Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 315
Filter
Add more filters

Publication year range
1.
Cell ; 149(6): 1257-68, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22682248

ABSTRACT

Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a function for Thbs as ER-resident effectors of an adaptive ER stress response. Thbs4 cardiac-specific transgenic mice were protected from myocardial injury, whereas Thbs4(-/-) mice were sensitized to cardiac maladaptation. Thbs induction produced a unique profile of adaptive ER stress response factors and expansion of the ER and downstream vesicles. Thbs bind the ER lumenal domain of activating transcription factor 6α (Atf6α) to promote its nuclear shuttling. Thbs4(-/-) mice showed blunted activation of Atf6α and other ER stress-response factors with injury, and Thbs4-mediated protection was lost upon Atf6α deletion. Hence, Thbs can function inside the cell during disease remodeling to augment ER function and protect through a mechanism involving regulation of Atf6α.


Subject(s)
Endoplasmic Reticulum Stress , Signal Transduction , Thrombospondins/metabolism , Activating Transcription Factor 6/genetics , Animals , Cardiomyopathies/metabolism , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Promoter Regions, Genetic , Thrombospondins/genetics
2.
Cell ; 149(1): 146-58, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22464327

ABSTRACT

Lineage mapping has identified both proliferative and quiescent intestinal stem cells, but the molecular circuitry controlling stem cell quiescence is incompletely understood. By lineage mapping, we show Lrig1, a pan-ErbB inhibitor, marks predominately noncycling, long-lived stem cells that are located at the crypt base and that, upon injury, proliferate and divide to replenish damaged crypts. Transcriptome profiling of Lrig1(+) colonic stem cells differs markedly from the profiling of highly proliferative, Lgr5(+) colonic stem cells; genes upregulated in the Lrig1(+) population include those involved in cell cycle repression and response to oxidative damage. Loss of Apc in Lrig1(+) cells leads to intestinal adenomas, and genetic ablation of Lrig1 results in heightened ErbB1-3 expression and duodenal adenomas. These results shed light on the relationship between proliferative and quiescent intestinal stem cells and support a model in which intestinal stem cell quiescence is maintained by calibrated ErbB signaling with loss of a negative regulator predisposing to neoplasia.


Subject(s)
Colon/metabolism , Genes, Tumor Suppressor , Intestine, Small/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Adenoma/pathology , Adenomatous Polyposis Coli Protein/metabolism , Animals , Colon/cytology , ErbB Receptors/metabolism , Gene Expression Profiling , Humans , Intestinal Neoplasms/pathology , Intestine, Small/cytology , Mice , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Stem Cells/cytology , Stem Cells/metabolism
3.
Nature ; 597(7875): 196-205, 2021 09.
Article in English | MEDLINE | ID: mdl-34497388

ABSTRACT

The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.


Subject(s)
Cell Movement , Cell Tracking , Cells/cytology , Developmental Biology/methods , Embryo, Mammalian/cytology , Fetus/cytology , Information Dissemination , Organogenesis , Adult , Animals , Atlases as Topic , Cell Culture Techniques , Cell Survival , Data Visualization , Female , Humans , Imaging, Three-Dimensional , Male , Models, Animal , Organogenesis/genetics , Organoids/cytology , Stem Cells/cytology
4.
Am J Hum Genet ; 109(2): 282-298, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35026164

ABSTRACT

To understand the genetic contribution to primary pediatric cardiomyopathy, we performed exome sequencing in a large cohort of 528 children with cardiomyopathy. Using clinical interpretation guidelines and targeting genes implicated in cardiomyopathy, we identified a genetic cause in 32% of affected individuals. Cardiomyopathy sub-phenotypes differed by ancestry, age at diagnosis, and family history. Infants < 1 year were less likely to have a molecular diagnosis (p < 0.001). Using a discovery set of 1,703 candidate genes and informatic tools, we identified rare and damaging variants in 56% of affected individuals. We see an excess burden of damaging variants in affected individuals as compared to two independent control sets, 1000 Genomes Project (p < 0.001) and SPARK parental controls (p < 1 × 10-16). Cardiomyopathy variant burden remained enriched when stratified by ancestry, variant type, and sub-phenotype, emphasizing the importance of understanding the contribution of these factors to genetic architecture. Enrichment in this discovery candidate gene set suggests multigenic mechanisms underlie sub-phenotype-specific causes and presentations of cardiomyopathy. These results identify important information about the genetic architecture of pediatric cardiomyopathy and support recommendations for clinical genetic testing in children while illustrating differences in genetic architecture by age, ancestry, and sub-phenotype and providing rationale for larger studies to investigate multigenic contributions.


Subject(s)
Cardiomyopathy, Dilated/genetics , Exome , Gene Expression Regulation , Genotype , Inheritance Patterns , Age of Onset , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Case-Control Studies , Child , Cohort Studies , Female , Gene Expression Profiling , Genetic Predisposition to Disease , Genetic Testing , Genetic Variation , Humans , Male , Phenotype , Practice Guidelines as Topic , Exome Sequencing
5.
Nature ; 569(7755): E3, 2019 May.
Article in English | MEDLINE | ID: mdl-31019298

ABSTRACT

In this Letter, the first name of author Virendra K. Chaudhri was incorrectly spelled 'Viren'; author Meenakshi Venkatasubramanian should also be associated with 'Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221, USA'; authors Bruce J. Aronow, Nathan Salomonis, Harinder Singh and H. Leighton Grimes should also be associated with 'Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA'. The Letter has not been corrected online.

6.
Am J Hum Genet ; 108(9): 1765-1779, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34450030

ABSTRACT

An important goal of clinical genomics is to be able to estimate the risk of adverse disease outcomes. Between 5% and 10% of individuals with ulcerative colitis (UC) require colectomy within 5 years of diagnosis, but polygenic risk scores (PRSs) utilizing findings from genome-wide association studies (GWASs) are unable to provide meaningful prediction of this adverse status. By contrast, in Crohn disease, gene expression profiling of GWAS-significant genes does provide some stratification of risk of progression to complicated disease in the form of a transcriptional risk score (TRS). Here, we demonstrate that a measured TRS based on bulk rectal gene expression in the PROTECT inception cohort study has a positive predictive value approaching 50% for colectomy. Single-cell profiling demonstrates that the genes are active in multiple diverse cell types from both the epithelial and immune compartments. Expression quantitative trait locus (QTL) analysis identifies genes with differential effects at baseline and week 52 follow-up, but for the most part, differential expression associated with colectomy risk is independent of local genetic regulation. Nevertheless, a predicted polygenic transcriptional risk score (PPTRS) derived by summation of transcriptome-wide association study (TWAS) effects identifies UC-affected individuals at 5-fold elevated risk of colectomy with data from the UK Biobank population cohort studies, independently replicated in an NIDDK-IBDGC dataset. Prediction of gene expression from relatively small transcriptome datasets can thus be used in conjunction with TWASs for stratification of risk of disease complications.


Subject(s)
Colectomy/statistics & numerical data , Colitis, Ulcerative/surgery , Crohn Disease/surgery , Quantitative Trait Loci , Transcriptome , Biological Specimen Banks , Cohort Studies , Colitis, Ulcerative/complications , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/genetics , Colon/metabolism , Colon/pathology , Colon/surgery , Crohn Disease/complications , Crohn Disease/diagnosis , Crohn Disease/genetics , Datasets as Topic , Disease Progression , Gene Expression Profiling , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Prognosis , Risk Assessment , United Kingdom
7.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35998893

ABSTRACT

Cells and tissues respond to perturbations in multiple ways that can be sensitively reflected in the alterations of gene expression. Current approaches to finding and quantifying the effects of perturbations on cell-level responses over time disregard the temporal consistency of identifiable gene programs. To leverage the occurrence of these patterns for perturbation analyses, we developed CellDrift (https://github.com/KANG-BIOINFO/CellDrift), a generalized linear model-based functional data analysis method that is capable of identifying covarying temporal patterns of various cell types in response to perturbations. As compared to several other approaches, CellDrift demonstrated superior performance in the identification of temporally varied perturbation patterns and the ability to impute missing time points. We applied CellDrift to multiple longitudinal datasets, including COVID-19 disease progression and gastrointestinal tract development, and demonstrated its ability to identify specific gene programs associated with sequential biological processes, trajectories and outcomes.


Subject(s)
COVID-19 , COVID-19/genetics , Humans , Linear Models
8.
Mol Cell ; 64(5): 967-981, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27912097

ABSTRACT

Recent evidence suggests that lncRNAs play an integral regulatory role in numerous functions, including determination of cellular identity. We determined global expression (RNA-seq) and genome-wide profiles (ChIP-seq) of histone post-translational modifications and p53 binding in human embryonic stem cells (hESCs) undergoing differentiation to define a high-confidence set of 40 lncRNAs, which are p53 transcriptional targets. We focused on lncRNAs highly expressed in pluripotent hESCs and repressed by p53 during differentiation to identify lncPRESS1 as a p53-regulated transcript that maintains hESC pluripotency in concert with core pluripotency factors. RNA-seq of hESCs depleted of lncPRESS1 revealed that lncPRESS1 controls a gene network that promotes pluripotency. Further, we found that lncPRESS1 physically interacts with SIRT6 and prevents SIRT6 chromatin localization, which maintains high levels of histone H3K56 and H3K9 acetylation at promoters of pluripotency genes. In summary, we describe a p53-regulated, pluripotency-specific lncRNA that safeguards the hESC state by disrupting SIRT6 activity.


Subject(s)
Cell Differentiation/genetics , Cell Differentiation/physiology , Embryonic Stem Cells/physiology , Histones/metabolism , Pluripotent Stem Cells/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Suppressor Protein p53/metabolism , Chromatin/metabolism , Embryonic Stem Cells/cytology , Histone Deacetylases , Histones/genetics , Humans , Pluripotent Stem Cells/cytology , Protein Processing, Post-Translational/genetics , Sirtuins/genetics , Sirtuins/metabolism , Tumor Suppressor Protein p53/genetics
9.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34035170

ABSTRACT

Heterozygous NRXN1 deletions constitute the most prevalent currently known single-gene mutation associated with schizophrenia, and additionally predispose to multiple other neurodevelopmental disorders. Engineered heterozygous NRXN1 deletions impaired neurotransmitter release in human neurons, suggesting a synaptic pathophysiological mechanism. Utilizing this observation for drug discovery, however, requires confidence in its robustness and validity. Here, we describe a multicenter effort to test the generality of this pivotal observation, using independent analyses at two laboratories of patient-derived and newly engineered human neurons with heterozygous NRXN1 deletions. Using neurons transdifferentiated from induced pluripotent stem cells that were derived from schizophrenia patients carrying heterozygous NRXN1 deletions, we observed the same synaptic impairment as in engineered NRXN1-deficient neurons. This impairment manifested as a large decrease in spontaneous synaptic events, in evoked synaptic responses, and in synaptic paired-pulse depression. Nrxn1-deficient mouse neurons generated from embryonic stem cells by the same method as human neurons did not exhibit impaired neurotransmitter release, suggesting a human-specific phenotype. Human NRXN1 deletions produced a reproducible increase in the levels of CASK, an intracellular NRXN1-binding protein, and were associated with characteristic gene-expression changes. Thus, heterozygous NRXN1 deletions robustly impair synaptic function in human neurons regardless of genetic background, enabling future drug discovery efforts.


Subject(s)
Calcium-Binding Proteins/genetics , Mutation , Neural Cell Adhesion Molecules/genetics , Neurons/metabolism , Neurotransmitter Agents/metabolism , Schizophrenia/metabolism , Case-Control Studies , Cell Transdifferentiation , Cells, Cultured , Cohort Studies , Embryonic Stem Cells/cytology , Gene Expression , Guanylate Kinases/metabolism , Heterozygote , Humans , Induced Pluripotent Stem Cells/cytology
10.
J Biomed Inform ; 139: 104306, 2023 03.
Article in English | MEDLINE | ID: mdl-36738870

ABSTRACT

BACKGROUND: In electronic health records, patterns of missing laboratory test results could capture patients' course of disease as well as ​​reflect clinician's concerns or worries for possible conditions. These patterns are often understudied and overlooked. This study aims to identify informative patterns of missingness among laboratory data collected across 15 healthcare system sites in three countries for COVID-19 inpatients. METHODS: We collected and analyzed demographic, diagnosis, and laboratory data for 69,939 patients with positive COVID-19 PCR tests across three countries from 1 January 2020 through 30 September 2021. We analyzed missing laboratory measurements across sites, missingness stratification by demographic variables, temporal trends of missingness, correlations between labs based on missingness indicators over time, and clustering of groups of labs based on their missingness/ordering pattern. RESULTS: With these analyses, we identified mapping issues faced in seven out of 15 sites. We also identified nuances in data collection and variable definition for the various sites. Temporal trend analyses may support the use of laboratory test result missingness patterns in identifying severe COVID-19 patients. Lastly, using missingness patterns, we determined relationships between various labs that reflect clinical behaviors. CONCLUSION: In this work, we use computational approaches to relate missingness patterns to hospital treatment capacity and highlight the heterogeneity of looking at COVID-19 over time and at multiple sites, where there might be different phases, policies, etc. Changes in missingness could suggest a change in a patient's condition, and patterns of missingness among laboratory measurements could potentially identify clinical outcomes. This allows sites to consider missing data as informative to analyses and help researchers identify which sites are better poised to study particular questions.


Subject(s)
COVID-19 , Electronic Health Records , Humans , Data Collection , Records , Cluster Analysis
11.
Dev Med Child Neurol ; 65(1): 100-106, 2023 01.
Article in English | MEDLINE | ID: mdl-35665923

ABSTRACT

AIM: To predict ambulatory status and Gross Motor Function Classification System (GMFCS) levels in patients with cerebral palsy (CP) by applying natural language processing (NLP) to electronic health record (EHR) clinical notes. METHOD: Individuals aged 8 to 26 years with a diagnosis of CP in the EHR between January 2009 and November 2020 (~12 years of data) were included in a cross-sectional retrospective cohort of 2483 patients. The cohort was divided into train-test and validation groups. Positive predictive value, sensitivity, specificity, and area under the receiver operating curve (AUC) were calculated for prediction of ambulatory status and GMFCS levels. RESULTS: The median age was 15 years (interquartile range 10-20 years) for the total cohort, with 56% being male and 75% White. The validation group resulted in 70% sensitivity, 88% specificity, 81% positive predictive value, and 0.89 AUC for predicting ambulatory status. NLP applied to the EHR differentiated between GMFCS levels I-II and III (15% sensitivity, 96% specificity, 46% positive predictive value, and 0.71 AUC); and IV and V (81% sensitivity, 51% specificity, 70% positive predictive value, and 0.75 AUC). INTERPRETATION: NLP applied to the EHR demonstrated excellent differentiation between ambulatory and non-ambulatory status, and good differentiation between GMFCS levels I-II and III, and IV and V. Clinical use of NLP may help to individualize functional characterization and management. WHAT THIS PAPER ADDS: Natural language processing (NLP) applied to the electronic health record (EHR) can predict ambulatory status in children with cerebral palsy (CP). NLP provides good prediction of Gross Motor Function Classification System level in children with CP using the EHR. NLP methods described could be integrated in an EHR system to provide real-time information.


Subject(s)
Cerebral Palsy , Child , Humans , Male , Adolescent , Young Adult , Adult , Female , Cerebral Palsy/complications , Cerebral Palsy/diagnosis , Natural Language Processing , Retrospective Studies , Cross-Sectional Studies , Electronic Health Records
12.
Proc Natl Acad Sci U S A ; 117(9): 4921-4930, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32071223

ABSTRACT

Antibiotic-resistant superbug bacteria represent a global health problem with no imminent solutions. Here we demonstrate that the combination (termed AB569) of acidified nitrite (A-NO2-) and Na2-EDTA (disodium ethylenediaminetetraacetic acid) inhibited all Gram-negative and Gram-positive bacteria tested. AB569 was also efficacious at killing the model organism Pseudomonas aeruginosa in biofilms and in a murine chronic lung infection model. AB569 was not toxic to human cell lines at bactericidal concentrations using a basic viability assay. RNA-Seq analyses upon treatment of P. aeruginosa with AB569 revealed a catastrophic loss of the ability to support core pathways encompassing DNA, RNA, protein, ATP biosynthesis, and iron metabolism. Electrochemical analyses elucidated that AB569 produced more stable SNO proteins, potentially explaining one mechanism of bacterial killing. Our data implicate that AB569 is a safe and effective means to kill pathogenic bacteria, suggesting that simple strategies could be applied with highly advantageous therapeutic/toxicity index ratios to pathogens associated with a myriad of periepithelial infections and related disease scenarios.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Edetic Acid/pharmacology , Sodium Nitrite/pharmacology , Animals , Anti-Bacterial Agents/therapeutic use , Biofilms/drug effects , Disease Models, Animal , Down-Regulation , Drug Resistance, Bacterial/drug effects , Edetic Acid/chemistry , Lung Diseases/drug therapy , Lung Diseases/microbiology , Metabolic Networks and Pathways , Mice , Nitrites/chemistry , Nitrites/pharmacology , Pseudomonas aeruginosa/drug effects
13.
Genomics ; 114(2): 110270, 2022 03.
Article in English | MEDLINE | ID: mdl-35074468

ABSTRACT

Viruses can subvert a number of cellular processes including splicing in order to block innate antiviral responses, and many viruses interact with cellular splicing machinery. SARS-CoV-2 infection was shown to suppress global mRNA splicing, and at least 10 SARS-CoV-2 proteins bind specifically to one or more human RNAs. Here, we investigate 17 published experimental and clinical datasets related to SARS-CoV-2 infection, datasets from the betacoronaviruses SARS-CoV and MERS, as well as Streptococcus pneumonia, HCV, Zika virus, Dengue virus, influenza H3N2, and RSV. We show that genes showing differential alternative splicing in SARS-CoV-2 have a similar functional profile to those of SARS-CoV and MERS and affect a diverse set of genes and biological functions, including many closely related to virus biology. Additionally, the differentially spliced transcripts of cells infected by coronaviruses were more likely to undergo intron-retention, contain a pseudouridine modification, and have a smaller number of exons as compared with differentially spliced transcripts in the control groups. Viral load in clinical COVID-19 samples was correlated with isoform distribution of differentially spliced genes. A significantly higher number of ribosomal genes are affected by differential alternative splicing and gene expression in betacoronavirus samples, and the betacoronavirus differentially spliced genes are depleted for binding sites of RNA-binding proteins. Our results demonstrate characteristic patterns of differential splicing in cells infected by SARS-CoV-2, SARS-CoV, and MERS. The alternative splicing changes observed in betacoronaviruses infection potentially modify a broad range of cellular functions, via changes in the functions of the products of a diverse set of genes involved in different biological processes.


Subject(s)
COVID-19 , Influenza, Human , Zika Virus Infection , Zika Virus , Alternative Splicing , COVID-19/genetics , Humans , Influenza A Virus, H3N2 Subtype , SARS-CoV-2/genetics , Zika Virus/genetics
14.
Article in English | MEDLINE | ID: mdl-36413377

ABSTRACT

An improved understanding of the human lung necessitates advanced systems models informed by an ever-increasing repertoire of molecular omics, cellular, imaging, and pathological datasets. To centralize and standardize information across broad lung research efforts we expanded the LungMAP.net website into a new gateway portal. This portal connects a broad spectrum of research networks, bulk and single-cell multi-omics data and a diverse collection of image data that span mammalian lung development, and disease. The data are standardized across species and technologies using harmonized data and metadata models that leverage recent advances including those from the Human Cell Atlas, diverse ontologies, and the LungMAP CellCards initiative. To cultivate future discoveries, we have aggregated a diverse collection of single-cell atlases for multiple species (human, rhesus, mouse), to enable consistent queries across technologies, cohorts, age, disease, and drug treatment. These atlases are provided as independent and integrated queryable datasets, with an emphasis on dynamic visualization, figure generation, re-analysis, cell-type curation, and automated reference-based classification of user-provided single-cell genomics datasets (Azimuth). As this resource grows, we intend to increase the breadth of available interactive interfaces, supported data types, data portals and datasets from LungMAP and external research efforts.

15.
Nature ; 537(7622): 698-702, 2016 09 29.
Article in English | MEDLINE | ID: mdl-27580035

ABSTRACT

Delineating hierarchical cellular states, including rare intermediates and the networks of regulatory genes that orchestrate cell-type specification, are continuing challenges for developmental biology. Single-cell RNA sequencing is greatly accelerating such research, given its power to provide comprehensive descriptions of genomic states and their presumptive regulators. Haematopoietic multipotential progenitor cells, as well as bipotential intermediates, manifest mixed-lineage patterns of gene expression at a single-cell level. Such mixed-lineage states may reflect the molecular priming of different developmental potentials by co-expressed alternative-lineage determinants, namely transcription factors. Although a bistable gene regulatory network has been proposed to regulate the specification of either neutrophils or macrophages, the nature of the transition states manifested in vivo, and the underlying dynamics of the cell-fate determinants, have remained elusive. Here we use single-cell RNA sequencing coupled with a new analytic tool, iterative clustering and guide-gene selection, and clonogenic assays to delineate hierarchical genomic and regulatory states that culminate in neutrophil or macrophage specification in mice. We show that this analysis captured prevalent mixed-lineage intermediates that manifested concurrent expression of haematopoietic stem cell/progenitor and myeloid progenitor cell genes. It also revealed rare metastable intermediates that had collapsed the haematopoietic stem cell/progenitor gene expression programme, instead expressing low levels of the myeloid determinants, Irf8 and Gfi1 (refs 9, 10, 11, 12, 13). Genetic perturbations and chromatin immunoprecipitation followed by sequencing revealed Irf8 and Gfi1 as key components of counteracting myeloid-gene-regulatory networks. Combined loss of these two determinants 'trapped' the metastable intermediate. We propose that mixed-lineage states are obligatory during cell-fate specification, manifest differing frequencies because of their dynamic instability and are dictated by counteracting gene-regulatory networks.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/genetics , Gene Expression Profiling/methods , Gene Regulatory Networks , Macrophages/cytology , Neutrophils/cytology , Single-Cell Analysis/methods , Animals , Chromatin Immunoprecipitation , DNA-Binding Proteins/metabolism , Female , Interferon Regulatory Factors/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Biological , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/metabolism , Neutrophils/metabolism , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Factors/metabolism
16.
BMC Bioinformatics ; 22(1): 82, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33622235

ABSTRACT

BACKGROUND: Immunofluorescent confocal microscopy uses labeled antibodies as probes against specific macromolecules to discriminate between multiple cell types. For images of the developmental mouse lung, these cells are themselves organized into densely packed higher-level anatomical structures. These types of images can be challenging to segment automatically for several reasons, including the relevance of biomedical context, dependence on the specific set of probes used, prohibitive cost of generating labeled training data, as well as the complexity and dense packing of anatomical structures in the image. The use of an application ontology helps surmount these challenges by combining image data with its metadata to provide a meaningful biological context, modeled after how a human expert would make use of contextual information to identify histological structures, that constrains and simplifies the process of segmentation and object identification. RESULTS: We propose an innovative approach for the semi-supervised analysis of complex and densely packed anatomical structures from immunofluorescent images that utilizes an application ontology to provide a simplified context for image segmentation and object identification. We describe how the logical organization of biological facts in the form of an ontology can provide useful constraints that facilitate automatic processing of complex images. We demonstrate the results of ontology-guided segmentation and object identification in mouse developmental lung images from the Bioinformatics REsource ATlas for the Healthy lung database of the Molecular Atlas of Lung Development (LungMAP1) program CONCLUSION: We describe a novel ontology-guided approach to segmentation and classification of complex immunofluorescence images of the developing mouse lung. The ontology is used to automatically generate constraints for each image based on its biomedical context, which facilitates image segmentation and classification.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Lung , Microscopy, Confocal , Animals , Fluorescent Antibody Technique , Lung/diagnostic imaging , Mice
17.
Genome Res ; 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29317474

ABSTRACT

Generating detailed and accurate organogenesis models using single-cell RNA-seq data remains a major challenge. Current methods have relied primarily on the assumption that descendant cells are similar to their parents in terms of gene expression levels. These assumptions do not always hold for in vivo studies, which often include infrequently sampled, unsynchronized, and diverse cell populations. Thus, additional information may be needed to determine the correct ordering and branching of progenitor cells and the set of transcription factors (TFs) that are active during advancing stages of organogenesis. To enable such modeling, we have developed a method that learns a probabilistic model that integrates expression similarity with regulatory information to reconstruct the dynamic developmental cell trajectories. When applied to mouse lung developmental data, the method accurately distinguished different cell types and lineages. Existing and new experimental data validated the ability of the method to identify key regulators of cell fate.

18.
Dev Med Child Neurol ; 63(11): 1337-1343, 2021 11.
Article in English | MEDLINE | ID: mdl-33768551

ABSTRACT

AIM: To characterize the patterns of care of children with cerebral palsy (CP) in a tertiary healthcare system. METHOD: Electronic health record data from 2009 to 2019 were extracted for children with CP. Machine learning hierarchical clustering was used to identify clusters of care. The ratio of in-person to care coordination visits was calculated for each specialty. RESULTS: The sample included 6369 children with CP (55.7% males, 44.3% females, 76.2% white, 94.7% non-Hispanic; with a mean age of 8y 2mo [SD 5y 10mo; range 0-21y; median 7y 1mo]) at the time of diagnosis. A total of 3.7 million in-person visits and care coordination notes were identified across 34 specialties. The duration of care averaged 5 years 5 months with five specialty interactions and 21.8 in-person visits per year per child. Seven clusters of care were identified, including: musculoskeletal and function; neurological; high-frequency/urgent care services; procedures; comorbid diagnoses; development and behavioral; and primary care. Network analysis showed shared membership among several clusters. INTERPRETATION: Coordination of care is a central element for children with CP. Medical informatics, machine learning, and big data approaches provide unique insights into care delivery to inform approaches to improve outcomes for children with CP. What this paper adds Seven primary clusters of care were identified: musculoskeletal and function; neurological; high-frequency/urgent care services; procedures; comorbid diagnoses; development and behavioral; and primary care. The in-person to care coordination visit ratio was 1:5 overall for healthcare encounters. Most interactions with care teams occur outside of in-person visits. The ratio of in-person to care coordination activities differ by specialty.


Subject(s)
Cerebral Palsy/therapy , Patient Care Team , Adolescent , Child , Child, Preschool , Electronic Health Records , Female , Humans , Infant , Male , Young Adult
19.
J Med Internet Res ; 23(3): e22219, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33600347

ABSTRACT

Coincident with the tsunami of COVID-19-related publications, there has been a surge of studies using real-world data, including those obtained from the electronic health record (EHR). Unfortunately, several of these high-profile publications were retracted because of concerns regarding the soundness and quality of the studies and the EHR data they purported to analyze. These retractions highlight that although a small community of EHR informatics experts can readily identify strengths and flaws in EHR-derived studies, many medical editorial teams and otherwise sophisticated medical readers lack the framework to fully critically appraise these studies. In addition, conventional statistical analyses cannot overcome the need for an understanding of the opportunities and limitations of EHR-derived studies. We distill here from the broader informatics literature six key considerations that are crucial for appraising studies utilizing EHR data: data completeness, data collection and handling (eg, transformation), data type (ie, codified, textual), robustness of methods against EHR variability (within and across institutions, countries, and time), transparency of data and analytic code, and the multidisciplinary approach. These considerations will inform researchers, clinicians, and other stakeholders as to the recommended best practices in reviewing manuscripts, grants, and other outputs from EHR-data derived studies, and thereby promote and foster rigor, quality, and reliability of this rapidly growing field.


Subject(s)
COVID-19/epidemiology , Data Collection/methods , Electronic Health Records , Data Collection/standards , Humans , Peer Review, Research/standards , Publishing/standards , Reproducibility of Results , SARS-CoV-2/isolation & purification
20.
Pediatr Phys Ther ; 33(2): 65-72, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33770793

ABSTRACT

PURPOSE: To characterize by evidence grades and examine variation in type of physical therapy intervention delivered in routine clinical care in individuals with cerebral palsy (CP). METHODS: Retrospective data collection from the electronic record over 1 year at a tertiary care pediatric outpatient therapy division. RESULTS: Four hundred sixty-five individuals with CP received 28 344 interventions during 4335 treatment visits. Sixty-six percent of interventions were evidence-based interventions (EBIs). Significant variation was demonstrated across Gross Motor Function Classification System levels, with children classified as level V receiving the least and level III the most. The most frequent EBIs delivered were caregiver education, motor control, functional strengthening, ankle-foot orthoses, treadmill training, and fit of adaptive equipment. CONCLUSIONS: Further work is needed to determine whether amount of EBI is related to better outcomes. Combining this information with other aspects of dose (intensity, time, and frequency) may elucidate the contribution of each with outcomes.


Subject(s)
Cerebral Palsy , Child , Humans , Orthotic Devices , Physical Therapy Modalities , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL