Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Publication year range
1.
Cell ; 184(8): 2103-2120.e31, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33740419

ABSTRACT

During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , GPI-Linked Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Proteins/metabolism , Animals , Cell Adhesion Molecules, Neuronal/chemistry , Cell Movement , DCC Receptor/deficiency , DCC Receptor/genetics , GPI-Linked Proteins/chemistry , Growth Cones/physiology , Humans , Lateral Ventricles/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/chemistry , Neurons/cytology , Neurons/metabolism , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction
2.
Cell ; 174(6): 1450-1464.e23, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100184

ABSTRACT

Synapses are fundamental units of communication in the brain. The prototypical synapse-organizing complex neurexin-neuroligin mediates synapse development and function and is central to a shared genetic risk pathway in autism and schizophrenia. Neurexin's role in synapse development is thought to be mediated purely by its protein domains, but we reveal a requirement for a rare glycan modification. Mice lacking heparan sulfate (HS) on neurexin-1 show reduced survival, as well as structural and functional deficits at central synapses. HS directly binds postsynaptic partners neuroligins and LRRTMs, revealing a dual binding mode involving intrinsic glycan and protein domains for canonical synapse-organizing complexes. Neurexin HS chains also bind novel ligands, potentially expanding the neurexin interactome to hundreds of HS-binding proteins. Because HS structure is heterogeneous, our findings indicate an additional dimension to neurexin diversity, provide a molecular basis for fine-tuning synaptic function, and open therapeutic directions targeting glycan-binding motifs critical for brain development.


Subject(s)
Heparitin Sulfate/metabolism , Neural Cell Adhesion Molecules/metabolism , Synapses/metabolism , Amino Acid Sequence , Animals , Calcium-Binding Proteins , Cell Adhesion Molecules, Neuronal/antagonists & inhibitors , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Drosophila , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Glycopeptides/analysis , Heparitin Sulfate/chemistry , Humans , Membrane Proteins , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins , Neural Cell Adhesion Molecules/antagonists & inhibitors , Neural Cell Adhesion Molecules/genetics , Neurons/cytology , Neurons/metabolism , Protein Binding , RNA Interference , RNA, Small Interfering/metabolism , Rats , Sequence Alignment
3.
Nat Immunol ; 17(5): 574-582, 2016 May.
Article in English | MEDLINE | ID: mdl-26998761

ABSTRACT

It has been proposed that the local segregation of kinases and the tyrosine phosphatase CD45 underpins T cell antigen receptor (TCR) triggering, but how such segregation occurs and whether it can initiate signaling is unclear. Using structural and biophysical analysis, we show that the extracellular region of CD45 is rigid and extends beyond the distance spanned by TCR-ligand complexes, implying that sites of TCR-ligand engagement would sterically exclude CD45. We also show that the formation of 'close contacts', new structures characterized by spontaneous CD45 and kinase segregation at the submicron-scale, initiates signaling even when TCR ligands are absent. Our work reveals the structural basis for, and the potent signaling effects of, local CD45 and kinase segregation. TCR ligands have the potential to heighten signaling simply by holding receptors in close contacts.


Subject(s)
Leukocyte Common Antigens/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Crystallography, X-Ray , HEK293 Cells , Humans , Jurkat Cells , Leukocyte Common Antigens/chemistry , Leukocyte Common Antigens/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Microscopy, Electron , Microscopy, Fluorescence/methods , Models, Molecular , Protein Structure, Tertiary , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Time Factors , ZAP-70 Protein-Tyrosine Kinase/immunology , ZAP-70 Protein-Tyrosine Kinase/metabolism
4.
Nature ; 604(7904): 190-194, 2022 04.
Article in English | MEDLINE | ID: mdl-35355020

ABSTRACT

Type A γ-aminobutyric acid receptors (GABAARs) are pentameric ligand-gated chloride channels that mediate fast inhibitory signalling in neural circuits1,2 and can be modulated by essential medicines including general anaesthetics and benzodiazepines3. Human GABAAR subunits are encoded by 19 paralogous genes that can, in theory, give rise to 495,235 receptor types. However, the principles that govern the formation of pentamers, the permutational landscape of receptors that may emerge from a subunit set and the effect that this has on GABAergic signalling remain largely unknown. Here we use cryogenic electron microscopy to determine the structures of extrasynaptic GABAARs assembled from α4, ß3 and δ subunits, and their counterparts incorporating γ2 instead of δ subunits. In each case, we identified two receptor subtypes with distinct stoichiometries and arrangements, all four differing from those previously observed for synaptic, α1-containing receptors4-7. This, in turn, affects receptor responses to physiological and synthetic modulators by creating or eliminating ligand-binding sites at subunit interfaces. We provide structural and functional evidence that selected GABAAR arrangements can act as coincidence detectors, simultaneously responding to two neurotransmitters: GABA and histamine. Using assembly simulations and single-cell RNA sequencing data8,9, we calculated the upper bounds for receptor diversity in recombinant systems and in vivo. We propose that differential assembly is a pervasive mechanism for regulating the physiology and pharmacology of GABAARs.


Subject(s)
Benzodiazepines , Receptors, GABA-A , Signal Transduction , Benzodiazepines/pharmacology , Binding Sites , Cryoelectron Microscopy , Histamine/metabolism , Humans , Ligands , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA-Seq , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Receptors, GABA-A/ultrastructure , Single-Cell Analysis , gamma-Aminobutyric Acid/metabolism
5.
Nature ; 587(7832): 152-156, 2020 11.
Article in English | MEDLINE | ID: mdl-33087931

ABSTRACT

The three-dimensional positions of atoms in protein molecules define their structure and their roles in biological processes. The more precisely atomic coordinates are determined, the more chemical information can be derived and the more mechanistic insights into protein function may be inferred. Electron cryo-microscopy (cryo-EM) single-particle analysis has yielded protein structures with increasing levels of detail in recent years1,2. However, it has proved difficult to obtain cryo-EM reconstructions with sufficient resolution to visualize individual atoms in proteins. Here we use a new electron source, energy filter and camera to obtain a 1.7 Å resolution cryo-EM reconstruction for a human membrane protein, the ß3 GABAA receptor homopentamer3. Such maps allow a detailed understanding of small-molecule coordination, visualization of solvent molecules and alternative conformations for multiple amino acids, and unambiguous building of ordered acidic side chains and glycans. Applied to mouse apoferritin, our strategy led to a 1.22 Å resolution reconstruction that offers a genuine atomic-resolution view of a protein molecule using single-particle cryo-EM. Moreover, the scattering potential from many hydrogen atoms can be visualized in difference maps, allowing a direct analysis of hydrogen-bonding networks. Our technological advances, combined with further approaches to accelerate data acquisition and improve sample quality, provide a route towards routine application of cryo-EM in high-throughput screening of small molecule modulators and structure-based drug discovery.


Subject(s)
Apoferritins/chemistry , Apoferritins/ultrastructure , Cryoelectron Microscopy/instrumentation , Cryoelectron Microscopy/methods , Receptors, GABA-A/chemistry , Receptors, GABA-A/ultrastructure , Single Molecule Imaging/methods , Animals , Cryoelectron Microscopy/standards , Drug Discovery , Humans , Mice , Models, Molecular , Polysaccharides/chemistry , Polysaccharides/ultrastructure , Single Molecule Imaging/standards
6.
Nature ; 565(7740): 516-520, 2019 01.
Article in English | MEDLINE | ID: mdl-30602789

ABSTRACT

Type A γ-aminobutyric acid (GABAA) receptors are pentameric ligand-gated ion channels and the main drivers of fast inhibitory neurotransmission in the vertebrate nervous system1,2. Their dysfunction is implicated in a range of neurological disorders, including depression, epilepsy and schizophrenia3,4. Among the numerous assemblies that are theoretically possible, the most prevalent in the brain are the α1ß2/3γ2 GABAA receptors5. The ß3 subunit has an important role in maintaining inhibitory tone, and the expression of this subunit alone is sufficient to rescue inhibitory synaptic transmission in ß1-ß3 triple knockout neurons6. So far, efforts to generate accurate structural models for heteromeric GABAA receptors have been hampered by the use of engineered receptors and the presence of detergents7-9. Notably, some recent cryo-electron microscopy reconstructions have reported 'collapsed' conformations8,9; however, these disagree with the structure of the prototypical pentameric ligand-gated ion channel the Torpedo nicotinic acetylcholine receptor10,11, the large body of structural work on homologous homopentameric receptor variants12 and the logic of an ion-channel architecture. Here we present a high-resolution cryo-electron microscopy structure of the full-length human α1ß3γ2L-a major synaptic GABAA receptor isoform-that is functionally reconstituted in lipid nanodiscs. The receptor is bound to a positive allosteric modulator 'megabody' and is in a desensitized conformation. Each GABAA receptor pentamer contains two phosphatidylinositol-4,5-bisphosphate molecules, the head groups of which occupy positively charged pockets in the intracellular juxtamembrane regions of α1 subunits. Beyond this level, the intracellular M3-M4 loops are largely disordered, possibly because interacting post-synaptic proteins are not present. This structure illustrates the molecular principles of heteromeric GABAA receptor organization and provides a reference framework for future mechanistic investigations of GABAergic signalling and pharmacology.


Subject(s)
Cryoelectron Microscopy , Lipid Bilayers/chemistry , Receptors, GABA-A/chemistry , Receptors, GABA-A/ultrastructure , Allosteric Regulation , Amino Acid Sequence , Binding Sites , Electric Conductivity , Humans , Models, Molecular , Molecular Docking Simulation , Nanostructures/chemistry , Nanostructures/ultrastructure , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/ultrastructure , Protein Structure, Quaternary , Receptors, GABA-A/metabolism
7.
Nature ; 566(7744): E8, 2019 02.
Article in English | MEDLINE | ID: mdl-30733619

ABSTRACT

In Fig. 5b, d, the arrows showing transmembrane domain rotations were inadvertently pointing clockwise instead of anticlockwise. Similarly, 'anticlockwise' should have been 'clockwise' in the sentence 'This conformational change of the ECD triggers a clockwise rotation of the TMD.' In Extended Data Table 1, the units of the column 'Model resolution' should have been Å instead of Å2. These errors have been corrected online.

8.
Nature ; 565(7740): 454-459, 2019 01.
Article in English | MEDLINE | ID: mdl-30602790

ABSTRACT

Type-A γ-aminobutyric (GABAA) receptors are ligand-gated chloride channels with a very rich pharmacology. Some of their modulators, including benzodiazepines and general anaesthetics, are among the most successful drugs in clinical use and are common substances of abuse. Without reliable structural data, the mechanistic basis for the pharmacological modulation of GABAA receptors remains largely unknown. Here we report several high-resolution cryo-electron microscopy structures in which the full-length human α1ß3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam. We describe the binding modes and mechanistic effects of these ligands, the closed and desensitized states of the GABAA receptor gating cycle, and the basis for allosteric coupling between the extracellular, agonist-binding region and the transmembrane, pore-forming region. This work provides a structural framework in which to integrate previous physiology and pharmacology research and a rational basis for the development of GABAA receptor modulators.


Subject(s)
Alprazolam/chemistry , Bicuculline/chemistry , Cryoelectron Microscopy , Diazepam/chemistry , Picrotoxin/chemistry , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Signal Transduction/drug effects , Allosteric Regulation/drug effects , Alprazolam/pharmacology , Benzodiazepines/chemistry , Benzodiazepines/pharmacology , Bicuculline/pharmacology , Binding, Competitive/drug effects , Diazepam/pharmacology , GABA Modulators/chemistry , GABA Modulators/pharmacology , Humans , Ligands , Models, Molecular , Nanostructures/chemistry , Picrotoxin/pharmacology
9.
Nat Methods ; 18(1): 60-68, 2021 01.
Article in English | MEDLINE | ID: mdl-33408403

ABSTRACT

Nanobodies are popular and versatile tools for structural biology. They have a compact single immunoglobulin domain organization, bind target proteins with high affinities while reducing their conformational heterogeneity and stabilize multi-protein complexes. Here we demonstrate that engineered nanobodies can also help overcome two major obstacles that limit the resolution of single-particle cryo-electron microscopy reconstructions: particle size and preferential orientation at the water-air interfaces. We have developed and characterized constructs, termed megabodies, by grafting nanobodies onto selected protein scaffolds to increase their molecular weight while retaining the full antigen-binding specificity and affinity. We show that the megabody design principles are applicable to different scaffold proteins and recognition domains of compatible geometries and are amenable for efficient selection from yeast display libraries. Moreover, we demonstrate that megabodies can be used to obtain three-dimensional reconstructions for membrane proteins that suffer from severe preferential orientation or are otherwise too small to allow accurate particle alignment.


Subject(s)
Cryoelectron Microscopy/methods , Lipids/chemistry , Multiprotein Complexes/chemistry , Receptors, GABA-A/chemistry , Single Molecule Imaging/methods , Single-Cell Analysis/methods , Single-Domain Antibodies/chemistry , Humans , Models, Molecular , Molecular Structure , Protein Conformation
10.
Nature ; 512(7514): 270-5, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24909990

ABSTRACT

Type-A γ-aminobutyric acid receptors (GABAARs) are the principal mediators of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signalling triggers hyperactive neurological disorders such as insomnia, anxiety and epilepsy. Here we present the first three-dimensional structure of a GABAAR, the human ß3 homopentamer, at 3 Å resolution. This structure reveals architectural elements unique to eukaryotic Cys-loop receptors, explains the mechanistic consequences of multiple human disease mutations and shows an unexpected structural role for a conserved N-linked glycan. The receptor was crystallized bound to a previously unknown agonist, benzamidine, opening a new avenue for the rational design of GABAAR modulators. The channel region forms a closed gate at the base of the pore, representative of a desensitized state. These results offer new insights into the signalling mechanisms of pentameric ligand-gated ion channels and enhance current understanding of GABAergic neurotransmission.


Subject(s)
Receptors, GABA-A/chemistry , Benzamidines/chemistry , Benzamidines/metabolism , Benzamidines/pharmacology , Binding Sites , Cell Membrane/chemistry , Cell Membrane/metabolism , Conserved Sequence , Crystallography, X-Ray , Drug Design , GABA-A Receptor Agonists/chemistry , GABA-A Receptor Agonists/metabolism , GABA-A Receptor Agonists/pharmacology , Genetic Predisposition to Disease , Glycosylation , Humans , Models, Molecular , Mutation/genetics , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Structure, Quaternary , Protein Structure, Tertiary , Protein Subunits , Receptors, GABA-A/genetics , Synaptic Transmission
11.
Hum Mol Genet ; 26(20): 3869-3882, 2017 10 15.
Article in English | MEDLINE | ID: mdl-29016847

ABSTRACT

The discovery of genetic variants influencing sleep patterns can shed light on the physiological processes underlying sleep. As part of a large clinical sequencing project, WGS500, we sequenced a family in which the two male children had severe developmental delay and a dramatically disturbed sleep-wake cycle, with very long wake and sleep durations, reaching up to 106-h awake and 48-h asleep. The most likely causal variant identified was a novel missense variant in the X-linked GRIA3 gene, which has been implicated in intellectual disability. GRIA3 encodes GluA3, a subunit of AMPA-type ionotropic glutamate receptors (AMPARs). The mutation (A653T) falls within the highly conserved transmembrane domain of the ion channel gate, immediately adjacent to the analogous residue in the Grid2 (glutamate receptor) gene, which is mutated in the mouse neurobehavioral mutant, Lurcher. In vitro, the GRIA3(A653T) mutation stabilizes the channel in a closed conformation, in contrast to Lurcher. We introduced the orthologous mutation into a mouse strain by CRISPR-Cas9 mutagenesis and found that hemizygous mutants displayed significant differences in the structure of their activity and sleep compared to wild-type littermates. Typically, mice are polyphasic, exhibiting multiple sleep bouts of sleep several minutes long within a 24-h period. The Gria3A653T mouse showed significantly fewer brief bouts of activity and sleep than the wild-types. Furthermore, Gria3A653T mice showed enhanced period lengthening under constant light compared to wild-type mice, suggesting an increased sensitivity to light. Our results suggest a role for GluA3 channel activity in the regulation of sleep behavior in both mice and humans.


Subject(s)
Intellectual Disability/genetics , Point Mutation , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Sleep Wake Disorders/genetics , Adult , Amino Acid Sequence , Animals , Base Sequence , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL
12.
Bioinformatics ; 33(21): 3508-3510, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29036562

ABSTRACT

SUMMARY: An R package for performing number and brightness image analysis, with the implementation of a novel automatic detrending algorithm. AVAILABILITY AND IMPLEMENTATION: Available at https://github.com/rorynolan/nandb for all platforms. CONTACT: rnolan@well.ox.ac.uk or spadilla@well.ox.ac.uk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Software , Animals , COS Cells , Chlorocebus aethiops , Humans
13.
Semin Cell Dev Biol ; 37: 98-107, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25234613

ABSTRACT

The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.


Subject(s)
Receptor-Like Protein Tyrosine Phosphatases, Class 2/chemistry , Animals , Humans , Models, Molecular , Neurons/metabolism , Protein Structure, Tertiary , Synapses/metabolism
14.
PLoS Comput Biol ; 12(1): e1004664, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26807999

ABSTRACT

The expression of long-term depression (LTD) in cerebellar Purkinje cells results from the internalisation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) from the postsynaptic membrane. This process is regulated by a complex signalling pathway involving sustained protein kinase C (PKC) activation, inhibition of serine/threonine phosphatase, and an active protein tyrosine phosphatase, PTPMEG. In addition, two AMPAR-interacting proteins-glutamate receptor-interacting protein (GRIP) and protein interacting with C kinase 1 (PICK1)-regulate the availability of AMPARs for trafficking between the postsynaptic membrane and the endosome. Here we present a new computational model of these overlapping signalling pathways. The model reveals how PTPMEG cooperates with PKC to drive LTD expression by facilitating the effect of PKC on the dissociation of AMPARs from GRIP and thus their availability for trafficking. Model simulations show that LTD expression is increased by serine/threonine phosphatase inhibition, and negatively regulated by Src-family tyrosine kinase activity, which restricts the dissociation of AMPARs from GRIP under basal conditions. We use the model to expose the dynamic balance between AMPAR internalisation and reinsertion, and the phosphorylation switch responsible for the perturbation of this balance and for the rapid plasticity initiation and regulation. Our model advances the understanding of PF-PC LTD regulation and induction, and provides a validated extensible platform for more detailed studies of this fundamental synaptic process.


Subject(s)
Cerebellum/physiology , Computer Simulation , Long-Term Synaptic Depression/physiology , Models, Neurological , Receptors, AMPA/metabolism , Cerebellum/cytology , Computational Biology , Dendritic Spines , Phosphorylation , Synapses/metabolism
15.
Nat Chem Biol ; 9(5): 297-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23455544

ABSTRACT

We use NMR directly in live human cells to describe the complete post-translational maturation process of human superoxide dismutase 1 (SOD1). We follow, at atomic resolution, zinc binding, homodimer formation and copper uptake, and discover that copper chaperone for SOD1 oxidizes the SOD1 intrasubunit disulfide bond through both copper-dependent and copper-independent mechanisms. Our approach represents a new strategy for structural investigation of endogenously expressed proteins in a physiological (cellular) environment.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Protein Processing, Post-Translational , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Cell Survival , Copper/chemistry , Copper/metabolism , HEK293 Cells , Humans , Oxidation-Reduction , Protein Conformation , Superoxide Dismutase-1 , Zinc/chemistry , Zinc/metabolism
16.
Curr Opin Cell Biol ; 19(5): 543-50, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17935964

ABSTRACT

The latest structural studies of immunoglobulin superfamily cell adhesion molecules are driving a shift in perspective; increasingly the view is not focused solely on the individual molecule but rather is on the molecular assembly. Two common themes are emerging, revealing mechanisms for ectodomain-dependent regulation of cell surface receptors' signalling abilities. The first is the propensity of many such molecules to arrange in zipper-type or array-type assemblies driven by a network of highly specific cis and trans interactions. The second is the use of the extracellular dimensions of a molecule or adhesion complex as properties which, in combination with characteristic intercellular spacings, can determine the co-localisation or exclusion of particular protein populations at cell interfaces and junctions.


Subject(s)
Cell Adhesion Molecules , Immunoglobulins , Protein Conformation , Animals , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/metabolism , Humans , Immunoglobulins/chemistry , Immunoglobulins/metabolism , Models, Molecular , Polysaccharides/chemistry , Polysaccharides/metabolism , Signal Transduction/physiology
17.
PLoS Biol ; 9(8): e1001134, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21912513

ABSTRACT

Plexins are cell surface receptors for the semaphorin family of cell guidance cues. The cytoplasmic region comprises a Ras GTPase-activating protein (GAP) domain and a RhoGTPase binding domain. Concomitant binding of extracellular semaphorin and intracellular RhoGTPase triggers GAP activity and signal transduction. The mechanism of this intricate regulation remains elusive. We present two crystal structures of the human Plexin-B1 cytoplasmic region in complex with a constitutively active RhoGTPase, Rac1. The structure of truncated Plexin-B1-Rac1 complex provides no mechanism for coupling RhoGTPase and Ras binding sites. On inclusion of the juxtamembrane helix, a trimeric structure of Plexin-B1-Rac1 complexes is stabilised by a second, novel, RhoGTPase binding site adjacent to the Ras site. Site-directed mutagenesis combined with cellular and biophysical assays demonstrate that this new binding site is essential for signalling. Our findings are consistent with a model in which extracellular and intracellular plexin clustering events combine into a single signalling output.


Subject(s)
Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , rac1 GTP-Binding Protein/metabolism , Binding Sites , Crystallography, X-Ray , Cytoplasm/metabolism , HEK293 Cells , Humans , Intracellular Space/metabolism , Models, Biological , Models, Molecular , Nerve Tissue Proteins/chemistry , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Cell Surface/chemistry , rac1 GTP-Binding Protein/chemistry
18.
Chem ; 9(2): 523-540, 2023 Feb.
Article in English | MEDLINE | ID: mdl-38094901

ABSTRACT

Various small molecules have been used as functional probes for tissue imaging in medical diagnosis and pharmaceutical drugs for disease treatment. The spatial distribution, target selectivity, and diffusion/excretion kinetics of small molecules in structurally complicated specimens are critical for function. However, robust methods for precisely evaluating these parameters in the brain have been limited. Herein, we report a new method termed "fixation-driven chemical cross-linking of exogenous ligands (FixEL)," which traps and images exogenously administered molecules of interest (MOIs) in complex tissues. This method relies on protein-MOI interactions and chemical cross-linking of amine-tethered MOI with paraformaldehyde used for perfusion fixation. FixEL is used to obtain images of the distribution of the small molecules, which addresses selective/nonselective binding to proteins, time-dependent localization changes, and diffusion/retention kinetics of MOIs such as the scaffold of PET tracer derivatives or drug-like small molecules.

19.
Science ; 382(6677): 1389-1394, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38060673

ABSTRACT

Fast synaptic neurotransmission in the vertebrate central nervous system relies primarily on ionotropic glutamate receptors (iGluRs), which drive neuronal excitation, and type A γ-aminobutyric acid receptors (GABAARs), which are responsible for neuronal inhibition. However, the GluD1 receptor, an iGluR family member, is present at both excitatory and inhibitory synapses. Whether and how GluD1 activation may affect inhibitory neurotransmission is unknown. In this work, by using a combination of biochemical, structural, and functional analyses, we demonstrate that GluD1 binds GABA, a previously unknown feature of iGluRs. GluD1 activation produces long-lasting enhancement of GABAergic synaptic currents in the adult mouse hippocampus through a non-ionotropic mechanism that is dependent on trans-synaptic anchoring. The identification of GluD1 as a GABA receptor that controls inhibitory synaptic plasticity challenges the classical dichotomy between glutamatergic and GABAergic receptors.


Subject(s)
Neural Inhibition , Neuronal Plasticity , Receptors, GABA , Synaptic Transmission , gamma-Aminobutyric Acid , Animals , Mice , gamma-Aminobutyric Acid/metabolism , Glutamate Dehydrogenase/metabolism , Hippocampus/metabolism , Receptors, GABA/metabolism , Synapses/physiology , Mice, Knockout , Racemases and Epimerases/genetics
20.
Nat Struct Mol Biol ; 30(12): 1936-1946, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37903907

ABSTRACT

α5 subunit-containing γ-aminobutyric acid type A (GABAA) receptors represent a promising drug target for neurological and neuropsychiatric disorders. Altered expression and function contributes to neurodevelopmental disorders such as Dup15q and Angelman syndromes, developmental epilepsy and autism. Effective drug action without side effects is dependent on both α5-subtype selectivity and the strength of the positive or negative allosteric modulation (PAM or NAM). Here we solve structures of drugs bound to the α5 subunit. These define the molecular basis of binding and α5 selectivity of the ß-carboline, methyl 6,7-dimethoxy-4-ethyl-ß-carboline-3-carboxylate (DMCM), type II benzodiazepine NAMs, and a series of isoxazole NAMs and PAMs. For the isoxazole series, each molecule appears as an 'upper' and 'lower' moiety in the pocket. Structural data and radioligand binding data reveal a positional displacement of the upper moiety containing the isoxazole between the NAMs and PAMs. Using a hybrid molecule we directly measure the functional contribution of the upper moiety to NAM versus PAM activity. Overall, these structures provide a framework by which to understand distinct modulator binding modes and their basis of α5-subtype selectivity, appreciate structure-activity relationships, and empower future structure-based drug design campaigns.


Subject(s)
Receptors, GABA-A , gamma-Aminobutyric Acid , Receptors, GABA-A/metabolism , Isoxazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL