 Å resolution structure of the Hsh155 ULM in complex with the UHM of Tat-SF1, the human homolog of Cus2, and complementary binding assays show that the interaction is highly similar between yeast and humans. Furthermore, we show that Tat-SF1 can replace Cus2 function by enforcing ATP dependence of pre-spliceosome formation in yeast extracts. Cus2 is removed before pre-spliceosome formation, and both Cus2 and its Hsh155 ULM binding site are absent from available cryo-EM structure models. However, our data are consistent with the apparent location of the disordered Hsh155 ULM between the U2 stem-loop IIa and the HEAT repeats of Hsh155 that interact with Prp5. We propose a model in which Prp5 uses ATP to remove Cus2 from Hsh155 such that extended base-pairing between U2 snRNA and the intron BP can occur.


Subject(s)
Adenosine Triphosphate/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribonucleoprotein, U2 Small Nuclear/chemistry , Ribonucleoprotein, U2 Small Nuclear/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Amino Acid Motifs , Binding Sites , Conserved Sequence , Crystallography, X-Ray , DEAD-box RNA Helicases/metabolism , Humans , Models, Molecular , Mutation , Protein Binding , RNA Splicing , RNA-Binding Proteins/genetics , Ribonucleoprotein, U2 Small Nuclear/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
12.
Mol Cell ; 51(3): 338-48, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23891561

ABSTRACT

During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells, RPG repression by rapamycin treatment also increases splicing efficiency. Downregulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two spliceosome mutations, prp11-1 and prp4-1, and globally restores splicing efficiency in prp4-1 cells. We conclude that the splicing apparatus is limiting and that pre-messenger RNAs compete. Splicing efficiency of a pre-mRNA therefore depends not just on its own concentration and affinity for limiting splicing factor(s), but also on those of competing pre-mRNAs. Competition between RNAs for limiting processing factors appears to be a general condition in eukaryotes for a variety of posttranscriptional control mechanisms including microRNA (miRNA) repression, polyadenylation, and splicing.


Subject(s)
Meiosis/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing , Saccharomyces cerevisiae/genetics , Base Sequence , Down-Regulation , Protein Serine-Threonine Kinases/genetics , RNA Splicing Factors , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Heterogeneous Nuclear/genetics , RNA, Heterogeneous Nuclear/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribosomal Proteins/biosynthesis , Ribosomal Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Sequence Analysis, RNA , Sirolimus/pharmacology , Spliceosomes/genetics , Trans-Activators/biosynthesis , Transcription, Genetic
13.
Mol Cell ; 50(2): 223-35, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23562324

ABSTRACT

SR proteins are well-characterized RNA binding proteins that promote exon inclusion by binding to exonic splicing enhancers (ESEs). However, it has been unclear whether regulatory rules deduced on model genes apply generally to activities of SR proteins in the cell. Here, we report global analyses of two prototypical SR proteins, SRSF1 (SF2/ASF) and SRSF2 (SC35), using splicing-sensitive arrays and CLIP-seq on mouse embryo fibroblasts (MEFs). Unexpectedly, we find that these SR proteins promote both inclusion and skipping of exons in vivo, but their binding patterns do not explain such opposite responses. Further analyses reveal that loss of one SR protein is accompanied by coordinated loss or compensatory gain in the interaction of other SR proteins at the affected exons. Therefore, specific effects on regulated splicing by one SR protein actually depend on a complex set of relationships with multiple other SR proteins in mammalian genomes.


Subject(s)
Alternative Splicing , Genome , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Animals , Base Sequence , Binding Sites , Cells, Cultured , Consensus Sequence , Exons , Fibroblasts/metabolism , Gene Knockout Techniques , Introns , Mice , Mice, Knockout , Nuclear Proteins/genetics , Protein Binding , RNA Splicing , RNA-Binding Proteins/genetics , Ribonucleoproteins/genetics , Sequence Analysis, RNA , Serine-Arginine Splicing Factors , Transcriptome
14.
Proc Natl Acad Sci U S A ; 115(5): 968-973, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29339519

ABSTRACT

Primate-specific Alu short interspersed elements (SINEs) as well as rodent-specific B and ID (B/ID) SINEs can promote Staufen-mediated decay (SMD) when present in mRNA 3'-untranslated regions (3'-UTRs). The transposable nature of SINEs, their presence in long noncoding RNAs, their interactions with Staufen, and their rapid divergence in different evolutionary lineages suggest they could have generated substantial modification of posttranscriptional gene-control networks during mammalian evolution. Some of the variation in SMD regulation produced by SINE insertion might have had a similar regulatory effect in separate mammalian lineages, leading to parallel evolution of the Staufen network by independent expansion of lineage-specific SINEs. To explore this possibility, we searched for orthologous gene pairs, each carrying a species-specific 3'-UTR SINE and each regulated by SMD, by measuring changes in mRNA abundance after individual depletion of two SMD factors, Staufen1 (STAU1) and UPF1, in both human and mouse myoblasts. We identified and confirmed orthologous gene pairs with 3'-UTR SINEs that independently function in SMD control of myoblast metabolism. Expanding to other species, we demonstrated that SINE-directed SMD likely emerged in both primate and rodent lineages >20-25 million years ago. Our work reveals a mechanism for the convergent evolution of posttranscriptional gene regulatory networks in mammals by species-specific SINE transposition and SMD.


