Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Pharmacol Exp Ther ; 385(2): 106-116, 2023 05.
Article in English | MEDLINE | ID: mdl-36849412

ABSTRACT

Individuals with neurofibromatosis type 1 develop rat sarcoma virus (RAS)-mitogen-activated protein kinase-mitogen-activated and extracellular signal-regulated kinase (RAS-MAPK-MEK)-driven nerve tumors called neurofibromas. Although MEK inhibitors transiently reduce volumes of most plexiform neurofibromas in mouse models and in neurofibromatosis type 1 (NF1) patients, therapies that increase the efficacy of MEK inhibitors are needed. BI-3406 is a small molecule that prevents Son of Sevenless (SOS)1 interaction with Kirsten rat sarcoma viral oncoprotein (KRAS)-GDP, interfering with the RAS-MAPK cascade upstream of MEK. Single agent SOS1 inhibition had no significant effect in the DhhCre;Nf1 fl/fl mouse model of plexiform neurofibroma, but pharmacokinetics (PK)-driven combination of selumetinib with BI-3406 significantly improved tumor parameters. Tumor volumes and neurofibroma cell proliferation, reduced by MEK inhibition, were further reduced by the combination. Neurofibromas are rich in ionized calcium binding adaptor molecule 1 (Iba1)+ macrophages; combination treatment resulted in small and round macrophages, with altered cytokine expression indicative of altered activation. The significant effects of MEK inhibitor plus SOS1 inhibition in this preclinical study suggest potential clinical benefit of dual targeting of the RAS-MAPK pathway in neurofibromas. SIGNIFICANCE STATEMENT: Interfering with the RAS-mitogen-activated protein kinase (RAS-MAPK) cascade upstream of mitogen activated protein kinase kinase (MEK), together with MEK inhibition, augment effects of MEK inhibition on neurofibroma volume and tumor macrophages in a preclinical model system. This study emphasizes the critical role of the RAS-MAPK pathway in controlling tumor cell proliferation and the tumor microenvironment in benign neurofibromas.


Subject(s)
Neurofibroma, Plexiform , Neurofibroma , Neurofibromatosis 1 , Animals , Mice , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases , Neurofibroma/drug therapy , Neurofibroma, Plexiform/drug therapy , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/therapeutic use , Tumor Microenvironment , SOS1 Protein/metabolism
2.
Nat Chem Biol ; 15(8): 846, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31267096

ABSTRACT

In the version of this article originally published, several lines of text in the last paragraph of the right column on page 1 of the PDF were transposed into the bottom paragraph of the left column. The affected text of the left column should read "The ATP-dependent activities of the BAF (SWI/SNF) chromatin remodeling complexes affect the positioning of nucleosomes on DNA and thereby many cellular processes related to chromatin structure, including transcription, DNA repair and decatenation of chromosomes during mitosis12,13." The affected text of the right column should read "SMARCA2/4BD inhibitors are thus precluded from use for the treatment of SMARCA4 mutant cancers but could provide attractive ligands for PROTAC conjugation. Small molecules binding to other bromodomains have been successfully converted into PROTACs by conjugating them with structures capable of binding to the E3 ligases von Hippel-Lindau (VHL) or cereblon5,6,10,11,25,26,27." The errors have been corrected in the PDF version of the paper.

3.
Nat Chem Biol ; 15(7): 672-680, 2019 07.
Article in English | MEDLINE | ID: mdl-31178587

ABSTRACT

Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.


Subject(s)
Chromatin Assembly and Disassembly/genetics , DNA-Binding Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics , Cell Proliferation , Cells, Cultured , DNA-Binding Proteins/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Molecular Structure , Nuclear Proteins/metabolism
4.
Nat Chem Biol ; 15(8): 822-829, 2019 08.
Article in English | MEDLINE | ID: mdl-31285596

ABSTRACT

Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the WHSC1L1 gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.


Subject(s)
Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , CRISPR-Cas Systems , Cell Line , Cell Proliferation/drug effects , Cell Survival , Gene Expression Regulation/drug effects , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Domains , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
5.
J Med Chem ; 66(14): 9376-9400, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37450324

ABSTRACT

Activating the stimulator of interferon genes (STING) pathway with STING agonists is an attractive immune oncology concept to treat patients with tumors that are refractory to single-agent anti-PD-1 therapy. For best clinical translatability and broad application to cancer patients, STING agonists with potent cellular activation of all STING variants are desired. Novel cyclic dinucleotide (CDN)-based selective STING agonists were designed and synthesized comprising noncanonical nucleobase, ribose, and phosphorothioate moieties. This strategy led to the discovery of 2',3'-CDN 13 (BI 7446), which features unprecedented potency and activates all five STING variants in cellular assays. ADME profiling revealed that CDN 13 has attractive drug-like properties for development as an intratumoral agent. Injection of low doses of CDN 13 into tumors in mice induced long-lasting, tumor-specific immune-mediated tumor rejection. Based on its compelling preclinical profile, BI 7446 has been advanced to clinical trials (monotherapy and in combination with anti-PD-1 antibody).


Subject(s)
Neoplasms , Mice , Animals , Neoplasms/pathology , Immunotherapy
6.
J Med Chem ; 65(21): 14614-14629, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36300829

ABSTRACT

Activating mutations in KRAS are the most frequent oncogenic alterations in cancer. The oncogenic hotspot position 12, located at the lip of the switch II pocket, offers a covalent attachment point for KRASG12C inhibitors. To date, KRASG12C inhibitors have been discovered by first covalently binding to the cysteine at position 12 and then optimizing pocket binding. We report on the discovery of the in vivo active KRASG12C inhibitor BI-0474 using a different approach, in which small molecules that bind reversibly to the switch II pocket were identified and then optimized for non-covalent binding using structure-based design. Finally, the Michael acceptor containing warhead was attached. Our approach offers not only an alternative approach to discovering KRASG12C inhibitors but also provides a starting point for the discovery of inhibitors against other oncogenic KRAS mutants.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Genes, ras , Mutation , Neoplasms/genetics , Cysteine
7.
J Med Chem ; 64(10): 6569-6580, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33719426

ABSTRACT

KRAS, the most common oncogenic driver in human cancers, is controlled and signals primarily through protein-protein interactions (PPIs). The interaction between KRAS and SOS1, crucial for the activation of KRAS, is a typical, challenging PPI with a large contact surface area and high affinity. Here, we report that the addition of only one atom placed between Y884SOS1 and A73KRAS is sufficient to convert SOS1 activators into SOS1 inhibitors. We also disclose the discovery of BI-3406. Combination with the upstream EGFR inhibitor afatinib shows in vivo efficacy against KRASG13D mutant colorectal tumor cells, demonstrating the utility of BI-3406 to probe SOS1 biology. These findings challenge the dogma that large molecules are required to disrupt challenging PPIs. Instead, a "foot in the door" approach, whereby single atoms or small functional groups placed between key PPI interactions, can lead to potent inhibitors even for challenging PPIs such as SOS1-KRAS.


Subject(s)
Proto-Oncogene Proteins p21(ras)/metabolism , SOS1 Protein/metabolism , Afatinib/chemistry , Afatinib/metabolism , Afatinib/therapeutic use , Allosteric Regulation/drug effects , Binding Sites , Catalytic Domain , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/chemistry , Quinazolines/metabolism , Quinazolines/pharmacology , Quinazolines/therapeutic use , SOS1 Protein/agonists , SOS1 Protein/antagonists & inhibitors , SOS1 Protein/genetics
8.
Cancer Discov ; 11(1): 142-157, 2021 01.
Article in English | MEDLINE | ID: mdl-32816843

ABSTRACT

KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective, and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1, thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTP-loaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers. Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors. SIGNIFICANCE: To date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS-mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins, G12D, G12V, G12C, and G13D.See related commentary by Zhao et al., p. 17.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Cell Line, Tumor , Humans , Mitogen-Activated Protein Kinase Kinases , Mutation , Nucleotides , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics
9.
Mol Cancer Ther ; 19(4): 1018-1030, 2020 04.
Article in English | MEDLINE | ID: mdl-32024684

ABSTRACT

Natural killer (NK) cells play a pivotal role in controlling cancer. Multiple extracellular receptors and internal signaling nodes tightly regulate NK activation. Cyclin-dependent kinases of the mediator complex (CDK8 and CDK19) were described as a signaling intermediates in NK cells. Here, we report for the first time the development and use of CDK8/19 inhibitors to suppress phosphorylation of STAT1S727 in NK cells and to augment the production of the cytolytic molecules perforin and granzyme B (GZMB). Functionally, this resulted in enhanced NK-cell-mediated lysis of primary leukemia cells. Treatment with the CDK8/19 inhibitor BI-1347 increased the response rate and survival of mice bearing melanoma and breast cancer xenografts. In addition, CDK8/19 inhibition augmented the antitumoral activity of anti-PD-1 antibody and SMAC mimetic therapy, both agents that promote T-cell-mediated antitumor immunity. Treatment with the SMAC mimetic compound BI-8382 resulted in an increased number of NK cells infiltrating EMT6 tumors. Combination of the CDK8/19 inhibitor BI-1347, which augments the amount of degranulation enzymes, with the SMAC mimetic BI-8382 resulted in increased survival of mice carrying the EMT6 breast cancer model. The observed survival benefit was dependent on an intermittent treatment schedule of BI-1347, suggesting the importance of circumventing a hyporesponsive state of NK cells. These results suggest that CDK8/19 inhibitors can be combined with modulators of the adaptive immune system to inhibit the growth of solid tumors, independent of their activity on cancer cells, but rather through promoting NK-cell function.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/drug therapy , Melanoma, Experimental/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Apoptosis , Breast Neoplasms/enzymology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Proliferation , Cytotoxicity, Immunologic/immunology , Female , Humans , Killer Cells, Natural/drug effects , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Melanoma, Experimental/enzymology , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Phosphorylation , STAT1 Transcription Factor/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
J Med Chem ; 62(5): 2508-2520, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30739444

ABSTRACT

Focal adhesion tyrosine kinase (PTK2) is often overexpressed in human hepatocellular carcinoma (HCC), and several reports have linked PTK2 depletion and/or pharmacological inhibition to reduced tumorigenicity. However, the clinical relevance of targeting PTK2 still remains to be proven. Here, we present two highly selective and functional PTK2 proteolysis-targeting chimeras utilizing von Hippel-Lindau and cereblon ligands to hijack E3 ligases for PTK2 degradation. BI-3663 (cereblon-based) degrades PTK2 with a median DC50 of 30 nM to >80% across a panel of 11 HCC cell lines. Despite effective PTK2 degradation, these compounds did not phenocopy the reported antiproliferative effects of PTK2 depletion in any of the cell lines tested. By disclosing these compounds, we hope to provide valuable tools for the study of PTK2 degradation across different biological systems.


Subject(s)
Focal Adhesion Kinase 1/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Recombinant Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Humans , Ligands , Proteolysis , RNA Interference
11.
J Med Chem ; 62(17): 7976-7997, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31365252

ABSTRACT

Phosphoglycerate dehydrogenase (PHGDH) is known to be the rate-limiting enzyme in the serine synthesis pathway in humans. It converts glycolysis-derived 3-phosphoglycerate to 3-phosphopyruvate in a co-factor-dependent oxidation reaction. Herein, we report the discovery of BI-4916, a prodrug of the co-factor nicotinamide adenine dinucleotide (NADH/NAD+)-competitive PHGDH inhibitor BI-4924, which has shown high selectivity against the majority of other dehydrogenase targets. Starting with a fragment-based screening, a subsequent hit optimization using structure-based drug design was conducted to deliver a single-digit nanomolar lead series and to improve potency by 6 orders of magnitude. To this end, an intracellular ester cleavage mechanism of the ester prodrug was utilized to achieve intracellular enrichment of the actual carboxylic acid based drug and thus overcome high cytosolic levels of the competitive cofactors NADH/NAD+.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Serine/antagonists & inhibitors , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Phosphoglycerate Dehydrogenase/metabolism , Serine/biosynthesis , Structure-Activity Relationship
12.
Mol Cancer Ther ; 16(10): 2223-2233, 2017 10.
Article in English | MEDLINE | ID: mdl-28729397

ABSTRACT

Clinical studies of pharmacologic agents targeting the insulin-like growth factor (IGF) pathway in unselected cancer patients have so far demonstrated modest efficacy outcomes, with objective responses being rare. As such, the identification of selection biomarkers for enrichment of potential responders represents a high priority for future trials of these agents. Several reports have described high IGF2 expression in a subset of colorectal cancers, with focal IGF2 amplification being responsible for some of these cases. We defined a novel cut-off value for IGF2 overexpression based on differential expression between colorectal tumors and normal tissue samples. Analysis of two independent colorectal cancer datasets revealed IGF2 to be overexpressed at a frequency of 13% to 22%. An in vitro screen of 34 colorectal cancer cell lines revealed IGF2 expression to significantly correlate with sensitivity to the IGF1R/INSR inhibitor BI 885578. Furthermore, autocrine IGF2 constitutively activated IGF1R and Akt phosphorylation, which was inhibited by BI 885578 treatment. BI 885578 significantly delayed the growth of IGF2-high colorectal cancer xenograft tumors in mice, while combination with a VEGF-A antibody increased efficacy and induced tumor regression. Besides colorectal cancer, IGF2 overexpression was detected in more than 10% of bladder carcinoma, hepatocellular carcinoma and non-small cell lung cancer patient samples. Meanwhile, IGF2-high non-colorectal cancer cells lines displayed constitutive IGF1R phosphorylation and were sensitive to BI 885578. Our findings suggest that IGF2 may represent an attractive patient selection biomarker for IGF pathway inhibitors and that combination with VEGF-targeting agents may further improve clinical outcomes. Mol Cancer Ther; 16(10); 2223-33. ©2017 AACR.


Subject(s)
Colorectal Neoplasms/drug therapy , Insulin-Like Growth Factor II/antagonists & inhibitors , Receptors, Somatomedin/antagonists & inhibitors , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Insulin-Like Growth Factor II/genetics , Mice , Pyrazoles/administration & dosage , Quinazolines/administration & dosage , Receptor, IGF Type 1 , Receptors, Somatomedin/genetics , Vascular Endothelial Growth Factor A/genetics , Xenograft Model Antitumor Assays
13.
J Med Chem ; 59(22): 10147-10162, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27775892

ABSTRACT

Scaffold modification based on Wang's pioneering MDM2-p53 inhibitors led to novel, chemically stable spiro-oxindole compounds bearing a spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-one scaffold that are not prone to epimerization as observed for the initial spiro[3H-indole-3,3'-pyrrolidin]-2(1H)-one scaffold. Further structure-based optimization inspired by natural product architectures led to a complex fused ring system ideally suited to bind to the MDM2 protein and to interrupt its protein-protein interaction (PPI) with TP53. The compounds are highly selective and show in vivo efficacy in a SJSA-1 xenograft model even when given as a single dose as demonstrated for 4-[(3S,3'S,3'aS,5'R,6'aS)-6-chloro-3'-(3-chloro-2-fluorophenyl)-1'-(cyclopropylmethyl)-2-oxo-1,2,3',3'a,4',5',6',6'a-octahydro-1'H-spiro[indole-3,2'-pyrrolo[3,2-b]pyrrole]-5'-yl]benzoic acid (BI-0252).


Subject(s)
Drug Discovery , Indoles/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyrrolidinones/pharmacology , Spiro Compounds/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , Administration, Oral , Dose-Response Relationship, Drug , Humans , Indoles/administration & dosage , Indoles/chemistry , Models, Molecular , Molecular Structure , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidinones/administration & dosage , Pyrrolidinones/chemistry , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
14.
J Med Chem ; 56(11): 4264-76, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23668417

ABSTRACT

The basic methylpiperazine moiety is considered a necessary substructure for high histamine H4 receptor (H4R) affinity. This moiety is however also the metabolic hot spot for various classes of H4R ligands (e.g., indolcarboxamides and pyrimidines). We set out to investigate whether mildly basic 2-aminopyrimidines in combination with the appropriate linker can serve as a replacement for the methylpiperazine moiety. In the series of 2-aminopyrimidines, the introduction of an additional 2-aminopyrimidine moiety in combination with the appropriate linker lead to bispyrimidines displaying pKi values for binding the human H4R up to 8.2. Furthermore, the methylpiperazine replacement results in compounds with improved metabolic properties. The attempt to transfer the knowledge generated in the class of bispyrimidines to the indolecarboxamides failed. Combining the derived structure-activity relationships with homology modeling leads to new detailed insights in the molecular aspects of ligand-H4R binding in general and the binding mode of the described bispyrimidines in specific.


Subject(s)
Pyrimidines/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, Histamine/chemistry , Animals , Binding Sites , Humans , In Vitro Techniques , Ligands , Mice , Microsomes, Liver/metabolism , Models, Molecular , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Quantum Theory , Radioligand Assay , Receptors, G-Protein-Coupled/metabolism , Receptors, Histamine/metabolism , Receptors, Histamine H4 , Sequence Homology, Amino Acid , Solubility , Structure-Activity Relationship
15.
Eur J Med Chem ; 54: 660-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22749391

ABSTRACT

A series of 76 derivatives of the indolecarboxamide 1 were synthesized, which allows a detailed SAR investigation of this well known scaffold. The data enable the definition of a predictive QSAR model which identifies several compounds with an activity comparable to 1. A selection of these new H(4)R antagonists was synthesized and a comparison of predicted and measured values demonstrates the robustness of the model (47-55). In addition to the H(4)-receptor activity general CMC and DMPK properties were investigated. Some of the new analogs are not only excellently soluble, but display a significantly increased half-life in mouse liver microsomes as well. These properties qualify these compounds as a possible new standard for future in vivo studies (e.g 51, 52 and 55). Moreover, the current studies also provide valuable information on the potential receptor ligand interactions between the indolcarboxamides and the H(4)R protein.


Subject(s)
Indoles/chemistry , Indoles/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Histamine/metabolism , Animals , Drug Stability , Humans , Ligands , Mice , Microsomes, Liver/metabolism , Protein Binding , Quantitative Structure-Activity Relationship , Receptors, Histamine H4 , Solubility , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL