Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Publication year range
1.
Cell ; 158(6): 1415-1430, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25215496

ABSTRACT

The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study, we quantified the transcriptome--a subset of the metabolome--and, using targeted proteomics, quantified a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein, and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. These integrated molecular profiles also allowed further characterization of complex pathways, particularly the mitochondrial unfolded protein response (UPR(mt)). UPR(mt) shows strikingly variant responses at the transcript and protein level that are remarkably conserved among C. elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes.


Subject(s)
Gene Expression Profiling , Liver/chemistry , Mice/metabolism , Mitochondria/chemistry , Proteome/analysis , Serum/chemistry , Animals , Glucose/metabolism , Humans , Ketone Oxidoreductases/metabolism , Liver/cytology , Liver/metabolism , Mice/classification , Mice/genetics , Mice, Inbred C57BL , Mice, Inbred DBA , Mitochondria/metabolism , Quantitative Trait Loci , Serum/metabolism , Unfolded Protein Response
2.
Cell ; 147(4): 719-21, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-22078872

ABSTRACT

Cholesterol regulates activation of sterol regulatory element-binding protein (SREBP) through a classic feedback loop. Walker et al. (2011) extend the regulatory inputs governing SREBP activity to include an independent loop modulated by phosphatidylcholine (PC) and cellular methylation capacity. These findings suggest a link between lipid synthesis and cellular pathways involved in methylation.

3.
Am J Hum Genet ; 108(9): 1765-1779, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34450030

ABSTRACT

An important goal of clinical genomics is to be able to estimate the risk of adverse disease outcomes. Between 5% and 10% of individuals with ulcerative colitis (UC) require colectomy within 5 years of diagnosis, but polygenic risk scores (PRSs) utilizing findings from genome-wide association studies (GWASs) are unable to provide meaningful prediction of this adverse status. By contrast, in Crohn disease, gene expression profiling of GWAS-significant genes does provide some stratification of risk of progression to complicated disease in the form of a transcriptional risk score (TRS). Here, we demonstrate that a measured TRS based on bulk rectal gene expression in the PROTECT inception cohort study has a positive predictive value approaching 50% for colectomy. Single-cell profiling demonstrates that the genes are active in multiple diverse cell types from both the epithelial and immune compartments. Expression quantitative trait locus (QTL) analysis identifies genes with differential effects at baseline and week 52 follow-up, but for the most part, differential expression associated with colectomy risk is independent of local genetic regulation. Nevertheless, a predicted polygenic transcriptional risk score (PPTRS) derived by summation of transcriptome-wide association study (TWAS) effects identifies UC-affected individuals at 5-fold elevated risk of colectomy with data from the UK Biobank population cohort studies, independently replicated in an NIDDK-IBDGC dataset. Prediction of gene expression from relatively small transcriptome datasets can thus be used in conjunction with TWASs for stratification of risk of disease complications.


Subject(s)
Colectomy/statistics & numerical data , Colitis, Ulcerative/surgery , Crohn Disease/surgery , Quantitative Trait Loci , Transcriptome , Biological Specimen Banks , Cohort Studies , Colitis, Ulcerative/complications , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/genetics , Colon/metabolism , Colon/pathology , Colon/surgery , Crohn Disease/complications , Crohn Disease/diagnosis , Crohn Disease/genetics , Datasets as Topic , Disease Progression , Gene Expression Profiling , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Prognosis , Risk Assessment , United Kingdom
4.
Gut ; 72(4): 654-662, 2023 04.
Article in English | MEDLINE | ID: mdl-36191961

ABSTRACT

OBJECTIVE: Loss-of-function mutations in genes generating reactive oxygen species (ROS), such as NOX1, are associated with IBD. Mechanisms whereby loss of ROS drive IBD are incompletely defined. DESIGN: ROS measurements and single-cell transcriptomics were performed on colonoids stratified by NOX1 genotype and TNFα stimulation. Clustering of epithelial cells from human UC (inflamed and uninflamed) scRNASeq was performed. Validation of M cell induction was performed by immunohistochemistry using UEA1 (ulex europaeus agglutin-1 lectin) and in vivo with DSS injury. RESULTS: TNFα induces ROS production more in NOX1-WT versus NOX1-deficient murine colonoids under a range of Wnt-mediated and Notch-mediated conditions. scRNASeq from inflamed and uninflamed human colitis versus TNFα stimulated, in vitro colonoids defines substantially shared, induced transcription factors; NOX1-deficient colonoids express substantially lower levels of STAT3 (signal transducer and activator of transcription 3), CEBPD (CCAAT enhancer-binding protein delta), DNMT1 (DNA methyltransferase) and HIF1A (hypoxia-inducible factor) baseline. Subclustering unexpectedly showed marked TNFα-mediated induction of M cells (sentinel cells overlying lymphoid aggregates) in NOX1-deficient colonoids. M cell induction by UEA1 staining is rescued with H2O2 and paraquat, defining extra- and intracellular ROS roles in maintenance of LGR5+ stem cells. DSS injury demonstrated GP2 (glycoprotein-2), basal lymphoplasmacytosis and UEA1 induction in NOX1-deficiency. Principal components analyses of M cell genes and decreased DNMT1 RNA velocity correlate with UC inflammation. CONCLUSIONS: NOX1 deficiency plus TNFα stimulation contribute to colitis through dysregulation of the stem cell niche and altered cell differentiation, enhancing basal lymphoplasmacytosis. Our findings prioritise ROS modulation for future therapies.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Humans , Animals , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/adverse effects , M Cells , NADPH Oxidase 1/genetics , NADPH Oxidase 1/metabolism , Hydrogen Peroxide/adverse effects , Colitis/chemically induced
5.
Gut ; 72(7): 1271-1287, 2023 07.
Article in English | MEDLINE | ID: mdl-36109152

ABSTRACT

OBJECTIVE: IBD therapies and treatments are evolving to deeper levels of remission. Molecular measures of disease may augment current endpoints including the potential for less invasive assessments. DESIGN: Transcriptome analysis on 712 endoscopically defined inflamed (Inf) and 1778 non-inflamed (Non-Inf) intestinal biopsies (n=498 Crohn's disease, n=421 UC and 243 controls) in the Mount Sinai Crohn's and Colitis Registry were used to identify genes differentially expressed between Inf and Non-Inf biopsies and to generate a molecular inflammation score (bMIS) via gene set variance analysis. A circulating MIS (cirMIS) score, reflecting intestinal molecular inflammation, was generated using blood transcriptome data. bMIS/cirMIS was validated as indicators of intestinal inflammation in four independent IBD cohorts. RESULTS: bMIS/cirMIS was strongly associated with clinical, endoscopic and histological disease activity indices. Patients with the same histologic score of inflammation had variable bMIS scores, indicating that bMIS describes a deeper range of inflammation. In available clinical trial data sets, both scores were responsive to IBD treatment. Despite similar baseline endoscopic and histologic activity, UC patients with lower baseline bMIS levels were more likely treatment responders compared with those with higher levels. Finally, among patients with UC in endoscopic and histologic remission, those with lower bMIS levels were less likely to have a disease flare over time. CONCLUSION: Transcriptionally based scores provide an alternative objective and deeper quantification of intestinal inflammation, which could augment current clinical assessments used for disease monitoring and have potential for predicting therapeutic response and patients at higher risk of disease flares.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Humans , Colitis, Ulcerative/pathology , Inflammation/genetics , Inflammation/pathology , Crohn Disease/pathology , Biopsy , Biomarkers , Intestinal Mucosa/pathology
6.
Hum Mol Genet ; 30(6): 514-523, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33601420

ABSTRACT

Epidemiological studies have long recognized risky behaviors as potentially modifiable factors for the onset and flares of inflammatory bowel disease (IBD); yet, the underlying mechanisms are largely unknown. Recently, the genetic susceptibilities to cigarette smoking, alcohol and cannabis use [i.e. substance use (SU)] have been characterized by well-powered genome-wide association studies (GWASs). We aimed to assess the impact of genetic determinants of SU on IBD risk. Using Mount Sinai Crohn's and Colitis Registry (MSCCR) cohort of 1058 IBD cases and 188 healthy controls, we computed the polygenic risk score (PRS) for SU and correlated them with the observed IBD diagnoses, while adjusting for genetic ancestry, PRS for IBD and SU behavior at enrollment. The results were validated in a pediatric cohort with no SU exposure. PRS of alcohol consumption (DrnkWk), smoking cessation and age of smoking initiation, were associated with IBD risk in MSCCR even after adjustment for PRSIBD and actual smoking status. One interquartile range decrease in PRSDrnkWk was significantly associated to higher IBD risk (i.e. inverse association) (with odds ratio = 1.65 and 95% confidence interval: 1.32, 2.06). The association was replicated in a pediatric Crohn's disease cohort. Colocalization analysis identified a locus on chromosome 16 with polymorphisms in IL27, SULT1A2 and SH2B1, which reached genome-wide statistical significance in GWAS (P < 7.7e-9) for both alcohol consumption and IBD risk. This study demonstrated that the genetic predisposition to SU was associated with IBD risk, independent of PRSIBD and in the absence of SU behaviors. Our study may help further stratify individuals at risk of IBD.


Subject(s)
Alcohol Drinking/adverse effects , Biomarkers/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Inflammatory Bowel Diseases/diagnosis , Polymorphism, Single Nucleotide , Adolescent , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Male , Risk Factors
7.
Gastroenterology ; 162(3): 828-843.e11, 2022 03.
Article in English | MEDLINE | ID: mdl-34780722

ABSTRACT

BACKGROUND & AIMS: Polygenic and environmental factors are underlying causes of inflammatory bowel disease (IBD). We hypothesized that integration of the genetic loci controlling a metabolite's abundance, with known IBD genetic susceptibility loci, may help resolve metabolic drivers of IBD. METHODS: We measured the levels of 1300 metabolites in the serum of 484 patients with ulcerative colitis (UC) and 464 patients with Crohn's disease (CD) and 365 controls. Differential metabolite abundance was determined for disease status, subtype, clinical and endoscopic disease activity, as well as IBD phenotype including disease behavior, location, and extent. To inform on the genetic basis underlying metabolic diversity, we integrated metabolite and genomic data. Genetic colocalization and Mendelian randomization analyses were performed using known IBD risk loci to explore whether any metabolite was causally associated with IBD. RESULTS: We found 173 genetically controlled metabolites (metabolite quantitative trait loci, 9 novel) within 63 non-overlapping loci (7 novel). Furthermore, several metabolites significantly associated with IBD disease status and activity as defined using clinical and endoscopic indexes. This constitutes a resource for biomarker discovery and IBD biology insights. Using this resource, we show that a novel metabolite quantitative trait locus for serum butyrate levels containing ACADS was not supported as causal for IBD; replicate the association of serum omega-6 containing lipids with the fatty acid desaturase 1/2 locus and identify these metabolites as causal for CD through Mendelian randomization; and validate a novel association of serum plasmalogen and TMEM229B, which was predicted as causal for CD. CONCLUSIONS: An exploratory analysis combining genetics and unbiased serum metabolome surveys can reveal novel biomarkers of disease activity and potential mediators of pathology in IBD.


Subject(s)
Acyl-CoA Dehydrogenase/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Crohn Disease/genetics , Crohn Disease/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Butyrates/blood , Case-Control Studies , Child , Child, Preschool , Colitis, Ulcerative/blood , Colitis, Ulcerative/drug therapy , Crohn Disease/blood , Crohn Disease/drug therapy , Cross-Sectional Studies , Feces/chemistry , Female , Genome-Wide Association Study , Genotype , HEK293 Cells , Humans , Male , Mendelian Randomization Analysis , Metabolome , Middle Aged , Plasmalogens/blood , Plasmalogens/genetics , Quantitative Trait Loci , Severity of Illness Index , Young Adult
8.
Gastroenterology ; 162(3): 859-876, 2022 03.
Article in English | MEDLINE | ID: mdl-34780721

ABSTRACT

BACKGROUND & AIMS: Monogenic forms of inflammatory bowel disease (IBD) illustrate the essential roles of individual genes in pathways and networks safeguarding immune tolerance and gut homeostasis. METHODS: To build a taxonomy model, we assessed 165 disorders. Genes were prioritized based on penetrance of IBD and disease phenotypes were integrated with multi-omics datasets. Monogenic IBD genes were classified by (1) overlapping syndromic features, (2) response to hematopoietic stem cell transplantation, (3) bulk RNA-sequencing of 32 tissues, (4) single-cell RNA-sequencing of >50 cell subsets from the intestine of healthy individuals and patients with IBD (pediatric and adult), and (5) proteomes of 43 immune subsets. The model was validated by addition of newly identified monogenic IBD defects. As a proof-of-concept, we explore the intersection between immunometabolism and antimicrobial activity for a group of disorders (G6PC3/SLC37A4). RESULTS: Our quantitative integrated taxonomy defines the cellular landscape of monogenic IBD gene expression across 102 genes with high and moderate penetrance (81 in the model set and 21 genes in the validation set). We illustrate distinct cellular networks, highlight expression profiles across understudied cell types (e.g., CD8+ T cells, neutrophils, epithelial subsets, and endothelial cells) and define genotype-phenotype associations (perianal disease and defective antimicrobial activity). We illustrate processes and pathways shared across cellular compartments and phenotypic groups and highlight cellular immunometabolism with mammalian target of rapamycin activation as one of the converging pathways. There is an overlap of genes and enriched cell-specific expression between monogenic and polygenic IBD. CONCLUSION: Our taxonomy integrates genetic, clinical and multi-omic data; providing a basis for genomic diagnostics and testable hypotheses for disease functions and treatment responses.


Subject(s)
Inflammatory Bowel Diseases/classification , Inflammatory Bowel Diseases/genetics , Age of Onset , Antiporters/genetics , Cells, Cultured , Classification , Gene Expression Profiling , Genetic Association Studies , Genotype , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphate/metabolism , Humans , Inflammatory Bowel Diseases/metabolism , Macrophages , Metabolomics , Monosaccharide Transport Proteins/genetics , Penetrance , Phenotype , Signal Transduction/genetics
9.
Gastroenterology ; 161(6): 1953-1968.e15, 2021 12.
Article in English | MEDLINE | ID: mdl-34480882

ABSTRACT

BACKGROUND AND AIMS: Disease extent varies in ulcerative colitis (UC) from proctitis to left-sided colitis to pancolitis and is a major prognostic factor. When the extent of UC is limited there is often a sharp demarcation between macroscopically involved and uninvolved areas and what defines this or subsequent extension is unknown. We characterized the demarcation site molecularly and determined genes associated with subsequent disease extension. METHODS: We performed RNA sequence analysis of biopsy specimens from UC patients with endoscopically and histologically confirmed limited disease, of which a subset later extended. Biopsy specimens were obtained from the endoscopically inflamed upper (proximal) limit of disease, immediately adjacent to the uninvolved colon, as well as at more proximal, endoscopically uninflamed colonic segments. RESULTS: Differentially expressed genes were identified in the endoscopically inflamed biopsy specimens taken at each patient's most proximal diseased site relative to healthy controls. Expression of these genes in the more proximal biopsy specimens transitioned back to control levels abruptly or gradually, the latter pattern supporting the concept that disease exists beyond the endoscopic disease demarcation site. The gradually transitioning genes were associated with inflammation, angiogenesis, glucuronidation, and homeodomain pathways. A subset of these genes in inflamed biopsy specimens was found to predict disease extension better than clinical features and were responsive to biologic therapies. Network analysis revealed critical roles for interferon signaling in UC inflammation and poly(ADP-ribose) polymerase 14 (PARP14) was a predicted key driver gene of extension. Higher PARP14 protein levels were found in inflamed biopsy specimens of patients with limited UC that subsequently extended. CONCLUSION: Molecular predictors of disease extension reveal novel strategies for disease prognostication and potential therapeutic targeting.


Subject(s)
Colitis, Ulcerative/genetics , Colon/metabolism , Gene Expression Profiling , Poly(ADP-ribose) Polymerases/genetics , Sequence Analysis, RNA , Transcriptome , Bayes Theorem , Biopsy , Case-Control Studies , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colon/pathology , Cross-Sectional Studies , Gene Expression Regulation , Gene Regulatory Networks , Humans , Patient Acuity , Poly(ADP-ribose) Polymerases/metabolism , Predictive Value of Tests , Signal Transduction
10.
Gastroenterology ; 160(1): 287-301.e20, 2021 01.
Article in English | MEDLINE | ID: mdl-32980345

ABSTRACT

BACKGROUND AND AIMS: The presence of gastrointestinal symptoms and high levels of viral RNA in the stool suggest active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication within enterocytes. METHODS: Here, in multiple, large cohorts of patients with inflammatory bowel disease (IBD), we have studied the intersections between Coronavirus Disease 2019 (COVID-19), intestinal inflammation, and IBD treatment. RESULTS: A striking expression of ACE2 on the small bowel enterocyte brush border supports intestinal infectivity by SARS-CoV-2. Commonly used IBD medications, both biologic and nonbiologic, do not significantly impact ACE2 and TMPRSS2 receptor expression in the uninflamed intestines. In addition, we have defined molecular responses to COVID-19 infection that are also enriched in IBD, pointing to shared molecular networks between COVID-19 and IBD. CONCLUSIONS: These data generate a novel appreciation of the confluence of COVID-19- and IBD-associated inflammation and provide mechanistic insights supporting further investigation of specific IBD drugs in the treatment of COVID-19. Preprint doi: https://doi.org/10.1101/2020.05.21.109124.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , Inflammatory Bowel Diseases/enzymology , Intestinal Mucosa/enzymology , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/virology , Case-Control Studies , Clinical Trials as Topic , Cross-Sectional Studies , Disease Models, Animal , Female , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/virology , Longitudinal Studies , Male , Mice , SARS-CoV-2/drug effects , Serine Endopeptidases/genetics , Signal Transduction , COVID-19 Drug Treatment
11.
Gastroenterology ; 160(7): 2435-2450.e34, 2021 06.
Article in English | MEDLINE | ID: mdl-33676971

