Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 173(5): 1204-1216.e26, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29628141

ABSTRACT

Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease.


Subject(s)
Intramolecular Transferases/metabolism , Protein Biosynthesis , Pseudouridine/metabolism , RNA, Transfer/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Cell Differentiation , Eukaryotic Initiation Factors/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Intramolecular Transferases/antagonists & inhibitors , Intramolecular Transferases/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Myelodysplastic Syndromes/pathology , Nucleic Acid Conformation , Phosphoproteins/metabolism , Poly(A)-Binding Protein I/antagonists & inhibitors , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Stem Cell Niche
2.
Genes Dev ; 38(5-6): 273-288, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38589034

ABSTRACT

Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Animals , Mice , Glioblastoma/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Haploinsufficiency , Glioma/genetics , PTEN Phosphohydrolase/genetics , Phosphoric Diester Hydrolases/genetics , Cell Line, Tumor , Brain Neoplasms/genetics
3.
Genes Dev ; 37(3-4): 86-102, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36732025

ABSTRACT

Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors driven by populations of cancer stem cells (CSCs). However, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population. WDR5 is a component of the WRAD complex, which promotes SET1 family-mediated Lys4 methylation of histone H3 (H3K4me), associated with positive regulation of transcription. In GBM CSCs, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, including the POU5F1(OCT4)::SOX2 motif. Use of a SOX2/OCT4 reporter demonstrated that WDR5 inhibitor treatment diminished cells with high reporter activity. Furthermore, WDR5 inhibitor treatment and WDR5 knockdown altered the stem cell state, disrupting CSC in vitro growth and self-renewal, as well as in vivo tumor growth. These findings highlight the role of WDR5 and the WRAD complex in maintaining the CSC state and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Histone-Lysine N-Methyltransferase/metabolism , Transcription Factors , Neoplastic Stem Cells/pathology , Intracellular Signaling Peptides and Proteins/genetics
4.
Genes Dev ; 36(7-8): 495-510, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35483740

ABSTRACT

The identity of human protein-coding genes is well known, yet our in-depth knowledge of their molecular functions and domain architecture remains limited by shortcomings in homology-based predictions and experimental approaches focused on whole-gene depletion. To bridge this knowledge gap, we developed a method that leverages CRISPR-Cas9-induced mutations across protein-coding genes for the a priori identification of functional regions at the sequence level. As a test case, we applied this method to 48 human mitotic genes, revealing hundreds of regions required for cell proliferation, including domains that were experimentally characterized, ones that were predicted based on homology, and novel ones. We validated screen outcomes for 15 regions, including amino acids 387-402 of Mad1, which were previously uncharacterized but contribute to Mad1 kinetochore localization and chromosome segregation fidelity. Altogether, we demonstrate that CRISPR-Cas9-based tiling mutagenesis identifies key functional domains in protein-coding genes de novo, which elucidates separation of function mutants and allows functional annotation across the human proteome.


Subject(s)
CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Humans , Mutagenesis
5.
Genes Dev ; 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36008139

ABSTRACT

YAP1 is a transcriptional coactivator regulated by the Hippo signaling pathway, including NF2. Meningiomas are the most common primary brain tumors; a large percentage exhibit heterozygous loss of chromosome 22 (harboring the NF2 gene) and functional inactivation of the remaining NF2 copy, implicating oncogenic YAP activity in these tumors. Recently, fusions between YAP1 and MAML2 have been identified in a subset of pediatric NF2 wild-type meningiomas. Here, we show that human YAP1-MAML2-positive meningiomas resemble NF2 mutant meningiomas by global and YAP-related gene expression signatures. We then show that expression of YAP1-MAML2 in mice induces tumors that resemble human YAP1 fusion-positive and NF2 mutant meningiomas by gene expression. We demonstrate that YAP1-MAML2 primarily functions by exerting TEAD-dependent YAP activity that is resistant to Hippo signaling. Treatment with YAP-TEAD inhibitors is sufficient to inhibit the viability of YAP1-MAML2-driven mouse tumors ex vivo. Finally, we show that expression of constitutively active YAP1 (S127/397A-YAP1) is sufficient to induce similar tumors, suggesting that the YAP component of the gene fusion is the critical driver of these tumors. In summary, our results implicate YAP1-MAML2 as a causal oncogenic driver and highlight TEAD-dependent YAP activity as an oncogenic driver in YAP1-MAML2 fusion meningioma as well as NF2 mutant meningioma in general.

6.
Genes Dev ; 34(15-16): 1051-1064, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32675324

ABSTRACT

YAP1 is a transcriptional coactivator and the principal effector of the Hippo signaling pathway, which is causally implicated in human cancer. Several YAP1 gene fusions have been identified in various human cancers and identifying the essential components of this family of gene fusions has significant therapeutic value. Here, we show that the YAP1 gene fusions YAP1-MAMLD1, YAP1-FAM118B, YAP1-TFE3, and YAP1-SS18 are oncogenic in mice. Using reporter assays, RNA-seq, ChIP-seq, and loss-of-function mutations, we can show that all of these YAP1 fusion proteins exert TEAD-dependent YAP activity, while some also exert activity of the C'-terminal fusion partner. The YAP activity of the different YAP1 fusions is resistant to negative Hippo pathway regulation due to constitutive nuclear localization and resistance to degradation of the YAP1 fusion proteins. Genetic disruption of the TEAD-binding domain of these oncogenic YAP1 fusions is sufficient to inhibit tumor formation in vivo, while pharmacological inhibition of the YAP1-TEAD interaction inhibits the growth of YAP1 fusion-expressing cell lines in vitro. These results highlight TEAD-dependent YAP activity found in these gene fusions as critical for oncogenesis and implicate these YAP functions as potential therapeutic targets in YAP1 fusion-positive tumors.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/genetics , Oncogene Proteins, Fusion/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cells, Cultured , Gene Expression Regulation , Humans , Mice , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Nuclear Localization Signals , Nucleotide Motifs , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/chemistry , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription, Genetic
7.
Genes Dev ; 32(7-8): 512-523, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29632085

ABSTRACT

Glioblastoma is the most frequently occurring and invariably fatal primary brain tumor in adults. The vast majority of glioblastomas is characterized by chromosomal copy number alterations, including gain of whole chromosome 7 and loss of whole chromosome 10. Gain of whole chromosome 7 is an early event in gliomagenesis that occurs in proneural-like precursor cells, which give rise to all isocitrate dehydrogenase (IDH) wild-type glioblastoma transcriptional subtypes. Platelet-derived growth factor A (PDGFA) is one gene on chromosome 7 known to drive gliomagenesis, but, given its location near the end of 7p, there are likely several other genes located along chromosome 7 that select for its increased whole-chromosome copy number within glioblastoma cells. To identify other potential genes that could select for gain of whole chromosome 7, we developed an unbiased bioinformatics approach that identified homeobox A5 (HOXA5) as a gene whose expression correlated with gain of chromosome 7 and a more aggressive phenotype of the resulting glioma. High expression of HOXA5 in glioblastoma was associated with a proneural gene expression pattern and decreased overall survival in both human proneural and PDGF-driven mouse glioblastoma. Furthermore, HOXA5 overexpression promoted cellular proliferation and potentiated radioresistance. We also found enrichment of HOXA5 expression in recurrent human and mouse glioblastoma at first recurrence after radiotherapy. Overall, this study implicates HOXA5 as a chromosome 7-associated gene-level locus that promotes selection for gain of whole chromosome 7 and an aggressive phenotype in glioblastoma.


Subject(s)
Brain Neoplasms/genetics , Chromosomes, Human, Pair 7 , Glioblastoma/genetics , Homeodomain Proteins/metabolism , Phosphoproteins/metabolism , Animals , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Cell Proliferation , Chromosome Duplication , Glioblastoma/mortality , Glioblastoma/pathology , Glioblastoma/radiotherapy , Homeodomain Proteins/genetics , Humans , Isocitrate Dehydrogenase/genetics , Mice , Neoplasm Recurrence, Local , Phosphoproteins/genetics , Radiation Tolerance , Transcription Factors
8.
Genes Dev ; 31(8): 774-786, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28465358

ABSTRACT

Gliomas harboring mutations in isocitrate dehydrogenase 1/2 (IDH1/2) have the CpG island methylator phenotype (CIMP) and significantly longer patient survival time than wild-type IDH1/2 (wtIDH1/2) tumors. Although there are many factors underlying the differences in survival between these two tumor types, immune-related differences in cell content are potentially important contributors. In order to investigate the role of IDH mutations in immune response, we created a syngeneic pair mouse model for mutant IDH1 (muIDH1) and wtIDH1 gliomas and demonstrated that muIDH1 mice showed many molecular and clinical similarities to muIDH1 human gliomas, including a 100-fold higher concentration of 2-hydroxygluratate (2-HG), longer survival time, and higher CpG methylation compared with wtIDH1. Also, we showed that IDH1 mutations caused down-regulation of leukocyte chemotaxis, resulting in repression of the tumor-associated immune system. Given that significant infiltration of immune cells such as macrophages, microglia, monocytes, and neutrophils is linked to poor prognosis in many cancer types, these reduced immune infiltrates in muIDH1 glioma tumors may contribute in part to the differences in aggressiveness of the two glioma types.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/immunology , Glioma/genetics , Glioma/immunology , Immune System/physiopathology , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Animals , Brain Neoplasms/enzymology , Chemotaxis/genetics , DNA Methylation , Disease Models, Animal , Glioma/enzymology , Humans , Leukocyte Common Antigens/metabolism , Leukocytes/pathology , Mice , Mutation , Neutrophil Infiltration/genetics , Neutrophils/pathology
9.
Mol Syst Biol ; 17(6): e9522, 2021 06.
Article in English | MEDLINE | ID: mdl-34101353

ABSTRACT

Single-cell RNA sequencing has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA-seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From these data, we constructed a cell cycle classifier that identifies traditional cell cycle phases and a putative quiescent-like state in neuroepithelial-derived cell types during mammalian neurogenesis and in gliomas. The Neural G0 markers are enriched with quiescent NSC genes and other neurodevelopmental markers found in non-dividing neural progenitors. Putative glioblastoma stem-like cells were significantly enriched in the Neural G0 cell population. Neural G0 cell populations and gene expression are significantly associated with less aggressive tumors and extended patient survival for gliomas. Genetic screens to identify modulators of Neural G0 revealed that knockout of genes associated with the Hippo/Yap and p53 pathways diminished Neural G0 in vitro, resulting in faster G1 transit, down-regulation of quiescence-associated markers, and loss of Neural G0 gene expression. Thus, Neural G0 represents a dynamic quiescent-like state found in neuroepithelial-derived cells and gliomas.


Subject(s)
Glioblastoma , Neural Stem Cells , Animals , Cell Cycle/genetics , Cell Division , Humans , Neurogenesis/genetics
10.
Glia ; 64(8): 1416-36, 2016 08.
Article in English | MEDLINE | ID: mdl-27312099

ABSTRACT

Glioblastoma (GBM) is the most aggressive brain tumor in adults. It is strongly infiltrated by microglia and peripheral monocytes that support tumor growth. In the present study we used RNA sequencing to compare the expression profile of CD11b(+) human glioblastoma-associated microglia/monocytes (hGAMs) to CD11b(+) microglia isolated from non-tumor samples. Hierarchical clustering and principal component analysis showed a clear separation of the two sample groups and we identified 334 significantly regulated genes in hGAMs. In comparison to human control microglia hGAMs upregulated genes associated with mitotic cell cycle, cell migration, cell adhesion, and extracellular matrix organization. We validated the expression of several genes associated with extracellular matrix organization in samples of human control microglia, hGAMs, and the hGAMs-depleted fraction via qPCR. The comparison to murine GAMs (mGAMs) showed that both cell populations share a significant fraction of upregulated transcripts compared with their respective controls. These genes were mostly related to mitotic cell cycle. However, in contrast to murine cells, human GAMs did not upregulate genes associated to immune activation. Comparison of human and murine GAMs expression data to several data sets of in vitro-activated human macrophages and murine microglia showed that, in contrast to mGAMs, hGAMs share a smaller overlap to these data sets in general and in particular to cells activated by proinflammatory stimulation with LPS + INFγ or TNFα. Our findings provide new insights into the biology of human glioblastoma-associated microglia/monocytes and give detailed information about the validity of murine experimental models. GLIA 2016 GLIA 2016;64:1416-1436.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Microglia/metabolism , Monocytes/metabolism , Animals , CD11b Antigen/metabolism , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mice , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Transcriptome
11.
South Med J ; 108(9): 539-46, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26332479

ABSTRACT

OBJECTIVES: Little is known about healthcare providers' knowledge of dietary evidence or about what dietary advice providers offer to patients. The objective of our study was to determine which diets providers recommended to patients and providers' beliefs about the evidence behind those recommendations. METHODS: This was a 22-question cross-sectional survey conducted between February 2013 and September 2013, in 45 ambulatory practices within two health systems. Attending physicians, housestaff, and advanced practitioners in internal medicine, medicine-pediatrics, family medicine, cardiology, and endocrinology practices were audited. Providers' attitudes, perceptions, and beliefs about diet modification were collected. Knowledge scores were constructed based on the number of correct responses to specific questions. RESULTS: Of 343 provider responses, largely from primary care specialties (n = 3027, 90%), the top dietary recommendations were low-salt diet (71%) for hypertension, low-carbohydrate diet (64%) for uncontrolled diabetes mellitus, low saturated fat diet (73%) for dyslipidemia, low-calorie diet (72%) for obesity, and low saturated fat diet (63%) for coronary heart disease. Providers believed that 51% of diet recommendations were supported by randomized trial evidence when they were not. Respondents' overall knowledge of randomized trial evidence for dietary interventions was low (mean [standard deviation] knowledge score 44.3% [22.4%], range 0.0%-100.0%). The survey study from two health systems, using a nonvalidated survey tool limits external and internal validity. CONCLUSIONS: Providers report recommending different diets depending on specific risk factors and generally believe that their recommendations are evidence based. Substantial gaps between their knowledge and the randomized trial evidence regarding diet for disease prevention remain.


Subject(s)
Counseling , Diet Therapy , Health Care Surveys , Health Knowledge, Attitudes, Practice , Physicians, Primary Care , Adult , Coronary Artery Disease/diet therapy , Diabetes Mellitus/diet therapy , Evidence-Based Medicine , Female , Humans , Male
12.
NAR Cancer ; 6(2): zcae021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774470

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. To identify genes differentially required for the viability of GBM stem-like cells (GSCs), we performed functional genomic lethality screens comparing GSCs and control human neural stem cells. Among top-scoring hits in a subset of GBM cells was the F-box-containing gene FBXO42, which was also predicted to be essential in ∼15% of cell lines derived from a broad range of cancers. Mechanistic studies revealed that, in sensitive cells, FBXO42 activity prevents chromosome alignment defects, mitotic cell cycle arrest and cell death. The cell cycle arrest, but not the cell death, triggered by FBXO42 inactivation could be suppressed by brief exposure to a chemical inhibitor of Mps1, a key spindle assembly checkpoint (SAC) kinase. FBXO42's cancer-essential function requires its F-box and Kelch domains, which are necessary for FBXO42's substrate recognition and targeting by SCF (SKP1-CUL1-F-box protein) ubiquitin ligase complex. However, none of FBXO42's previously proposed targets, including ING4, p53 and RBPJ, were responsible for the observed phenotypes. Instead, our results suggest that FBOX42 alters the activity of one or more proteins that perturb chromosome-microtubule dynamics in cancer cells, which in turn leads to induction of the SAC and cell death.

13.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854109

ABSTRACT

Meningiomas are the most common primary brain tumors in adults. Although generally benign, a subset of meningiomas is of higher grade, shows aggressive growth behavior and recurs even after multiple surgeries. Around half of all meningiomas harbor inactivating mutations in NF2. While benign low-grade NF2 mutant meningiomas exhibit few genetic events in addition to NF2 inactivation, aggressive high-grade NF2 mutant meningiomas frequently harbor a highly aberrant genome. We and others have previously shown that NF2 inactivation leads to YAP1 activation and that YAP1 acts as the pivotal oncogenic driver in benign NF2 mutant meningiomas. Using bulk and single-cell RNA-Seq data from a large cohort of human meningiomas, we show that aggressive NF2 mutant meningiomas harbor decreased levels YAP1 activity compared to their benign counterparts. Decreased expression levels of YAP target genes are significantly associated with an increased risk of recurrence. We then identify the increased expression of the YAP1 competitor VGLL4 as well as the YAP1 upstream regulators FAT3/4 as a potential mechanism for the downregulation of YAP activity in aggressive NF2 mutant meningiomas. High expression of these genes is significantly associated with an increased risk of recurrence. In vitro, overexpression of VGLL4 resulted in the downregulation of YAP activity in benign NF2 mutant meningioma cells, confirming the direct link between VGLL4 expression and decreased levels of YAP activity observed in aggressive NF2 mutant meningiomas. Our results shed new insight on the biology of benign and aggressive NF2 mutant meningiomas and may have important implications for the efficacy of therapies targeting oncogenic YAP1 activity in NF2 mutant meningiomas.

14.
Cell Genom ; 4(6): 100566, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38788713

ABSTRACT

Meningiomas, although mostly benign, can be recurrent and fatal. World Health Organization (WHO) grading of the tumor does not always identify high-risk meningioma, and better characterizations of their aggressive biology are needed. To approach this problem, we combined 13 bulk RNA sequencing (RNA-seq) datasets to create a dimension-reduced reference landscape of 1,298 meningiomas. The clinical and genomic metadata effectively correlated with landscape regions, which led to the identification of meningioma subtypes with specific biological signatures. The time to recurrence also correlated with the map location. Further, we developed an algorithm that maps new patients onto this landscape, where the nearest neighbors predict outcome. This study highlights the utility of combining bulk transcriptomic datasets to visualize the complexity of tumor populations. Further, we provide an interactive tool for understanding the disease and predicting patient outcomes. This resource is accessible via the online tool Oncoscape, where the scientific community can explore the meningioma landscape.


Subject(s)
Meningeal Neoplasms , Meningioma , Transcriptome , Meningioma/genetics , Meningioma/pathology , Humans , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Male , Female , Middle Aged , Gene Expression Regulation, Neoplastic , Algorithms , Gene Expression Profiling/methods
15.
Curr Heart Fail Rep ; 10(3): 198-203, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23836112

ABSTRACT

Patients presenting with acute heart failure (AHF) represent a heterogeneous population with respect to demographics, clinical profiles, and precipitating factors. Despite this, most clinical trials have treated the study population as a homogeneous group in an attempt to achieve adequate statistical power for endpoint analysis. This approach has proven to be of little value in the development of new agents for treatment of AHF. By contrast, the phase III clinical trial of relaxin focused on a subset of AHF patients who were normotensive or hypertensive and who had moderate renal impairment. The study patients, who were primarily from Eastern Europe, represented a population that would be expected to have less genetic variability than the study populations in larger multinational AHF trials. A focused study design targeting specific patient profiles should be considered for future clinical AHF trials that investigate new therapies or compare the effectiveness of existing therapies.


Subject(s)
Heart Failure/drug therapy , Relaxin/therapeutic use , Vasodilator Agents/therapeutic use , Acute Disease , Biomarkers/blood , Drug Monitoring/methods , Humans , Randomized Controlled Trials as Topic/methods , Treatment Outcome
16.
bioRxiv ; 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36711910

ABSTRACT

In order to better understand the relationship between normal and neoplastic brain, we combined five publicly available large-scale datasets, correcting for batch effects and applying Uniform Manifold Approximation and Projection (UMAP) to RNA-seq data. We assembled a reference Brain-UMAP including 702 adult gliomas, 802 pediatric tumors and 1409 healthy normal brain samples, which can be utilized to investigate the wealth of information obtained from combining several publicly available datasets to study a single organ site. Normal brain regions and tumor types create distinct clusters and because the landscape is generated by RNA seq, comparative gene expression profiles and gene ontology patterns are readily evident. To our knowledge, this is the first meta-analysis that allows for comparison of gene expression and pathways of interest across adult gliomas, pediatric brain tumors, and normal brain regions. We provide access to this resource via the open source, interactive online tool Oncoscape, where the scientific community can readily visualize clinical metadata, gene expression patterns, gene fusions, mutations, and copy number patterns for individual genes and pathway over this reference landscape.

17.
Res Sq ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36711972

ABSTRACT

In order to better understand the relationship between normal and neoplastic brain, we combined five publicly available large-scale datasets, correcting for batch effects and applying Uniform Manifold Approximation and Projection (UMAP) to RNA-seq data. We assembled a reference Brain-UMAP including 702 adult gliomas, 802 pediatric tumors and 1409 healthy normal brain samples, which can be utilized to investigate the wealth of information obtained from combining several publicly available datasets to study a single organ site. Normal brain regions and tumor types create distinct clusters and because the landscape is generated by RNA seq, comparative gene expression profiles and gene ontology patterns are readily evident. To our knowledge, this is the first meta-analysis that allows for comparison of gene expression and pathways of interest across adult gliomas, pediatric brain tumors, and normal brain regions. We provide access to this resource via the open source, interactive online tool Oncoscape, where the scientific community can readily visualize clinical metadata, gene expression patterns, gene fusions, mutations, and copy number patterns for individual genes and pathway over this reference landscape.

18.
Sci Rep ; 13(1): 4228, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918656

ABSTRACT

In order to better understand the relationship between normal and neoplastic brain, we combined five publicly available large-scale datasets, correcting for batch effects and applying Uniform Manifold Approximation and Projection (UMAP) to RNA-Seq data. We assembled a reference Brain-UMAP including 702 adult gliomas, 802 pediatric tumors and 1409 healthy normal brain samples, which can be utilized to investigate the wealth of information obtained from combining several publicly available datasets to study a single organ site. Normal brain regions and tumor types create distinct clusters and because the landscape is generated by RNA-Seq, comparative gene expression profiles and gene ontology patterns are readily evident. To our knowledge, this is the first meta-analysis that allows for comparison of gene expression and pathways of interest across adult gliomas, pediatric brain tumors, and normal brain regions. We provide access to this resource via the open source, interactive online tool Oncoscape, where the scientific community can readily visualize clinical metadata, gene expression patterns, gene fusions, mutations, and copy number patterns for individual genes and pathway over this reference landscape.


Subject(s)
Brain Neoplasms , Glioma , Adult , Child , Humans , RNA-Seq , Brain Neoplasms/genetics , Brain , Genomics
19.
Interv Cardiol Clin ; 12(3S): e1-e20, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38964819

ABSTRACT

Treatment options for patients with acute pulmonary embolism (PE) and right ventricular shock (RVS) have grown exponentially. Therapy options include anticoagulation, systemic thrombolysis, catheter-based thrombolysis/ thrombectomy, and may include short-term mechanical circulatory support. However, the incidence of short-term morbidity and mortality has not changed despite the emergence of several advanced therapies in acute PE. This is possibly due to the inclusion of heterogenous populations in research studies without differentiation based on the acuity/severity of presentation. We propose a novel classification for PE-RVS to allow for standardizing appropriate therapy escalation and better communication of the severity among cardiovascular critical care, and emergency health care professionals.


Subject(s)
Hemodynamics , Pulmonary Embolism , Humans , Pulmonary Embolism/diagnosis , Pulmonary Embolism/classification , Pulmonary Embolism/diagnostic imaging , Pulmonary Embolism/physiopathology , Hemodynamics/physiology , Risk Assessment/methods , Acute Disease , Angiography/methods , Shock, Cardiogenic/classification , Shock, Cardiogenic/physiopathology
20.
Cell Rep ; 42(8): 112840, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37516102

ABSTRACT

3' untranslated region (3' UTR) somatic mutations represent a largely unexplored avenue of alternative oncogenic gene dysregulation. To determine the significance of 3' UTR mutations in disease, we identify 3' UTR somatic variants across 185 advanced prostate tumors, discovering 14,497 single-nucleotide mutations enriched in oncogenic pathways and 3' UTR regulatory elements. By developing two complementary massively parallel reporter assays, we measure how thousands of patient-based mutations affect mRNA translation and stability and identify hundreds of functional variants that allow us to define determinants of mutation significance. We demonstrate the clinical relevance of these mutations, observing that CRISPR-Cas9 endogenous editing of distinct variants increases cellular stress resistance and that patients harboring oncogenic 3' UTR mutations have a particularly poor prognosis. This work represents an expansive view of the extent to which disease-relevant 3' UTR mutations affect mRNA stability, translation, and cancer progression, uncovering principles of regulatory functionality and potential therapeutic targets in previously unexplored regulatory regions.


Subject(s)
Genomics , Regulatory Sequences, Nucleic Acid , Humans , 3' Untranslated Regions/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mutation/genetics , 5' Untranslated Regions
SELECTION OF CITATIONS
SEARCH DETAIL