Subject(s)
Evolution, Molecular , RNA Stability/genetics , RNA-Binding Proteins/metabolism , Short Interspersed Nucleotide Elements , 3' Untranslated Regions , AT Rich Sequence , Animals , Humans , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics
15.
Nat Rev Genet ; 15(10): 689-701, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25112293

ABSTRACT

Sequence-specific RNA-binding proteins (RBPs) bind to pre-mRNA to control alternative splicing, but it is not yet possible to read the 'splicing code' that dictates splicing regulation on the basis of genome sequence. Each alternative splicing event is controlled by multiple RBPs, the combined action of which creates a distribution of alternatively spliced products in a given cell type. As each cell type expresses a distinct array of RBPs, the interpretation of regulatory information on a given RNA target is exceedingly dependent on the cell type. RBPs also control each other's functions at many levels, including by mutual modulation of their binding activities on specific regulatory RNA elements. In this Review, we describe some of the emerging rules that govern the highly context-dependent and combinatorial nature of alternative splicing regulation.


Subject(s)
Alternative Splicing , RNA-Binding Proteins/physiology , Regulatory Elements, Transcriptional/physiology , Animals , Binding Sites/genetics , Cellular Microenvironment/genetics , Humans , Organ Specificity/genetics , Protein Binding
16.
Genes Dev ; 26(5): 445-60, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22357600

ABSTRACT

The Rbfox proteins (Rbfox1, Rbfox2, and Rbfox3) regulate the alternative splicing of many important neuronal transcripts and have been implicated in a variety of neurological disorders. However, their roles in brain development and function are not well understood, in part due to redundancy in their activities. Here we show that, unlike Rbfox1 deletion, the CNS-specific deletion of Rbfox2 disrupts cerebellar development. Genome-wide analysis of Rbfox2(-/-) brain RNA identifies numerous splicing changes altering proteins important both for brain development and mature neuronal function. To separate developmental defects from alterations in the physiology of mature cells, Rbfox1 and Rbfox2 were deleted from mature Purkinje cells, resulting in highly irregular firing. Notably, the Scn8a mRNA encoding the Na(v)1.6 sodium channel, a key mediator of Purkinje cell pacemaking, is improperly spliced in RbFox2 and Rbfox1 mutant brains, leading to highly reduced protein expression. Thus, Rbfox2 protein controls a post-transcriptional program required for proper brain development. Rbfox2 is subsequently required with Rbfox1 to maintain mature neuronal physiology, specifically Purkinje cell pacemaking, through their shared control of sodium channel transcript splicing.


Subject(s)
Cerebellum/embryology , Motor Neurons/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Animals , Cerebellum/cytology , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Mice , NAV1.6 Voltage-Gated Sodium Channel , Nerve Tissue Proteins/metabolism , Purkinje Cells/metabolism , RNA Splicing/genetics , RNA Splicing Factors , Sodium Channels/metabolism
18.
Mol Cell ; 38(3): 416-27, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20471947

ABSTRACT

U2 snRNA-intron branchpoint pairing is a critical step in pre-mRNA recognition by the splicing apparatus, but the mechanism by which these two RNAs engage each other is unknown. Here, we identify a U2 snRNA structure, the branchpoint-interacting stem loop (BSL), which presents the U2 nucleotides that will contact the intron. We provide evidence that the BSL forms prior to interaction with the intron and is disrupted by the DExD/H protein Prp5p during engagement of the snRNA with the intron. In vitro splicing complex assembly in a BSL-destabilized mutant extract suggests that the BSL is required at a previously unrecognized step between commitment complex and prespliceosome formation. The extreme evolutionary conservation of the BSL suggests that it represents an ancient structural solution to the problem of intron branchpoint recognition by dynamic RNA elements that must serve multiple functions at other times during splicing.


Subject(s)
Gene Expression Regulation, Fungal , Introns , RNA Splicing , RNA, Fungal/metabolism , RNA, Small Nuclear/metabolism , Spliceosomes/metabolism , Yeasts/genetics , Adenosine Triphosphate/metabolism , Base Sequence , Binding Sites , DEAD-box RNA Helicases/metabolism , Evolution, Molecular , Fungal Proteins/metabolism , Genotype , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , Phenotype , RNA Precursors/metabolism , RNA, Fungal/chemistry , RNA, Messenger/metabolism , RNA, Small Nuclear/chemistry , Structure-Activity Relationship , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL