Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Med Eng Phys ; 27(9): 798-802, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15869896

ABSTRACT

The quality measurement of the reconstructed signal in an electrocardiogram (ECG) compression scheme must be obtained by objective means being the percentage root-mean-square difference (PRD) the most widely used. However, this parameter is dependent on the dc level so that confusion can be stated in the evaluation of ECG compressors. In this communication, it will be shown that if the performance of an ECG coder is evaluated only in terms of quality, considering exclusively the PRD parameter, incorrect conclusions can be inferred. The objective of this work is to propose the joint use of several parameters, as simulations will show, effectiveness and performance of the ECG coder are evaluated with more precision, and the way of inferring conclusions from the obtained results is more reliable.


Subject(s)
Algorithms , Data Compression/methods , Diagnosis, Computer-Assisted/methods , Electrocardiography/methods , Signal Processing, Computer-Assisted , Data Interpretation, Statistical , Humans , Models, Cardiovascular , Models, Statistical
2.
Science ; 341(6143): 260-3, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23869013

ABSTRACT

Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

SELECTION OF CITATIONS
SEARCH DETAIL