Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters

Publication year range
1.
Phys Rev Lett ; 116(11): 115003, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035306

ABSTRACT

Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation time scales of the correlation functions associated with ionic motion. In the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.

2.
Phys Rev E ; 104(5-2): 055310, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942746

ABSTRACT

Molecular dynamics is often considered as a numerical experiment. The error bars on the results are therefore mandatory, but sometimes difficult to determine and computationally demanding. As a low-cost approach, we describe the application of the bootstrap (BS) method to the quantification of uncertainties pertaining to the time correlation functions. We chose the autocorrelation functions of velocity and interdiffusion current for a binary ionic mixture as a test bed, and we assessed the merit of the Darken approximation relating both of them. The intrinsic errors related to phase space sampling is investigated comparing the BS method with the reference method of replica. We also study how the BS method can assist in addressing the finite-size effects.

3.
Phys Rev E ; 101(3-1): 033207, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32289916

ABSTRACT

Complex plasma mixtures with three or more components are often encountered in astrophysics or in inertial confinement fusion (ICF) experiments. For mixtures containing species with large differences in atomic number Z, the modeling needs to consider at the same time the kinetic theory for low-Z elements combined with the theory of strongly coupled plasma for high-Z elements, as well as all the intermediate situations that can appear in multicomponent systems. For such cases, we study the pair distribution functions, self-diffusions, mutual diffusion, and viscosity for ternary mixtures at extreme conditions. These quantities can be produced from first principles using orbital free molecular dynamics at the computational expense of very intensive simulations to reach good statistics. Utilizing the first-principles results as reference data, we assess the merit of a global analytic model for transport coefficients, "pseudo-ions in jellium" (PIJ), based on an isoelectronic assumption (iso-n_{e}). With a multicomponent hypernetted-chain integral equation, we verify the quality of the iso-n_{e} prescription for describing the static structure of the mixtures. This semianalytical modeling compares well with the simulation results and allows one to consider plasma mixtures not accessible to simulations. Applications are given for the mix of materials in ICF experiments. A reduction of a multicomponent mixture to an effective binary mixture is also established in the hydrodynamic limit and compared with PIJ estimations for ICF relevant mixtures.

4.
Phys Rev E ; 100(6-1): 063205, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31962510

ABSTRACT

The rapid growth of viscosity driven by temperature increase in turbulent plasmas under compression induces a sudden dissipation of kinetic energy, eventually leading to the relaminarization of the flow [Davidovits and Fisch, Phys. Rev. Lett. 116, 105004 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.105004]. The interdiffusion between species is also greatly enhanced, so that mixing layers appearing at interfaces between different materials are subjected to strong dynamical modifications. The result is a competition between the vanishing turbulent diffusion and the expanding plasma microscopic diffusion. In direct numerical simulations with conditions relevant to inertial confinement fusion, we evidence regimes where compressed spherical mixing layers are quickly diffused during the relaminarization process. Using one and two-point turbulent statistics, we also detail how mixing heterogeneities are smoothed out.

5.
Phys Rev E ; 95(6-1): 063202, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28709340

ABSTRACT

Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. We present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm^{3}, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity for various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. The concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.

6.
Phys Rev E ; 94(6-1): 061202, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28085351

ABSTRACT

We show that the Bayesian inference of recently measured x-ray diffraction spectra from laser-shocked aluminum [L. B. Fletcher et al., Nat. Photon. 9, 274 (2015)10.1038/nphoton.2015.41] with the one-component-plasma (OCP) model performs remarkably well at estimating the ionic density and temperature. This statistical approach requires many evaluations of the OCP static structure factor, which were done using a recently derived analytic fit. The atomic form factor is approximated by an exponential function in the diffraction window of the first peak. The electronic temperature is then estimated from a comparison of this approximated form factor with the electronic structure of an average atom model. Out-of-equilibrium states, with electrons hotter than ions, are diagnosed for the spectra obtained early after the pump, whereas at a late time delay the plasma is at thermal equilibrium. Apart from the present findings, this OCP-based modeling of warm dense matter has an important role to play in the interpretation of x-ray Thomson scattering measurements currently performed at large laser facilities.

7.
Phys Rev E ; 93(6): 063208, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27415378

ABSTRACT

We study how concentration changes ionic transport properties along isobars-isotherms for a mixture of hydrogen and silver, representative of turbulent layers relevant to inertial confinement fusion and astrophysics. Hydrogen will typically be fully ionized while silver will be only partially ionized but can have a large effective charge. This will lead to very different physical conditions for the H and Ag. Large first principles orbital free molecular dynamics simulations are performed and the resulting transport properties are analyzed. Comparisons are made with transport theory in the kinetic regime and in the coupled regime. The addition of a small amount of heavy element in a light material has a dramatic effect on viscosity and diffusion of the mixture. This effect is explained through kinetic theory as a manifestation of a crossover between classical diffusion and Lorentz diffusion.

8.
Article in English | MEDLINE | ID: mdl-25871249

ABSTRACT

We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003)] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.

9.
Article in English | MEDLINE | ID: mdl-25679563

ABSTRACT

A recent and unexpected discrepancy between ab initio simulations and the interpretation of a laser shock experiment on aluminum, probed by x-ray Thomson scattering (XRTS), is addressed. The ion-ion structure factor deduced from the XRTS elastic peak (ion feature) is only compatible with a strongly coupled out-of-equilibrium state. Orbital free molecular dynamics simulations with ions colder than the electrons are employed to interpret the experiment. The relevance of decoupled temperatures for ions and electrons is discussed. The possibility that it mimics a transient, or metastable, out-of-equilibrium state after melting is also suggested.

10.
Article in English | MEDLINE | ID: mdl-23848620

ABSTRACT

The ion-ion coupling parameter Γ is estimated for tungsten along the ρ=40 g/cm(3) isochore corresponding to twice the normal density with temperatures ranging from 10 eV to 5 keV. Using a variety of approaches from a spherical Thomas-Fermi ion to a full three-dimensional orbital-free method, we show that along an isochore the effective ionic coupling parameter is almost constant over a wide range of temperatures (in our case Γ~/=20) due to the competition between rising temperatures and increased ionization. This Γ-plateau effect depends on the chosen density and is well delineated at normal density but almost disappears at five times the normal density. This effect could be used to obtain well-defined and predictable experimental conditions.

11.
Article in English | MEDLINE | ID: mdl-24483576

ABSTRACT

Extending the well-known Thomas-Fermi Z-scaling laws to the Coulomb coupling parameter, we investigate the stabilization of the ionic coupling in isochoric heating [Clérouin et al., Phys. Rev. E 87, 061101 (2013)]. This stabilization is restricted to a domain in atomic number Z, temperature, and density, including strong limitations on high couplings, that can only be obtained for high-Z elements. Contact is made with recent isochoric heating experiments. The consequences for corresponding states with respect to ionic coupling are also quantified via orbital free molecular dynamics simulations. This opens avenues for future isochoric heating experiments.

SELECTION OF CITATIONS
SEARCH DETAIL