ABSTRACT

BACKGROUND & AIMS: Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS: Human intestinal biopsy tissues were obtained from patients with COVID-19 (n = 19) and uninfected control individuals (n = 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N = 634) and Europe (N = 287) using multivariate logistic regressions. RESULTS: COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. High-dimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS: These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in attenuating SARS-CoV-2-associated inflammation needs to be further examined.


Subject(s)
COVID-19/virology , Gastrointestinal Diseases/virology , Immunity, Mucosal , Intestinal Mucosa/virology , SARS-CoV-2/pathogenicity , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/immunology , COVID-19/mortality , Case-Control Studies , Cells, Cultured , Cytokines/blood , Female , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/immunology , Gastrointestinal Diseases/mortality , Host-Pathogen Interactions , Humans , Inflammation Mediators/blood , Intestinal Mucosa/immunology , Italy , Male , Middle Aged , New York City , Prognosis , Risk Assessment , Risk Factors , SARS-CoV-2/immunology , Viral Load
12.
Cell Mol Life Sci ; 78(14): 5631-5646, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34110423

ABSTRACT

Peroxisomes play an essential role in the ß-oxidation of dicarboxylic acids (DCAs), which are metabolites formed upon ω-oxidation of fatty acids. Genetic evidence linking transporters and enzymes to specific DCA ß-oxidation steps is generally lacking. Moreover, the physiological functions of DCA metabolism remain largely unknown. In this study, we aimed to characterize the DCA ß-oxidation pathway in human cells, and to evaluate the biological role of DCA metabolism using mice deficient in the peroxisomal L-bifunctional protein (Ehhadh KO mice). In vitro experiments using HEK-293 KO cell lines demonstrate that ABCD3 and ACOX1 are essential in DCA ß-oxidation, whereas both the bifunctional proteins (EHHADH and HSD17B4) and the thiolases (ACAA1 and SCPx) have overlapping functions and their contribution may depend on expression level. We also show that medium-chain 3-hydroxydicarboxylic aciduria is a prominent feature of EHHADH deficiency in mice most notably upon inhibition of mitochondrial fatty acid oxidation. Using stable isotope tracing methodology, we confirmed that products of peroxisomal DCA ß-oxidation can be transported to mitochondria for further metabolism. Finally, we show that, in liver, Ehhadh KO mice have increased mRNA and protein expression of cholesterol biosynthesis enzymes with decreased (in females) or similar (in males) rate of cholesterol synthesis. We conclude that EHHADH plays an essential role in the metabolism of medium-chain DCAs and postulate that peroxisomal DCA ß-oxidation is a regulator of hepatic cholesterol biosynthesis.


Subject(s)
Cholesterol/metabolism , Dicarboxylic Acids/urine , Lipid Metabolism, Inborn Errors/pathology , Liver Diseases/pathology , Mitochondria/pathology , Peroxisomal Bifunctional Enzyme/physiology , Animals , Female , HEK293 Cells , Homeostasis , Humans , Lipid Metabolism, Inborn Errors/etiology , Liver Diseases/etiology , Liver Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism
13.
Hum Genet ; 140(6): 865-877, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33452914

ABSTRACT

To further explore genetic links between complex traits, we developed a comprehensive framework to harmonize and integrate extensive genotype and phenotype data from the four well-characterized cohorts with the focus on cardiometabolic diseases deposited to the database of Genotypes and Phenotypes (dbGaP). We generated a series of polygenic risk scores (PRS) to investigate pleiotropic effects of loci that confer genetic risk for 19 common diseases and traits on body height, type 2 diabetes (T2D), and myocardial infarction (MI). In a meta-analysis of 20,021 subjects, we identified shared genetic determinants of Crohn's Disease (CD), a type of inflammatory bowel disease, and body height (p = 5.5 × 10-5). The association of PRS-CD with height was replicated in UK Biobank (p = 1.1 × 10-5) and an independent cohort of 510 CD cases and controls (1.57 cm shorter height per PRS-CD interquartile increase, p = 5.0 × 10-3 and a 28% reduction in CD risk per interquartile increase in PRS-height, p = 1.1 × 10-3, with the effect independent of CD diagnosis). A pathway analysis of the variants overlapping between PRS-height and PRS-CD detected significant enrichment of genes from the inflammatory, immune-mediated and growth factor regulation pathways. This finding supports the clinical observation of growth failure in patients with childhood-onset CD and demonstrates the value of using individual-level data from dbGaP in searching for shared genetic determinants. This information can help provide a refined insight into disease pathogenesis and may have major implications for novel therapies and drug repurposing.


Subject(s)
Body Height/genetics , Crohn Disease/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Intercellular Signaling Peptides and Proteins/genetics , Myocardial Infarction/genetics , Adult , Body Height/immunology , Child , Crohn Disease/immunology , Crohn Disease/pathology , Databases, Genetic , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/pathology , Female , Gene Expression Regulation , Humans , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/immunology , Immunity, Innate , Intercellular Signaling Peptides and Proteins/immunology , Male , Multifactorial Inheritance/immunology , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Phenotype , Risk Factors
14.
Mol Genet Metab ; 132(2): 139-145, 2021 02.
Article in English | MEDLINE | ID: mdl-33483254

ABSTRACT

The glutaric acidurias are a group of inborn errors of metabolism with different etiologies. Glutaric aciduria type 3 (GA3) is a biochemical phenotype with uncertain clinical relevance caused by a deficiency of succinyl-CoA:glutarate-CoA transferase (SUGCT). SUGCT catalyzes the succinyl-CoA-dependent conversion of glutaric acid into glutaryl-CoA preventing urinary loss of the organic acid. Here, we describe the presence of a GA3 trait in mice of 129 substrains due to SUGCT deficiency, which was identified by screening of urine organic acid profiles obtained from different inbred mouse strains including 129S2/SvPasCrl. Molecular and biochemical analyses in an F2 population of the parental C57BL/6J and 129S2/SvPasCrl strains (B6129F2) confirmed that the GA3 trait occurred in Sugct129/129 animals. We evaluated the impact of SUGCT deficiency on metabolite accumulation in the glutaric aciduria type 1 (GA1) mouse model. We found that GA1 mice with SUGCT deficiency have decreased excretion of urine 3-hydroxyglutaric acid and decreased levels glutarylcarnitine in urine, plasma and kidney. Our work demonstrates that SUGCT contributes to the production of glutaryl-CoA under conditions of low and pathologically high glutaric acid levels. Our work also highlights the notion that unexpected biochemical phenotypes can occur in widely used inbred animal lines.


Subject(s)
Acyltransferases/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Metabolic Diseases/genetics , Mice, Inbred Strains/genetics , Oxidoreductases/deficiency , Transferases/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Disease Models, Animal , Glutarates/metabolism , Humans , Lysine/metabolism , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Mice , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phenotype
15.
FASEB J ; 33(3): 4355-4364, 2019 03.
Article in English | MEDLINE | ID: mdl-30540494

ABSTRACT

Peroxisomes are essential organelles for the specialized oxidation of a wide variety of fatty acids, but they are also able to degrade fatty acids that are typically handled by mitochondria. Using a combination of pharmacological inhibition and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 genome editing technology to simultaneously manipulate peroxisomal and mitochondrial fatty acid ß-oxidation (FAO) in HEK-293 cells, we identified essential players in the metabolic crosstalk between these organelles. Depletion of carnitine palmitoyltransferase (CPT)2 activity through pharmacological inhibition or knockout (KO) uncovered a significant residual peroxisomal oxidation of lauric and palmitic acid, leading to the production of peroxisomal acylcarnitine intermediates. Generation and analysis of additional single- and double-KO cell lines revealed that the D-bifunctional protein (HSD17B4) and the peroxisomal ABC transporter ABCD3 are essential in peroxisomal oxidation of lauric and palmitic acid. Our results indicate that peroxisomes not only accept acyl-CoAs but can also oxidize acylcarnitines in a similar biochemical pathway. By using an Hsd17b4 KO mouse model, we demonstrated that peroxisomes contribute to the plasma acylcarnitine profile after acute inhibition of CPT2, proving in vivo relevance of this pathway. We summarize that peroxisomal FAO is important when mitochondrial FAO is defective or overloaded.-Violante, S., Achetib, N., van Roermund, C. W. T., Hagen, J., Dodatko, T., Vaz, F. M., Waterham, H. R., Chen, H., Baes, M., Yu, C., Argmann, C. A., Houten, S. M. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Fatty Acids/metabolism , Peroxisomal Multifunctional Protein-2/physiology , Peroxisomes/enzymology , ATP-Binding Cassette Transporters/deficiency , ATP-Binding Cassette Transporters/genetics , Animals , CRISPR-Cas Systems , Carnitine/analogs & derivatives , Carnitine/metabolism , Carnitine O-Palmitoyltransferase/antagonists & inhibitors , Carnitine O-Palmitoyltransferase/deficiency , Carnitine O-Palmitoyltransferase/physiology , HEK293 Cells , Humans , Lauric Acids/metabolism , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mitochondria/enzymology , Oxidation-Reduction , Palmitic Acid/metabolism , Peroxisomal Bifunctional Enzyme/deficiency , Peroxisomal Multifunctional Protein-2/deficiency , Peroxisomal Multifunctional Protein-2/genetics , Recombinant Proteins/metabolism
16.
PLoS Genet ; 13(1): e1006565, 2017 01.
Article in English | MEDLINE | ID: mdl-28129359

ABSTRACT

To date, no large scale, systematic description of the blood serum proteome has been performed in inflammatory bowel disease (IBD) patients. By using microarray technology, a more complete description of the blood proteome of IBD patients is feasible. It may help to achieve a better understanding of the disease. We analyzed blood serum profiles of 1128 proteins in IBD patients of European descent (84 Crohn's Disease (CD) subjects and 88 Ulcerative Colitis (UC) subjects) as well as 15 healthy control subjects, and linked protein variability to patient age (all cohorts) and genetic components (genotype data generated from CD patients). We discovered new, previously unreported aging-associated proteomic traits (such as serum Albumin level), confirmed previously reported results from different tissues (i.e., upregulation of APOE with aging), and found loss of regulation of MMP7 in CD patients. In carrying out a genome wide genotype-protein association study (proteomic Quantitative Trait Loci, pQTL) within the CD patients, we identified 41 distinct proteomic traits influenced by cis pQTLs (underlying SNPs are referred to as pSNPs). Significant overlaps between pQTLs and cis eQTLs corresponding to the same gene were observed and in some cases the QTL were related to inflammatory disease susceptibility. Importantly, we discovered that serum protein levels of MST1 (Macrophage Stimulating 1) were regulated by SNP rs3197999 (p = 5.96E-10, FDR<5%), an accepted GWAS locus for IBD. Filling the knowledge gap of molecular mechanisms between GWAS hits and disease susceptibility requires systematically dissecting the impact of the locus at the cell, mRNA expression, and protein levels. The technology and analysis tools that are now available for large-scale molecular studies can elucidate how alterations in the proteome driven by genetic polymorphisms cause or provide protection against disease. Herein, we demonstrated this directly by integrating proteomic and pQTLs with existing GWAS, mRNA expression, and eQTL datasets to provide insights into the biological processes underlying IBD and pinpoint causal genetic variants along with their downstream molecular consequences.


Subject(s)
Aging/blood , Genetic Predisposition to Disease , Inflammatory Bowel Diseases/blood , Proteome/metabolism , Adult , Biomarkers/blood , Case-Control Studies , Female , Hepatocyte Growth Factor/blood , High-Throughput Screening Assays , Humans , Inflammatory Bowel Diseases/epidemiology , Inflammatory Bowel Diseases/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide , Proteome/genetics , Proto-Oncogene Proteins/blood , Quantitative Trait Loci
17.
Mol Genet Metab ; 126(4): 388-396, 2019 04.
Article in English | MEDLINE | ID: mdl-30709776

ABSTRACT

Inbred mouse strains are a cornerstone of translational research but paradoxically many strains carry mild inborn errors of metabolism. For example, α-aminoadipic acidemia and branched-chain ketoacid dehydrogenase deficiency are known in C57BL/6J mice. Using RNA sequencing, we now reveal the causal variants in Dhtkd1 and Bckdhb, and the molecular mechanism underlying these metabolic defects. C57BL/6J mice have decreased Dhtkd1 mRNA expression due to a solitary long terminal repeat (LTR) in intron 4 of Dhtkd1. This LTR harbors an alternate splice donor site leading to a partial splicing defect and as a consequence decreased total and functional Dhtkd1 mRNA, decreased DHTKD1 protein and α-aminoadipic acidemia. Similarly, C57BL/6J mice have decreased Bckdhb mRNA expression due to an LTR retrotransposon in intron 1 of Bckdhb. This transposable element encodes an alternative exon 1 causing aberrant splicing, decreased total and functional Bckdhb mRNA and decreased BCKDHB protein. Using a targeted metabolomics screen, we also reveal elevated plasma C5-carnitine in 129 substrains. This biochemical phenotype resembles isovaleric acidemia and is caused by an exonic splice mutation in Ivd leading to partial skipping of exon 10 and IVD protein deficiency. In summary, this study identifies three causal variants underlying mild inborn errors of metabolism in commonly used inbred mouse strains.


Subject(s)
Metabolism, Inborn Errors/genetics , Mice, Inbred Strains/genetics , Animals , DNA Transposable Elements/genetics , Ketone Oxidoreductases/genetics , Male , Metabolism, Inborn Errors/diagnosis , Metabolomics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred DBA , Phenotype , Sequence Analysis, RNA
18.
PLoS Genet ; 11(1): e1004898, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25569234

ABSTRACT

Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a 'causal' role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Promoter Regions, Genetic , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Emphysema/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Gene Expression Regulation , Humans , Mice , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Emphysema/pathology , Signal Transduction , Smoking/adverse effects
19.
BMC Genomics ; 18(1): 987, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273013

ABSTRACT

BACKGROUND: Exosomes and other extracellular vesicles (EVs) have emerged as an important mechanism of cell-to-cell communication. However, previous studies either did not fully resolve what genetic materials were shuttled by exosomes or only focused on a specific set of miRNAs and mRNAs. A more systematic method is required to identify the genetic materials that are potentially transferred during cell-to-cell communication through EVs in an unbiased manner. RESULTS: In this work, we present a novel next generation of sequencing (NGS) based approach to identify EV mediated mRNA exchanges between co-cultured adipocyte and macrophage cells. We performed molecular and genomic profiling and jointly considered data from RNA sequencing (RNA-seq) and genotyping to track the "sequence varying mRNAs" transferred between cells. We identified 8 mRNAs being transferred from macrophages to adipocytes and 21 mRNAs being transferred in the opposite direction. These mRNAs represented biological functions including extracellular matrix, cell adhesion, glycoprotein, and signal peptides. CONCLUSIONS: Our study sheds new light on EV mediated RNA communications between adipocyte and macrophage cells, which may play a significant role in developing insulin resistance in diabetic patients. This work establishes a new method that is applicable to examining genetic material exchanges in many cellular systems and has the potential to be extended to in vivo studies as well.


Subject(s)
Cell Communication , Extracellular Vesicles/metabolism , RNA, Messenger/metabolism , Adipocytes/metabolism , Cell Line , Coculture Techniques , Gene Expression , Genotyping Techniques , High-Throughput Nucleotide Sequencing , Humans , Macrophages/metabolism , RNA Transport , Sequence Analysis, RNA
20.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3277-3285, 2017 12.
Article in English | MEDLINE | ID: mdl-28962896

ABSTRACT

OBJECTIVE: The transcription factor Krüppel-like factor 14 (KLF14) has been associated with type 2 diabetes and high-density lipoprotein-cholesterol (HDL-C) through genome-wide association studies. The mechanistic underpinnings of KLF14's control of metabolic processes remain largely unknown. We studied the physiological roles of KLF14 in a knockout (KO) mouse model. METHODS: Male whole body Klf14 KO mice were fed a chow or high fat diet (HFD) and diet induced phenotypes were analyzed. Additionally, tissue-specific expression of Klf14 was determined using RT-PCR, RNA sequencing, immunoblotting and whole mount lacZ staining. Finally, the consequences of KLF14 loss-of-function were studied using RNA sequencing in tissues with relatively high Klf14 expression levels. RESULTS: KLF14 loss-of-function did not affect HFD-induced weight gain or insulin resistance. Fasting plasma concentrations of glucose, insulin, cholesterol, HDL-C and ApoA-I were also comparable between Klf14+/+ and Klf14-/- mice on chow and HFD. We found that in mice expression of Klf14 was the highest in the anterior pituitary (adenohypophysis), lower but detectable in white adipose tissue and undetectable in liver. Loss of KLF14 function impacted on the pituitary transcriptome with extracellular matrix organization as the primary affected pathway and a predicted link to glucocorticoid receptor signaling. CONCLUSIONS: Whole body loss of KLF14 function in male mice does not result in metabolic abnormalities as assessed under chow and HFD conditions. Mostly likely there is redundancy for the role of KLF14 in the mouse and a diverging function in humans.


Subject(s)
Kruppel-Like Transcription Factors/deficiency , Metabolic Syndrome/metabolism , Animals , Apolipoprotein A-I/metabolism , Cholesterol/metabolism , Cholesterol, HDL/metabolism , Diet, High-Fat , Gene Expression Profiling , Genome-Wide Association Study , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Resistance , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Male , Metabolic Syndrome/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Glucocorticoid/metabolism , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL