Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Sports Sci Med ; 23(1): 1-7, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455439

ABSTRACT

This study analysed critical movement demands of tennis match-play to better inform contemporary approaches to athlete preparation and training. HawkEye data from matches during the 2021 and 2022 Australian Open were utilised. Distance was aggregated for movement cycles, points, games, sets, and matches, alongside total shots played. Data was collated for males (best-of-five sets) and females (best-of-three sets) allowing comparisons both within and between sexes. Overall, no differences within sexes were evident for total distance, however males traversed further per match than females (MDE = 809 ± 139m, ES = 0.86). Female players travelled further in their deciding (third) sets compared to set 1 (ES = 0.28) and while this effect wasn't as discernible for males, the deciding (fifth) set showed some evidence of elevated distance requirements and variability. Between sexes, only female set 3 was different to male set 3 (ES = 0.29). Female and male tiebreak games (i.e. game 13) required players travel further distance compared to other games (ES = ~1.45). Between sex differences were observed for tiebreak games compared to games 1 to 12 (female ES = 1.36 and male ES = 1.53). Players from both sexes generally covered similar distances during points and movement cycles, with between-shot distances of 4.2m-4.5m, notably longer than previous reports. Further, total shots and total match distance (r > 0.97; p < 0.01) shared similar linear relationships. These results highlight that the between shot or movement cycle demands of professional hard court tennis are substantially higher than described in the literature (Roetert et al., 2003). The findings also reveal competitiveness as a key influence on set level distance demands during professional tennis match-play, a consideration in player preparation programs.


Subject(s)
Athletic Performance , Tennis , Humans , Male , Female , Australia , Athletes , Movement
2.
Molecules ; 28(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37241953

ABSTRACT

In this work, a continuous system to produce multi-hundred-gram quantities of aryl sulfonyl chlorides is described. The scheme employs multiple continuous stirred-tank reactors (CSTRs) and a continuous filtration system and incorporates an automated process control scheme. The experimental process outlined is intended to safely produce the desired sulfonyl chloride at laboratory scale. Suitable reaction conditions were first determined using a batch-chemistry design of experiments (DOE) and several isolation methods. The hazards and incompatibilities of the heated chlorosulfonic acid reaction mixture were addressed by careful equipment selection, process monitoring, and automation. The approximations of the CSTR fill levels and pumping performance were measured by real-time data from gravimetric balances, ultimately leading to the incorporation of feedback controllers. The introduction of process automation demonstrated in this work resulted in significant improvements in process setpoint consistency, reliability, and spacetime yield, as demonstrated in medium- and large-scale continuous manufacturing runs.

3.
J Sports Sci Med ; 22(1): 133-141, 2023 03.
Article in English | MEDLINE | ID: mdl-36876180

ABSTRACT

Understanding on-court movement in tennis allows for enhanced preparation strategies to improve player readiness and performance. Here, we explore expert physical preparation coaches' perceptions of elite training strategies for preparation and performance in tennis, with special reference to lower limb activity. Thirteen world renowned tennis strength and conditioning coaches were interviewed in a semi-structured method that explored four key topic areas of physical preparation for tennis: i) the physical demands; ii) load monitoring practice; iii) the direction of ground reaction forces application during match-play; and iv) the application of strength and conditioning for tennis. Three higher-order themes emerged from these discussions: i) off-court training for tennis should be specific to the demands of the sport, ii) the mechanical understanding of tennis lags our physiological approach, and iii) our understanding of the lower limb's contribution to tennis performance is limited. These findings provide valuable insights into the importance of improving our knowledge relevant to the mechanical demands of tennis movement, whilst highlighting important practical considerations from leading tennis conditioning experts.


Subject(s)
Sports , Tennis , Humans , Fitness Trackers , Knowledge , Lower Extremity
4.
BJU Int ; 129(3): 345-355, 2022 03.
Article in English | MEDLINE | ID: mdl-34185954

ABSTRACT

OBJECTIVES: To investigate the genetic alterations of patients with prostate cancer (PCa) with and without intraductal carcinoma of the prostate (IDC-P). PATIENTS AND METHODS: We performed targeted sequencing of plasma cell-free DNA on 161 patients with prostate adenocarcinoma (PAC) with IDC-P and 84 without IDC-P. Genomic alterations were compared between these two groups. The association between genetic alterations and patients' survival outcomes was also explored. RESULTS: We identified that 29.8% (48/161) and 21.4% (18/84) of patients with and without IDC-P harboured genomic alterations in DNA repair pathways, respectively (P = 0.210). Pathogenic germline DNA repair alterations were frequently detected in IDC-P carriers compared to IDC-P non-carriers (11.8% [19/161] vs 2.4% [two of 84], P = 0.024). Germline BReast CAncer type 2 susceptibility protein (BRCA2) and somatic cyclin-dependent kinase 12 (CDK12) defects were specifically identified in IDC-P carriers relative to PAC (BRCA2: 8.7% [14/161] vs 0% and CDK12: 6.8% [11/161] vs 1.2% [one of 84]). Patients with IDC-P had a distinct androgen receptor (AR) pathway alteration, characterised by an enrichment of nuclear receptor corepressor 2 (NCOR2) mutations compared with patients with pure PAC (21.1% [34/161] vs 6.0% [five of 84], P = 0.004). Increased AR alterations were detected in patients harbouring tumours with an IDC-P proportion of ≥10% vs those with an IDC-P proportion of <10% (6.4% [five of 78] vs 18.1% [15/83], P = 0.045). For IDC-P carriers, tumour protein p53 (TP53) mutation was associated with shorter castration-resistant-free survival (median 10.9 vs 28.9 months, P = 0.026), and BRCA2 alteration was related to rapid prostate-specific antigen progression for those receiving abiraterone treatment (median 9.1 vs 11.9 months, P = 0.036). CONCLUSION: Our findings provide genomic evidence explaining the aggressive phenotype of tumours with IDC-P, highlighting the potential therapeutic strategies for this patient population.


Subject(s)
Carcinoma, Intraductal, Noninfiltrating , Circulating Tumor DNA , Prostatic Neoplasms , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Circulating Tumor DNA/genetics , Humans , Male , Phenotype , Prostate/pathology , Prostatic Neoplasms/pathology
5.
J Strength Cond Res ; 36(12): 3415-3421, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-32898037

ABSTRACT

ABSTRACT: Thornton, HR, Armstrong, CR, Gamble, T, Rigby, A, Johnston, RD, and Duthie, GM. Quantifying the movement characteristics of Australian Football League Women's competition. J Strength Cond Res 36(12): 3415-3421, 2022-The purpose is to provide an overview of the externally measured movement characteristics of Australian Football League Women's (AFLW) competition, and the variability in this between matches. A range of movement variables were measured from 28 athletes who wore 10-Hz global positioning system devices during games and were summarized according to positional groups. The variance in each athlete's match loads for each round were expressed using standardized scores ( z -scores), and the change compared with the first game played was calculated and expressed as a standard deviation. Furthermore, using the raw export, moving means (1-10 minutes) of speed (m·min -1 ) and acceleration (m·s -2 ) were calculated. Following log transformation of the maximal means, intercept and slopes were calculated. Linear mixed models identified differences between positional groups for match loads, and intercept and slopes. Effects were described using standardized effect sizes (ESs) and magnitude-based decisions. There were no substantial and unclear differences between positional groups for match loads (ES range; ±confidence limits = 0.10-0.80; ±0.30-4.30) and for intercept and slopes (ES range; 0.04-0.44; ±0.52-2.11). Large within-athlete variation in match demands between rounds was observed ( z -score up to -1.8 SD for distance), and the maximal means for speed and acceleration demonstrate the extensive physical demands of AFLW competition. These data describe the intense and variable physical demands of AFLW competition, and further provide novel information regarding the maximal mean intensities and intercept and slopes, which should assist practitioners in planning and prescribing training in preparation for competition.


Subject(s)
Athletic Performance , Running , Team Sports , Female , Humans , Acceleration , Australia , Geographic Information Systems , Movement
6.
Prostate ; 79(13): 1553-1562, 2019 09.
Article in English | MEDLINE | ID: mdl-31294486

ABSTRACT

BACKGROUND: Previous studies had demonstrated that aldo-keto reductase family 1 member C3 (AKR1C3), a crucial enzyme in the steroidogenic pathway, played an important role in abiraterone (ABI)-resistance in metastatic castration-resistant prostate cancer (mCRPC) by increasing intratumoral androgen synthesis. However, its value in predicting treatment response in patients with mCRPC is unknown. METHOD AND MATERIALS: Data of 163 patients with metastatic prostate cancer between 2016 and 2018 were retrospectively analyzed. All patients received androgen deprivation therapy plus bicalutamide after initial diagnosis. After mCRPC, either ABI or docetaxel (DOC) treatment was used. No patient had the experience of therapy to the primary tumor. AKR1C3 protein was detected by immunohistochemical staining from rebiopsy (re-Bx) of primary prostate lesions at mCRPC. Kaplan-Meier curves and Cox regression were used to analyze the association between AKR1C3 and treatment outcomes. RESULTS: AKR1C3 was positive in 58 of 163 (35.6%) cases. AKR1C3 was associated with significantly shorter median prostate-specific antigen progression-free survival (mPSA-PFS, 5.6 mo vs 10.7 mo; P < .001), median radiographic progression-free survival (mrPFS, 11.1 mo vs 18.0 mo; P = .018), and numerically shorter median overall survival (mOS, 20.4 mo vs 26.4 mo; P = .157). Notably, AKR1C3-positive patients treated with ABI, but not DOC, had shorter mPSA-PFS and mrPFS compared with AKR1C3-negative men, (mPSA-PFS, 5.7 mo vs. 11.2 mo; P < .001; mrPFS, 12.4 mo vs 23.3 mo; P = .048). However, AKR1C3 expression had no correlation to PSA response or OS. Multivariate Cox regression indicated that AKR1C3 was independently accompanied with rapid PSA progression (hazard ratio [HR], 3.64; 95% confidence interval [CI], 2.10-6.31; P < 0.001) and radiological progression (HR, 2.08; 95% CI, 1.05-4.11; P = .036) in the ABI-treated subgroup. CONCLUSION: This study demonstrated that AKR1C3 detection in tissues from prostate re-Bx at mCRPC was associated with early resistance to ABI but not DOC. These results will help to make optimal personalized treatment decisions for patients with mCRPC, facilitate physicians predicting the effectiveness of ABI.


Subject(s)
Aldo-Keto Reductase Family 1 Member C3/metabolism , Androstenes/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/enzymology , Aged , Aldo-Keto Reductase Family 1 Member C3/biosynthesis , Androstenes/administration & dosage , Androstenes/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Docetaxel/administration & dosage , Drug Resistance, Neoplasm , Humans , Image-Guided Biopsy , Immunohistochemistry , Male , Neoplasm Metastasis , Prednisone/administration & dosage , Prostatic Neoplasms, Castration-Resistant/pathology , Retrospective Studies
7.
BJU Int ; 122(6): 994-1002, 2018 12.
Article in English | MEDLINE | ID: mdl-29772102

ABSTRACT

OBJECTIVES: To develop nomograms predicting the incidence of castration-resistant prostate cancer (CRPC) and overall survival (OS) for de novo metastatic prostate cancer (PCa). PATIENTS AND METHODS: Data from 449 patients with de novo metastatic PCa were retrospectively analysed. Patients were randomly divided into a training (n = 314, 70%) and a validation cohort (n = 135, 30%). Predictive factors were selected using a Cox proportional hazards model and were further used for building predictive models. The outcomes were incidence of CRPC and OS. RESULTS: Predictive factors included: Gleason score (GS), intraductal carcinoma of the prostate (IDC-P), Eastern Cooperative Oncology Group status, and alkaline phosphatase, haemoglobin and prostate-specific antigen levels. IDC-P and GS were the strongest prognosticators for both the incidence of CRPC and OS. Nomograms for predicting CRPC and OS had an internal validated concordance index of 0.762 and 0.723, respectively. Based on the ß coefficients of the final model, risk classification systems were constructed. For those with favourable, intermediate and poor prognosis, the median time to CRPC was 62.6, 28.0 and 13.0 months (P < 0.001), respectively; and the median OS was not reached, 55.0 and 33.0 months, respectively (P < 0.001). CONCLUSIONS: We developed two novel nomograms to predict the incidence of CRPC and OS for patients with de novo metastatic PCa. These tools may assist in physician decision-making and the designing of clinical trials.


Subject(s)
Bone Neoplasms/secondary , Nomograms , Prostatic Neoplasms, Castration-Resistant/pathology , Aged , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Humans , Male , Models, Statistical , Prostate-Specific Antigen/analysis , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/mortality , Survival Analysis
8.
Prostate ; 77(9): 1020-1028, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28485104

ABSTRACT

BACKGROUND: Docetaxel is one of the primary drugs used for treating castration resistant prostate cancer (CRPC). Unfortunately, over time patients invariably develop resistance to docetaxel therapy and their disease will continue to progress. The mechanisms by which resistance develops are still incompletely understood. This study seeks to determine the involvement of miRNAs, specifically miR-181a, in docetaxel resistance in CRPC. METHODS: Real-time PCR was used to measure miR-181a expression in parental and docetaxel resistant C4-2B and DU145 cells (TaxR and DU145-DTXR). miR-181a expression was modulated in parental or docetaxel resistant cells by transfecting them with miR-181a mimics or antisense, respectively. Following transfection, cell number was determined after 48 h with or without docetaxel. Cross resistance to cabazitaxel induced by miR-181a was also determined. Western blots were used to determine ABCB1 protein expression and rhodamine assays used to assess activity. Phospho-p53 expression was assessed by Western blot and apoptosis was measured by ELISA in C4-2B TaxR and PC3 cells with inhibited or overexpressed miR-181a expression with or without docetaxel. RESULTS: miR-181a is significantly overexpressed in TaxR and DU145-DTXR cells compared to parental cells. Overexpression of miR-181a in parental cells confers docetaxel and cabazitaxel resistance and knockdown of miR-181a in TaxR cells re-sensitizes them to treatment with both docetaxel and cabazitaxel. miR-181a was not observed to impact ABCB1 expression or activity, a protein which was previously demonstrated to be highly involved in docetaxel resistance. Knockdown of miR-181a in TaxR cells induced phospho-p53 expression. Furthermore, miR-181a knockdown alone induced apoptosis in TaxR cells which could be further enhanced by the addition of DTX. CONCLUSIONS: Overexpression of mir-181a in prostate cancer cells contributes to their resistance to docetaxel and cabazitaxel and inhibition of mir-181a expression can restore treatment response. This is due, in part, to modulation of p53 phosphorylation and apoptosis.


Subject(s)
MicroRNAs/genetics , Prostate , Prostatic Neoplasms, Castration-Resistant , Taxoids , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Docetaxel , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Pharmacogenetics , Prostate/drug effects , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Taxoids/administration & dosage , Taxoids/pharmacokinetics
9.
Dig Dis Sci ; 62(8): 1977-1984, 2017 08.
Article in English | MEDLINE | ID: mdl-28573506

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) increases the risk of developing colon cancer. This risk is higher in men compared to women, implicating a role for female hormones in the protection against this disease. Studies from our laboratory demonstrated that estradiol (E2) protects against inflammation-associated colon tumor formation when administered following chemical carcinogen and induction of chronic colitis. AIM: This study seeks to better understand the effect of E2 on acute colitis in the presence and absence of estrogen receptor ß (ERß). METHODS: Inflammation was induced by 2,4,6-trinitrobenzenesulfonic acid in wild-type (WT) and ERß knockout (ERßKO) mice implanted with a control or E2-containing pellet and killed 5 days later. Inflammation and injury were scored by a pathologist. Apoptosis and proliferation were assessed by immunohistochemistry. Cytokines were measured by multiplex analysis. RESULTS: E2 treatment reduced inflammation in the middle colon in WT mice and the distal colon in ERßKO mice compared to control mice. WT mice had reduced IL-6, IL-12, IL-17, GM-CSF, IFN-γ, MCP-1, MIP-1α, and TNF-α, and ERßKO had reduced IL-6 and IFN-γ expression in response to E2. Injury scores were lower in E2-treated ERßKO mice compared to control ERßKO mice. ERßKO mice had increased proliferation in the basal third of crypts in the distal colon and decreased apoptosis in the proximal colon. CONCLUSIONS: These data suggest that E2 has differential protective effects against acute colitis in the presence or absence of ERß and provide insight into how E2 may protect against IBD.


Subject(s)
Colitis/drug therapy , Colitis/metabolism , Estradiol/pharmacology , Estrogen Receptor beta/metabolism , Estrogens/pharmacology , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Colitis/chemically induced , Colonic Neoplasms/chemically induced , Colonic Neoplasms/prevention & control , Cytokines/analysis , Cytokines/drug effects , Estrogen Receptor beta/analysis , Estrogen Receptor beta/genetics , Female , Immunohistochemistry , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Trinitrobenzenesulfonic Acid
10.
Prostate ; 75(13): 1341-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25970160

ABSTRACT

PURPOSE: It is known that over expression of IL6 in prostate cancer cells confer enzalutamide resistance and that this may occur through constitutive Stat3 activation. Additionally, recent pre-clinical studies suggested enzalutamide might have the potential adverse effect of inducing metastasis of prostate cancer cells via Stat3 activation. This study is aimed to target Stat3 activation and improve enzalutamide therapy. EXPERIMENTAL DESIGN: Sensitivity of prostate cancer cells to enzalutamide was tested using cell growth assays and clonogenic assays. Wound healing and invasion assays were performed to determine cell migration and invasion in vitro. Quantitative reverse transcription-PCR, ELISA and Western blotting were performed to detect expression levels of PSA, c-Myc, survivin, Stat3, and AR. ChIP assay was performed to examine recruitment of AR to the PSA promoter. RESULTS: In the present study, we found niclosamide, a previously identified novel inhibitor of androgen receptor variant (AR-V7), inhibited Stat3 phosphorylation, and expression of downstream target genes. Niclosamide synergistically reversed enzalutamide resistance in prostate cancer cells and combination treatment of niclosamide with enzalutamide significantly induced cell apoptosis and inhibited cell growth, colony formation, cell migration and invasion. Knock down of Stat3 abrogated enzalutamide resistance resulting in reduced recruitment of AR to the PSA promoter in prostate cancer cells expressing IL6. Moreover, niclosamide reversed enzalutamide resistance by down-regulating Stat3 target gene expression Stat3and abrogating recruitment of AR to PSA promoter resulting in PSA inhibition. CONCLUSIONS: This study demonstrated the IL6-Stat3-AR axis in prostate cancer is one of the crucial mechanisms of enzalutamide resistance. Niclosamide has the potential to target the IL6-Stat3-AR pathway to overcome enzalutamide resistance and inhibit migration and invasion in advanced prostate cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Niclosamide/pharmacology , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , STAT3 Transcription Factor/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Benzamides , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Interactions , Humans , Male , Niclosamide/therapeutic use , Nitriles , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/therapeutic use
11.
Opt Express ; 23(14): 17866-82, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26191848

ABSTRACT

We present a simple numerical model that is used in conjunction with a systematic algorithm for parameter optimization to understand the three-dimensional stochastic intensity dynamics of stimulated Brillouin scattering in a two-mode optical fiber. The primary factors driving the complex dynamics appear to be thermal density fluctuations, transverse pump fluctuations, and asymmetric transverse mode fractions over the beam cross-section.

12.
Nanoscale ; 16(20): 9875-9886, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38687003

ABSTRACT

Black metal oxides with varying concentrations of O-vacancies display enhanced optical and catalytic properties. However, direct solution syntheses of this class of materials have been limited despite being highly advantageous given the different synthetic handles that can be leveraged towards control of the targeted material. Herein, we present an alternate colloidal synthesis of black In2O3-x nanoparticles from the simple reaction between In(acac)3 and oleyl alcohol. Growth studies by PXRD, TEM, and STEM-EDS coupled to mechanistic insights from 1H, 13C NMR revealed the particles form via two paths, one of which involves In0. We also show that variations in the synthesis atmosphere, ligand environment, and indium precursor can inhibit formation of the black In2O3-x. The optical spectrum for the black nanoparticles displayed a significant redshift when compared to pristine In2O3, consistent with the presence of O-vacancies. Raman spectra and surface analysis also supported the presence of surface oxygen vacancies in the as-synthesized black In2O3-x.

13.
iScience ; 27(2): 108984, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38327800

ABSTRACT

Olaparib is a pioneering PARP inhibitor (PARPi) approved for treating castration-resistant prostate cancer (CRPC) tumors harboring DNA repair defects, but clinical resistance has been documented. To study acquired resistance, we developed Olaparib-resistant (OlapR) cell lines through chronic Olaparib treatment of LNCaP and C4-2B cell lines. Here, we found that IGFBP3 is highly expressed in acquired (OlapR) and intrinsic (Rv1) models of Olaparib resistance. We show that IGFBP3 expression promotes Olaparib resistance by enhancing DNA repair capacity through activation of EGFR and DNA-PKcs. IGFBP3 depletion enhances efficacy of Olaparib by promoting DNA damage accumulation and subsequently, cell death in resistant models. Mechanistically, we show that silencing IGFBP3 or EGFR expression reduces cell viability and resensitizes OlapR cells to Olaparib treatment. Inhibition of EGFR by Gefitinib suppressed growth of OlapR cells and improved Olaparib sensitivity, thereby phenocopying IGFBP3 inhibition. Collectively, our results highlight IGFBP3 and EGFR as critical mediators of Olaparib resistance.

14.
Int J Sports Physiol Perform ; 18(5): 512-522, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36965486

ABSTRACT

PURPOSE: To quantify match load associated with padel and compare responses with both singles and doubles tennis. METHODS: On separate days, 12 participants (7 men and 5 women) played 60-minute padel (PADEL), singles tennis (SINGLES), and doubles tennis (DOUBLES) simulated games. Participants wore a 10-Hz GPS/100-Hz triaxial accelerometer unit and heart-rate monitor. Exercise-related sensations and blood lactate concentration were monitored every 20 minutes. Match-play characteristics (temporal structure) and shot selection were derived from video analysis. Vertical jump ability was assessed before and after each game. RESULTS: Heart rate, exercise-related sensations (overall perceived exertion and limb discomfort), and physical load (total distance covered, PlayerLoad, acceleration density and load) for SINGLES were higher compared with DOUBLES and PADEL (all P ≤ .05). Blood lactate concentrations remained low (1-2 mmol·L-1) and did not differ between conditions. Effective playing time (P < .001) was lower in SINGLES and DOUBLES compared with PADEL. The number of forehands (P = .002) and backhands (P < .001) was greater for SINGLES than for DOUBLES and PADEL. The number of volleys/smashes and lobs (P < .05) was greater for PADEL compared with SINGLES and DOUBLES. Performance for squat, countermovement, and multirebound jumps was similarly reduced below baseline after match play (P < .05), independent of condition. CONCLUSION: Padel imposes a unique match load on players that is different from singles tennis and more closely resembles that of doubles tennis. Cardiovascular stimulation and physical load are highest in singles tennis, while padel sees players hit a larger variety of shots with higher effective playing percentages.


Subject(s)
Tennis , Male , Humans , Female , Tennis/physiology , Physical Exertion/physiology , Lactic Acid , Exercise , Heart Rate/physiology
15.
Nanoscale ; 15(6): 2650-2658, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36722489

ABSTRACT

Devising synthetic strategies to control crystal structure is of great importance as materials properties are governed by structure. MnS is a great model system as it has three known stable polymorphs. Herein, we show the selective synthesis of colloidal wurtzite- and rock-salt-type MnS under identical reactions conditions changing only the manganese halide precursor. Mixtures of Mn halides or halide surrogate (e.g., NH4Cl) also enabled polymorph control. Powder X-ray diffraction aliquot studies of the reactions revealed the crystal structure at the onset of nucleation and that of the final product is the same, unlike the Ostwald ripening transformation observed in other systems. The halide-driven selectivity was also observed in the synthesis of manganese selenide nanoparticles. In this system, variation of the Mn halide precursor allowed access to the wurtzite- and rock salt-type polymorphs of MnSe, as well as the pyrite-MnSe2 phase. Based on this work, the mixing of metal salts might be a simple and effective strategy towards polymorph control and access materials with new crystal structures.

16.
Cancers (Basel) ; 15(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958444

ABSTRACT

Current common treatments for castration-resistant prostate cancer (CRPC) typically belong to one of three major categories: next-generation anti-androgen therapies (NGAT) including enzalutamide, abiraterone acetate, apalutamide, and darolutamide; taxane therapy represented by docetaxel; and PARP inhibitors (PARPi) like olaparib. Although these treatments have shown efficacy and have improved outcomes for many patients, some do not survive due to the emergence of therapeutic resistance. The clinical landscape is further complicated by limited knowledge about how the sequence of treatments impacts the development of therapeutic cross-resistance in CRPC. We have developed multiple CRPC models of acquired therapeutic resistance cell sublines from C4-2B cells. These include C4-2B MDVR, C4-2B AbiR, C4-2B ApaR, C4-2B DaroR, TaxR, and 2B-olapR, which are resistant to enzalutamide, abiraterone, apalutamide, darolutamide, docetaxel, and olaparib, respectively. These models are instrumental for analyzing gene expression and assessing responses to various treatments. Our findings reveal distinct cross-resistance characteristics among NGAT-resistant cell sublines. Specifically, resistance to enzalutamide induces resistance to abiraterone and vice versa, while maintaining sensitivity to taxanes and olaparib. Conversely, cells with acquired resistance to docetaxel exhibit cross-resistance to both cabazitaxel and olaparib but retain sensitivity to NGATs like enzalutamide and abiraterone. OlapR cells, significantly resistant to olaparib compared to parental cells, are still responsive to NGATs and docetaxel. Moreover, OlapR models display cross-resistance to other clinically relevant PARP inhibitors, including rucaparib, niraparib, and talazoparib. RNA-sequencing analyses have revealed a complex network of altered gene expressions that influence signaling pathways, energy metabolism, and apoptotic signaling, pivotal to cancer's evolution and progression. The data indicate that resistance mechanisms are distinct among different drug classes. Notably, NGAT-resistant sublines exhibited a significant downregulation of androgen-regulated genes, contrasting to the stable expression noted in olaparib and docetaxel-resistant sublines. These results may have clinical implications by showing that treatments of one class can be sequenced with those from another class, but caution should be taken when sequencing drugs of the same class.

17.
Mol Cancer Ther ; 21(4): 677-685, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35086956

ABSTRACT

PARP inhibition represents the dawn of precision medicine for treating prostate cancer. Despite this advance, questions remain regarding the use of PARP inhibitors (PARPi) for the treatment of this disease, including (i) how specifically do PARPi-sensitive tumor cells respond to treatment, and (ii) how does PARPi resistance develop? To address these questions, we characterized response to olaparib in sensitive LNCaP and C4-2B cells and developed two olaparib-resistant derivative cell line models from each, termed LN-OlapR and 2B-OlapR, respectively. OlapR cells possess distinct morphology from parental cells and display robust resistance to olaparib and other clinically relevant PARPis, including rucaparib, niraparib, and talazoparib. In LNCaP and C4-2B cells, we found that olaparib induces massive DNA damage, leading to activation of the G2-M checkpoint, activation of p53, and cell-cycle arrest. Furthermore, our data suggest that G2-M checkpoint activation leads to both cell death and senescence associated with p21 activity. In contrast, both LN-OlapR and 2B-OlapR cells do not arrest at G2-M and display a markedly blunted response to olaparib treatment. Interestingly, both OlapR cell lines harbor increased DNA damage relative to parental cells, suggesting that OlapR cells accumulate and manage persistent DNA damage during acquisition of resistance, likely through augmenting DNA repair capacity. Further impairing DNA repair through CDK1 inhibition enhances DNA damage, induces cell death, and sensitizes OlapR cells to olaparib treatment. Our data together further our understanding of PARPi treatment and provide a cellular platform system for the study of response and resistance to PARP inhibition.


Subject(s)
Phthalazines , Prostatic Neoplasms , Cell Cycle Checkpoints , Cell Line, Tumor , Humans , Male , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics
18.
Dig Dis Sci ; 56(9): 2585-94, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21409371

ABSTRACT

BACKGROUND: Dietary fish oil is associated with a decrease in colon cancer incidence: in part through a reduction in DNA adduct formation and an induction of colonocyte apoptosis. Estradiol (E(2)) has also been demonstrated to be protective against colon cancer incidence. Studies evaluating fish oil diets and DNA adduct formation in the colon have been conducted in male models without regard to possible interactions with E(2). AIMS: The aim of this study was to evaluate the effects of E(2) and fish oil both together and separately in female rats at the point of DNA damage. METHODS: Ovariectomized female Sprague-Dawley rats were fed either a corn oil or fish oil diet in the presence or absence of E(2) for two weeks prior to being sacrificed at four time points following injection with azoxymethane. O(6)-methyldeoxyguanosine (O(6)-MedG) DNA adducts and apoptosis were examined using immunohistochemistry. RESULTS: Dietary fish oil reduced DNA adduct formation independent of the presence of E(2) at both 9 and 12 h post carcinogen. E(2) itself did not suppress adduct formation. E(2) significantly induced apoptosis 12 h after carcinogen independent of diet, primarily in the luminal third of the crypts. Fish oil was not associated with increased colonocyte apoptosis. CONCLUSIONS: These data demonstrate that fish oil is protective against DNA damage in the colon regardless of gender through reduction of O(6)-MedG adduct formation. Additionally, E(2) is capable of inducing apoptosis directly at the point of DNA damage.


Subject(s)
Apoptosis/drug effects , Colon/drug effects , DNA Adducts/metabolism , Estradiol/pharmacology , Fish Oils/pharmacology , Animals , DNA Damage , Dietary Fats, Unsaturated/pharmacology , Estradiol/blood , Female , Fish Oils/administration & dosage , Guanosine/analogs & derivatives , Male , Ovariectomy , Rats , Rats, Sprague-Dawley , Up-Regulation
19.
Am J Clin Exp Urol ; 9(4): 292-300, 2021.
Article in English | MEDLINE | ID: mdl-34541028

ABSTRACT

Current therapies for treating castration resistant prostate cancer (CRPC) include abiraterone and enzalutamide which function by inhibiting androgen signaling by targeting androgen synthesis and antagonizing the androgen receptor (AR) respectively. While these therapies are initially beneficial, resistance inevitably develops. A number of pathways have been identified to contribute to CRPC progression and drug resistance. Among these is aberrant androgen signaling perpetuated by increased expression and activity of androgenic enzymes. While abiraterone inhibits the androgenic enzyme, CYP17A1, androgen synthesis inhibition by abiraterone is incomplete and sustained androgenesis persists, in part due to increased levels of AKR1C3 and steroid sulfatase (STS). Expression of both of these enzymes is increased in CRPC and is associated with resistance to anti-androgens. A number of studies have identified methods for targeting these enzymes. Indomethacin, a non-steroidal anti-inflammatory drug commonly used to treat inflammatory arthritis has been well established as an inhibitor of AKR1C3. Treatment of CRPC cells with indomethacin reduces cell growth and improves the response to enzalutamide and abiraterone. Similarly, STS inhibitors have been shown to reduce intracrine androgens and also reduce CRPC growth and enhance anti-androgen treatment. In this review, we provide an overview of androgen synthesis in CRPC and strategies aimed at inhibiting intracrine androgens.

20.
Eur J Pharm Sci ; 159: 105702, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33429045

ABSTRACT

Due to the complexity in the interactions of variables and mechanisms leading to blend segregation, quantifying the segregation propensity of an Active Pharmaceutical Ingredient (API) has been challenging. A high-throughput segregation risk prediction workflow for early drug product development has been developed based on the dispensing mechanism of automated powder dispensing technology. The workflow utilized liquid handling robots and high-performance liquid chromatography (HPLC) with a well-plate autosampler for sample preparation and analysis. Blends containing three different APIs of varying concentrations and particle sizes of different constituents were evaluated through this automated workflow. The workflow enabled segregation evaluation of different API blends in very small quantities (~7g) compared to other common segregation testers that consume hundreds of grams. Segregation patterns obtained were well explained with vibration induced percolation-based segregation phenomena. Segregation risk was translated quantitatively using relative standard deviation (RSD) calculations, and the results matched well with large-scale segregation studies. The applied approach increased the throughput, introduced a simple and clean walk-up method with minimized equipment space and API exposures to conduct segregation studies. Results obtained can provide insights about optimizing particle size distributions, as well as selecting appropriate formulation constituents and secondary processing steps in early drug product development when the amount of available API is very limited.


Subject(s)
Chemistry, Pharmaceutical , Technology, Pharmaceutical , Excipients , Powders , Technology
SELECTION OF CITATIONS
SEARCH DETAIL